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Abstract: Interference suppression is a challenge for radar
researchers, especially when mainlobe and sidelobe interference
coexist. We present a comprehensive anti-interference approach
based on a cognitive bistatic airborne radar. The risk of interception
is reduced by lowering the launch energy of the radar transmitting
terminal in the direction of interference; main lobe and sidelobe
interferences are suppressed via cooperation between the two
radars. The interference received by a single radar is extracted
from the overall radar signal using multiple signal classification
(MUSIC), and the interference is cross-located using two different
azimuthal angles. Neural networks allowing good, non-linear non-
parametric approximations are used to predict the location of
interference, and this information is then used to preset the
transmitting notch antenna to reduce the likelihood of intercep-
tion. To simultaneously suppress mainlobe and sidelobe interfer-
ences, a blocking matrix is used to mask mainlobe interference
based on azimuthal information, and an adaptive process is
used to suppress sidelobe interference. Mainlobe interference is
eliminated using the data received by the two radars. Simulation
verifies the performance of the model.
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1. Introduction

Bistatic radar airborne systems are being increasingly
used because they are not susceptible to interference. As
clutter is range dependent, the geometry of bistatic radars
is more complicated than that of monostatic radars. Clutter
mitigation has been extensively studied [1—5]; space-time
adaptive processing (STAP) effectively reduces clutter,
and several techniques have been developed to deal with
the clutter range dependence of bistatic radar, which
include angle-Doppler compensation (ADC) [6], Doppler
warping [7], space-time interpolation [8], and derivative-
based updating (DBU) [9]. Knowledge-aided STAP
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methods [10,11] can also be used to ensure range-depen-
dent clutter suppression. Sparse recovery algorithms have
been applied to STAP to reduce the number of training
samples needed. Compared to the conventional STAP
algorithm, the sparse recovery algorithm accurately esti-
mates the clutter spectrum using fewer training sam-
ples [12,13].

Suppression of mainlobe interference is another impor-
tant function of a bistatic radar. Saini et al. [14] proposed
a new method of direct path interference suppression
based on dynamic compensation. In [15,16], a multi-station
radar system was used to exploit different spatial fluctua-
tion characteristics of the target echo and interference to
suppress mainlobe interference. Another mainlobe inter-
ference suppression algorithm based on the amplitude
ratio was proposed in [17]. Thus, although mainlobe inter-
ference suppression is often addressed, simultaneous sup-
pression of both mainlobe and sidelobe interferences has
received little attention. When complex, electromagnetic
interference countermeasures are in force, a wide-field
areal radar system is often subject to simultaneous main-
lobe and sidelobe interferences, and sources of uninten-
tional interference may change within a few seconds.
Rapid determination of the interference location is needed,
along with suppression of the interference and presetting
of the transmitting notch antenna. Cognitive radar sys-
tems [18] involve continuous and intelligent interactions
among the transmitter, the receiver, and the environment;
the information received (in the form of radar returns) is
memorized. Cognitive radar is well-suited to environments
with non-stationary interference sources in which the next
interference location must be predicted.

In this study, a neural network is used to create a cog-
nitive bistatic airborne radar, to identify the location of
interference, to preset the transmitting notch antenna and
suppress mainlobe and sidelobe interferences. It is
assumed that the system is aware of signal sources that
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may act as interference. A bistatic radar not only estimates
the direction of the interference, but also predicts its next
possible location. When a bistatic radar is switched on, its
two beams simultaneously align with the interference,
and the transmitted interference data reveal the location
ofthe interference. The transmitting notch antenna is preset
in the predicted direction of interference, and the data
received by the two radars are simultaneously processed
to cancel interference. Mainlobe interference can be sup-
pressed by direct cancellation; however, as mainlobe and
sidelobe interferences often coexist, the residual interfer-
ence remains relatively large and the received response
beam is thus distorted. We develop a cascaded interference
cancellation architecture based on a cognitive bistatic air-
borne radar. First, the mainlobe interference of a single
radar is screened by a blocking matrix on the basis of the
direction of interference, and the sidelobe interference is
then suppressed by adaptive processing; finally, the main-
lobe interference is suppressed by cancelling the data
received from the two radars.

