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Abstract: Input variables selection (IVS) is proved to be pivotal
in nonlinear dynamic system modeling. In order to optimize the
model of the nonlinear dynamic system, a fuzzy modeling
method for determining the premise structure by selecting
important inputs of the system is studied. Firstly, a simplified two
stage fuzzy curves method is proposed, which is employed to
sort all possible inputs by their relevance with outputs, select the
important input variables of the system and identify the structure.
Secondly, in order to reduce the complexity of the model, the
standard fuzzy c-means clustering algorithm and the recursive
least squares algorithm are used to identify the premise parameters
and conclusion parameters, respectively. Then, the effectiveness
of IVS is verified by two well-known issues. Finally, the proposed
identification method is applied to a realistic variable load pneu-
matic system. The simulation experiments indi cate that the IVS
method in this paper has a positive influence on the approximation
performance of the Takagi-Sugeno (T-S) fuzzy modeling.
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1. Introduction

There are many forms of motion in nonlinear systems,
most of which are complex and uncertain. In general, a
large number of data points are used to build a model to
describe the nonlinear system and solve the practical
problems. Among the nonlinear models, the fuzzy model
can deal with the relation of input and output, especially
for a complex and imprecise system. Although any element
that may affect the output can be considered as a possible
input, some inputs may be noise. Therefore, in the fuzzy
modeling of the nonlinear time-varying system, determin-
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ing optimal input variables is a problem that must be
solved. Input variable selection (IVS) is to use certain
methods and criteria to find out significant variables from
numerous candidate input variables [1]. Determining
important input variables, eliminating redundant input
variables and lessening the total number of input variables
are of great significance for decreasing calculation con-
sumption, reducing model dimensions and improving pre-
diction accuracy. At present, IVS is mainly used in neural
network prediction and feature extraction [2—5], which
can effectively reduce the dimension of input variables
and the complexity of the fuzzy model, and improve the
generalization ability of the model. However, the selection
of the input variables of the fuzzy model has been paid
little attention.

The Takagi-Sugeno (T-S) fuzzy model by using the
experimental data is regarded as an effective means for
modeling the actual system [6—17]. The work of T-S
fuzzy system identification consists of two parts: structure
identification and parameter estimation. The structure
identification consists of structure identification I (select-
ing and deciding system inputs) and structure identification
II (setting the number of fuzzy rules and dividing the
fuzzy space). Parameter identification contains
antecedent and consequent parameter identification of
fuzzy rules. According to Sugeno [7], each work of fuzzy
identification has different influence on the identification
result. Sugeno believed that structure recognition I is the
most important, with a proportion of 100, followed by
structure recognition II with a proportion of 10, and
finally parameter identification with a proportion of only
1. Therefore, IVS plays a great role in improving the
identification performance of the model. For a real complex
system, there are many factors that affect the output of
the system. If all the factors are considered as the input of
the model, the fuzzy rules will grow exponentially with
the increase of the system dimension, which is unrealis-
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tic in the practical system application. For the rule-based
fuzzy identification problem, selecting important input
variables is an important means to solve the “dimension
disaster ” problem. In the existing literature, the input
variables of fuzzy models are mostly determined by expe-
rience. Therefore, developing a more robust IVS
approach is an important means to solve the problem of
system identification with the fuzzy system, which can
accurately describe the interdependence between the can-
didate input variables and the output variables, and can
quickly sort the input variables according to the correla-
tion.