To improve the accuracy of interference localization,

Primary radar

we use passive and active detection methods. Interference
prediction by a neural network does not require active
detection, which saves time. To demonstrate the utility of
the cognitive radar, we describe interference cancellation
by a T/R-R bistatic radar; clutter suppression is not
addressed. Sections 2—4 of this paper present model, the
interference suppression algorithm, simulations, and con-
clusions respectively.

2. System introduction

A functional block diagram of the cognitive bistatic radar
system is shown in Fig. 1. The system includes two
radars. One serves as the primary radar which transmits
and receives signals; the other serves as an auxiliary radar
which only receives signals. Both radars are capable of
active and passive detection. The source of interference is
predicted by a neural network. The two radars are syn-
chronized in terms of data transmission via broadband
links. The red pentagram in Fig. 1 indicates the source of
interference.
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Fig. 1 Block diagram of a cognitive bistatic airborne radar

The cognitive bistatic radar operates in the passive
detection mode; the two radars receive interference via N
channels and engage in passive detection. The direction
of the interference is estimated using the multiple signal
classification (MUSIC) algorithm, and locational infor-
mation is obtained via a cross-sectional approach using
two different azimuthal angles. This information is trans-
ferred to a neural network; interference locations are
newly predicted based on historical information and fed
back to the control, which directs the beams of the two
radars. Then, mainlobe and sidelobe interferences are
suppressed and the risk of interception reduced. This
interference mitigation enhances the signal to interference
plus noise ratio (SINR) of the system. When a bistatic air-
borne radar is in operation, the receiving modules sample

the interference, and transfer the sampled data to the DBF
via optical fibers, thus creating N subarray data.

3. Interference suppression algorithm

This section describes our cascaded interference cancella-
tion architecture applied to a cognitive bistatic airborne
radar. First, angle and location information is predicted
by the neural network. Based on these predictions, the
transmitting notch antenna is preset and a block matrix
preprocesses the received data, masking mainlobe inter-
ference and reducing the impact of the adaptive response
on the targets. Single radar-received data are subjected to
adaptive processing. Finally, the data received by the two
radars are subtracted; mainlobe interference is suppressed
and the target is preserved. This cooperative anti-interfe-
rence bistatic process is explained in Fig. 2.
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Fig.2 Cooperative anti-interference process

3.1 Interference confirmation and prediction

3.1.1 Confirmation of the interference location

The MUSIC algorithm rapidly resolves multiple signals
using a super-resolution direction of arrival (DOA) esti-
mation technique, and has often been used to derive
arrival angles [19]. The radar receiver array consists of N
fully digital channels forming N subarray data points.
When I narrowband interference signals from the far

field 6,,0,,---,6; direction are incident on the array, the
output data vector is

X(t) = As(r) + n(1) @)
where  X(£) = [x,(£), x,(), -+ ,xy(H)]" and  s(£) = [5,(¢),
s5(f), --+ ,s,(1)]" are the received signal vector consisting
of I complex envelopes of the uncorrelated signal sour-
ces. n(t) = [ny(1), ny(2), ---, ny(t)]" is the N-dimensional

white noise vector. A =[a(6,), a(,), --- ,a(8,)]" is the

steering vector matrix; a(6;) =[1,e7#,---, e7*]", where

M =2m/Adsing, A is the operating wavelength, d is the

interelement spacing, and i is the interference number.
The output covariance matrix is

R=E{ X()X" ()} = APA" + &I, ©)

where E{-} is the mathematical expectation, o2 is the sensor
noise power, I, is an M -order identity matrix, and
P =E({s(t)s"(1)} is the signal covariance matrix.

The eigenstructure decomposition of R is

M
R=) auu}=SAS" + c2GG" 3)

i=1

where S =[u;, u,, --- ,up] 1is the signal subspace,
G =[up+1,Up+2,---,uy] 1s the noise subspace, A =
diag{a,,@,,---,ap} is a diagonal matrix, and a, > a, >
e Zap>aps = =ay =o-. Thus, by determining the

steering vectors orthogonal to the eigenvectors associated
with the eigenvalues of R, the DOA can be calculated as

1
fO)= TOGGab) 4

A schematic of the cross-location is shown in Fig. 3.
An (x, y) coordinate system is constructed, assuming that
the speed and location of the airborne radar are compen-
sated. In this system, the primary radar is located at (0,0)
and its velocity vector is assumed to be horizontal. And
the angle between the primary radar and the interference
isa with respect to the x -axis. The auxiliary radar is
located at (L,0), its velocity is assumed to be both hori-
zontal, and the angle between the auxiliary radar and
interference is § with respect to the x-axis. L is the baseline
length of the two radars. Point / indicates the interference
position, and the position (x,, y,) is calculated as

Lcos asin 8
Xo=——
" sin B—a)

Lsin asin 8
Vo=~
sin (8—a)

®)

71 1(xy, o)

P(0,0)

Fig.3 Schematic of the cross-location

R, is the distance between the interference and the pri-
mary radar, and R, is that between the interference and
the auxiliary radar; they are yielded by the triangle rela-
tionship.

3.1.2 Prediction of interference location

To preset the zero point of the transmitting antenna and
construct a blocking matrix that masks mainlobe interfe-
rence, it is necessary to derive the angle and position of
the interference.

A Kalman filter based on the previous state sequence
of the system is optimal for estimating that state [20,21].
The prediction is unbiased and stable. A Kalman filter is
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linearly recursive. It includes state and observation equa-
tions; the equation of state is

x,=Fx,_,+Bu,+w,, (6)
and the equation of observation is
Vi = Hx +vy, (7

where x,x;_; are the state vectors of the system at k and
k—1, respectively; F is the state transition matrix from
k—1 to k; B is the system control action matrix; u; is the
deterministic input of the system; H is the measurement
matrix; y, is the state observation vector at time k; w; is
the process noise; and v, is the measurement noise. w;
and v, are mutually independent.
The hypothetical system state vector is

Xp = [xan X1ys Xpas Xaa (8)

where x,,,x;, represent the positions of the interference
on the x- and y-axes, respectively; x,,,x,, are the angles
between the primary and auxiliary radars, and interference
with respect to the x -axis, respectively. The steps for
Kalman prediction are shown as follows:

X1 = Fx;_; + Bu,, 9

P =FP_F +0Q, (10)

K. =Py H'(HP, H'+R) (11)
X =X+ K [y — Hxio], (12)
Po= (- KH) Py, (13)

where @, R, K, and P are the input variance, measurement
variance, Kalman gain, and prediction variance, respec-
tively. x;,_; is the predicted value and x; is the correction
of x44_1. Pisy 1s the covariance matrix of x;,_; and P, is
the covariance matrix of x;.

As the calculation error of a Kalman filter is relatively
large, divergence is common over time, especially when
the features of the interference change. Both the interfe-
rence angle and position are prone to bias, which affects
block matrix construction. Therefore, a neural network is
used to improve the accuracy of interference estimation.
A non-linear non-parametric approach is used to accurately
approximate any continuous function [22]; this is easier
to apply and more accurate than any other predictive
technique when the functional relationship between the
independent and dependent variables is unknown [23].
Initially, consecutive interference locations are identified
and arranged in a “triangle” (a time series sequence). This
is input to neural networks that optimally adjust the

weights and self-trains for optimal fitting, until the per-
formance criterion is met.

Here, we use a generalized regression neural network
(GRNN) [24], which includes input, pattern, summation,
and output layers. The model architecture and operation
are shown in Fig. 4.

OO0
SZORIEN
0 /0\

Input layer
Fig. 4 Architecture of the GRNN model

Pattern layer Summation layer Output layer

The following equation summarizes the GRNN logic
using an equivalent nonlinear regression formula

jw Yf(X.,Y)dY)

ElY/X]=—5
[ raxnan

where X is the input vector (X;, X,,---, X,,) consisting of
m predictor variables, and Y is the output predicted by the
GRNN. E[Y¥/X] is the expected value of output ¥ given
input vector X, and /' (X,Y) is the joint probability density
of X and ¥ [25]. The model can be expressed as an M—1
GRNN model, thus with an M -dimensional input and a
one dimensional output. An optimal GRNN model is
obtained via three steps. First, the original data are
divided into two parts; the two most recent datasets are
used for testing, and the rest for training. To minimize the
network root mean square error (RMSE), the training set
is smoothed using M values to identify the best smoothing
factor. Then, the final M values of the original data are
used as inputs to predict future data.

A schematic of interference location prediction is
shown in Fig. 5. The coordinate system is shown in Fig. 3.
Point P’ indicates the primary radar location at the time of
prediction; the velocity is assumed to be horizontal, and
the angle between the primary radar and interference is o’
with respect to the x-axis. Point S' is the auxiliary radar
location at the time of prediction; the velocity is assumed
to be horizontal, and the angle between the auxiliary
radar and interference is £’ with respect to the x-axis. R/
is the distance between the predicted interference position
and the primary radar, and R, is the distance between the
predicted interference position and the auxiliary radar.
L' is the distance between the predicted primary radar
position and the predicted auxiliary radar position.
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Fig.5 Schematic of location prediction

Point /' is the predicted interference position, and its
angle with respect to the x-axis can be calculated as

7

’ : 'x()
@ =arCc SIN—————
Ix(/)Z +y(/)2
. v . (15)
B’ = arc sin

NG = L) +y2

3.2 Presetting the transmitting pattern notch and
interference cancellation

In general, the transmission pattern is

M-1 N-1

F(0,8) = Z Z i % donsinoos 5 msing) (16)

m=0n=0

where M is the number of antenna rows, N is the number
of antenna columns, w; is the weight of the antenna array
element (the transmit weight vector, which is commonly
invariant), 6 is the azimuth scanning angle, and f is the
elevation scanning angle (here £=0). If the direction of
interference is known, the transmit weight vector may be
modified by presetting the notch in the direction of inter-
ference.

Mainlobe interference is suppressed using data
received by the bistatic radar. It is possible to directly
subtract the data received by the two radars, and then fur-
ther suppress interference via adaptive processing. How-
ever, to effectively restrain interference, the distance
between the two radar stations must be appropriate for
target echo decorrelation, calculated as

A

D> Rﬁ 17)
where D is the distance between the two radars, R is the
distance between the target relative to the primary and
auxiliary radars, and S is the cross-sectional target size.
This is also a basic requirement for mainlobe cancellation
by the two radars. In practice, many signals are mixed
and direct data cancellation will restrain surplus interfer-

ence. Thus, we develop a cascaded interference cancella-
tion architecture.

First, the blocking matrix is used to mask the mainlobe
interference experienced by the primary and auxiliary
radars, based on the prior direction, and to overcome the
need to calculate the covariance matrix. When the
received data are preprocessed by the blocking matrix, we
obtain the output

D=BX (18)

where B, is the blocking matrix. Below, we use a mainlobe
interference as an example when setting the blocking
matrix, and B; can be expressed as

1 - 0 - 0 0
0 1 —eu .. 0 0
B, = : KT : (19)
0 0 - 1 -eu 0
0 0 N

(N-1)XN
where u,=2n/Ad sind,, 6, is the direction of mainlobe
interference. Equation (19) is substituted into (18) to give

1 —em 0 . 0 0
0 1 - ... 0 0
D=|: : . g : :
0 0 - 1 —e 0
0 0 -« 0 1 —ew
x (1) x1 (D) = eV (1)
x; (1) X (1) — e x5 (1)
= ) : (20)
Xy (1) Xy-1 (£) = e xy (1)

In (20), the dimension of the blocking matrix is (N—1) x
N. Therefore, a signal pre-processed by this matrix lacks
one dimension. The physical explanation is that the next
path is weighted, and the current path is then canceled,
one degree of freedom is lost. When constructing the
blocking matrix, it is critical that the interference angle is
correct. If the estimation of angle is biased, interference
suppression is compromised, which explains why a
GRNN is used herein for interference estimation.

The blocking matrix method can be used to suppress
mainlobe interference encountered by a monostatic radar,
but it is accompanied by high sidelobe and mainbeam dis-
tortion. When the target signal and mainlobe interference
enter from the same direction, the matrix suppresses both
the interference and signal, rendering it impossible to
detect the target [26,27].

Next, sidelobe interference suppression of the primary
and auxiliary radars is performed. By weighting the output
data D using certain criteria, we derive the output as fol-
lows:

y=W'D 21
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where Wis the adaptive weight vector. The same algorithm
is used for both radars; the subscript is thus omitted here.

According to the least-squares criterion, the optimal
weight is

R'S

— 22
SHR-'S 22)

Wopt =
where R is the covariance matrix and § is the space-time
joint steering vector, defined as

S=5.®8S, (23)

where S, = [1,exp(jw,), - ,exp (N — 1)w,)] is the spatial
steering vector, w;, is the normalized frequency of space,
S, =[1l,exp(w,), - ,exp(j(k—1)w,)] is the temporal
steering vector, and w, is the normalized Doppler fre-
quency.

Finally, depending on the phase, and the time and
beam synchronization of the bistatic radar, the bistatic
received data can be canceled using the following for-
mula:

Y = WnpﬂXI - ananz (24)

where X, and w,,, are the primary radar-received data
and the optimal weight; X, and w, are the auxiliary
radar-received data and optimal weight; and g is the opti-
mization coefficient for the two datasets. The angle
between the two radars and the interference are both ade-
quately large, and correlate with the target echo.

4. Simulation

We present a simulation that demonstrates the superior
performance afforded by neural networks. The principal
parameters of a bistatic radar are listed in Table 1. The
additional parameters are as follows: side-looking arrays
with no platform crab, velocity of 135 m/s, aircraft
heights of 7 500 m, and baseline length of 200 km. The
direction of the desired signal is set at the 100th sampling
point toward 1.6°. The signal to noise ratio (SNR) is
30 dB, the angles of the interfering signals are 1.6° and
—45°, and their respective interference to noise ratios
(INRs) are 35 dB and 45 dB. The interfering signal con-
stitutes mainlobe interference at 1.6° and exhibits the
same angle as the desired signal. All angle and sampling
point parameters refer to the one radar, because the algo-
rithm used by the other radar is similar. There is no need
to list the parameters separately.

Table 1 Bistatic airborne radar specifications

Radar Specification Value
Carrier frequency/GHz 1.25
Pulse repetition frequency/Hz 2 000—-8 000
Primary radar Pulse width/ps 12-100
Peak output power/kW 100
Transmitter number 48

Continued
Radar Specification Value
Receiver number 48
Signal bandwidth/MHz 5
Primary radar Beamwidth/(°) 2.9
Sampling interval/s 1
Polarization Horizontal
Carrier frequency/GHz 1.25
IF bandwidth/MHz 60
Auxiliary radar IF sample. frequency/MHz 200
Receiver number 48
Beamwidth/(°) 3.4
Polarization Horizontal

Fig. 6 depicts the assumed trajectory of the mainlobe
interference, whose initial position is (200 km, 200 km).

y

1,(200, 200)

Trajectory

P(0, 0) S(L, 0)
»3 L X
I I

Fig. 6 Assumed trajectory of the mainlobe interference

4.1 Interference confirmation

Based on its initial location, we can estimate the
azimuthal angle of the interference. Using the results of
Fig. 6, the DOA of the primary radar and the auxiliary
radar are shown in Fig. 7(a) and Fig. 7 (b), respectively.
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Fig. 7 DOA values estimated using the MUSIC algorithm
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Substituting the two radar DOA results and the baseline
into (5), we can estimate the locations (200 km,200 km)
of interference. The bistatic radar may receive location
information regardless of a change in interference posi-
tion, but not in real time.

4.2 Interference predictions

The initial interference data are input into the neural net-
works and the Kalman filter, and the simulations are then
performed. The time-series sequences of the successive
interference locations are loaded into a GRNN time-series
model. The system performance criterion is the RMSE.
Predictive plots of the angle time series are shown in
Fig. 8(a) and Fig. 8(b). The plots in Fig. 8(c) and Fig. 8(d)
show the predicted interference trajectories. Fig. 8(d) is
an enlargement of part of Fig. 8(c).

(%

wn O

(=]

(S I S Y BV e e
wn O

Estimation angle/(°)

W

1
0 200 400 600 800
Scan period/s

(a) Angle time series prediction for the primary radar

s 120

& ! ! "X 841
% 110 : . 1Y 1095 |, iveeend
=} Il i
[~ 1 1
£ 100 J
g 9 .
@ 80 : !
200 400 600 800

1 000
Scan period/s
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Fig. 8 Prediction performance plots

Fig. 8(a) and Fig. 8(b) show that the angle estimation
error of the Kalman filter is larger than that of the GRNN.
The maximum error is 0.64°, which would affect the con-
struction of the blocking matrix. Similarly, Fig. 8(c) and
Fig. 8(d) show that the position estimation error of the
Kalman filter is larger than that of the GRNN. The maxi-
mum error is 300 m. The performance of the GRNN is
obviously superior to that of the Kalman filter.

4.3 Presetting the notch of the transmission pattern

The predicted angles are used to preset the notch of the
transmission pattern. Fig. 9 shows the result; the relative
gain is plotted against the azimuthal angle. The notch
points toward the predicted interference; the zero point is
taken to be 20°, which greatly reduces the risk of inter-
ception. The angle of elevation is not considered here.
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Fig. 9 The zero point transmission pattern

4.4 Simulation of space domain response

Fig. 10(a) shows the space domain response without a
blocking matrix; the array gain is plotted against the
azimuthal angle. The null depth is found in the direction
of interference; one zero point lies at 1.6° and the other at
—45°. The mainbeam pattern is distorted, compromising
target detection. Fig. 10(b) shows the space domain
response after mainlobe interference has been masked.
The proposed pattern is very close to quiescent; thus, our
method effectively suppresses sidelobe interference while
maintaining the mainbeam pattern. The zero point posi-
tion at —45° lies at the angle of sidelobe interference.
Fig. 10(c) shows that, given the angle estimation error of
the Kalman filter, the blocking matrix cannot completely
mask the mainlobe interference at 1.6°. The residual inter-
ference affects the response of the space domain.
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Fig. 10 Space domain responses

4.5 Simulation of target detection

To explore the effect of mainlobe interference on the
radar function, we test the SINR performance of our
method.

Fig. 11 shows the results when the azimuth of the
mainlobe interference is within the main beam (from
—2.4° to 2.4°). The figure shows that, unlike a monostatic
radar encountering mainlobe interference, bistatic cooper-
ative radars can detect a target in the direction of mainlobe
interference, eliminating the influence of interference on
detection performance over a certain angle.

Output SINR/dB

|
-

3 -2 -1 0 1 2 3
Angle/(°)

—— : Monostatic radar; : Bistatic radar.

Fig. 11 Performance evaluation: target detection after canceling
mainlobe interference

Fig. 12 shows target detection after mainlobe interfe-
rence is directly subtracted; the output SINR of 28.5 dB
reflects an SINR loss of about 8 dB. The mainlobe inter-
ference is well-suppressed, but at a high processing cost.
When the target SINR is less than this value, target detec-
tion is affected and often impossible.
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Fig. 12 Output SINR based on the mainlobe interference directly
subtracted

Fig. 13 shows target detection after the mainlobe inter-
ference is suppressed by the blocking matrix. The output
SINR is 34.5 dB and the SINR loss is about 2 dB. Main-
lobe interference suppression is greatly improved.
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Fig. 13 Output SINR based on the mainlobe interference suppre-
ssed by the blocking matrix

5. Conclusions

We develop an effective bistatic radar architecture for
addressing interference. As shown by simulations, the
MUSIC algorithm provides exact DOA values, and real-
time locations predicted by neural networks are helpful
for blocking mainlobe interference, adaptive interference
cancellation and reducing the risk of interception. The
numerical examples show that the locations of interference
are effectively predicted, allowing the launch energy to
be reduced in the direction of interference. Mainlobe and
sidelobe interferences are suppressed without distorting
the mainbeam pattern, and clear improvements in the
SINR are evident.
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