The commonly used IVS methods contain two catego-
ries, one is model-based, and the other is model-free [1].
Model-free IVS methods include correlation coefficient
(CQC), partial correlation coefficient (PCC), mutual infor-
mation (MI), partial mutual information (PMI), covariance
matrix (CM), random forest (RF), etc.; and model-based
IVS methods include input omission (10), combined neural
path strength (CNPS), etc. In [1], four input variable
selection methods (PC, PMI, 10 and CNPS) were com-
prehensively compared. Moreover, the IVS based artificial
neural network flow prediction model is verified on two
water basins datasets. In [18], the method MI was utilized
to select input variables, and the dynamic neural network
model was established to obtain the feeding conditions of
broilers. The input variables were selected by forward
selection (FS), Gamma test (GT) and principal component
analysis (PCA), and the artificial neural network model
was established to predict the human response to odor
perception in [19]. The prediction model of carbon content
in fly ash and the classification model of crude oil samples
were established by RF, respectively in [20] and [21].
The model has a higher accuracy and faster calculation
speed. For the selection of input variables of the fuzzy
model, there are few literature. In order to determine the
input variables of the Takagi-Sugeno and Kang (TSK)
fuzzy model, Banakar et al. adopted the loop algorithm
and the genetic algorithm, and established the dynamic
system model by combining the modified mountain clus-
tering (MMC) algorithm and the structure tree (ST) algo-
rithm [22]. Lin et al. used two-stage fuzzy curve and surface
(TSFCS) to select important input variables for nonlinear
system structure identification [23]. With these fuzzy
curves and surfaces, the correlation between the candidate
input variables and the output variables was determined.
The correlation was used to sort candidate input variables,
select important input variables with strong correlation,
and eliminate the variables with poor correlation.

In existing researches on fuzzy modeling for complex
nonlinear dynamic systems, the inputs of the model are
mostly selected or determined by experience. Though the

determination of input variables can make a great contri-
bution to improving the performance of fuzzy identifica-
tion, the research results on this part are not perfect yet.
In order to make up for this shortcoming, this paper will
carefully study what kind of performance the fuzzy mo-
del will show under the effect of IVS. In order to verify
the accuracy and effectiveness of the fuzzy identification
method considering the IVS, this paper compares with
previous research results in two aspects, one is the number
of input variables and the other is the number of fuzzy
rules. The research results of this paper have important
theoretical and practical significance for the practical
application of fuzzy systems in nonlinear dynamic sys-
tems. In order to improve fuzzy modeling accuracy of
nonlinear time-varying system, a method of fuzzy identi-
fication based on IVS is raised. The TSFCS method in
[23] is simplified to identify the important input variables
of the T-S fuzzy model. On this basis, the traditional
fuzzy c-means (FCM) clustering algorithm and the recur-
sive least square (RLS) method are utilized to identify the
premise parameters and conclusion parameters respec-
tively. The algorithm preprocesses the possible input
variables offline, which reduces complexity of structure
identification and can obtain a high identification accuracy
without complicated parameter optimization.

This article is structured as below. Section 2 gives an
outline of the T-S fuzzy model. In Section 3, a fuzzy
identification method is proposed, which uses the FCM
algorithm to identify antecedent parameters on the basis
of determining significant input variables. In Section 4,
two classical examples verify the performance of the
established model. Furthermore, the discussed identifica-
tion method considering IVS is applied to the identification
of a real pneumatic loading system in Section 5. In the
last section, the work of this paper is summarized.

2. Preliminaries
2.1 T-S fuzzy model

The T-S fuzzy model is a fuzzy rule based model, which
approximates the nonlinear system by the local linear
subsystem and realizes global nonlinearity by fuzzy rea-
soning. The premise of the rule is a fuzzy variable, and
the conclusion is the linear function of input and output.
The T-S fuzzy model with N groups of sample data
(X1, Xi25 "+ » Xirs i) can be described as

Ri: Ikal is A[l’ ey X is A;,
then y, = p) + pi Xy + phXo + -+ plxy, (1)
where R;(i=1,2,---,c) is the ith fuzzy rule, ¢ stands for
the fuzzy rule number, p’ = [pi,pi,p5,---,pi] € R™*! rep-
resents the conclusion parameter vector of the ith fuzzy
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rule, x; =[x31, X0, -, X] 18 the kth input vector,
AiLAL--- Al are premise fuzzy subsets and y; is the lo-
cal output variable.

wi is the matching degree, which is shown below:

a);‘( = Nil(xl) X,Uiz(xkz) Xoee X/J;cr(xkr) = ﬂ/’lij(xkj) 2
J=1

where 1 (x,;) denotes the membership function of x;
belonging to A’. The Gaussian function is one of the most
commonly used membership functions, and other types of
membership functions include aggregate type membership
function, trigonometric function and so on.

The global output of the fuzzy model is gained by
weighted processing of local output and given by

= @y 3)
i=1

where

is the validity function of the ith rule, 0 <@, <1 and
Z&)ﬁ( =1,Vk=1,2,--- ,N:¥i=1,2,- ,c.
i=1

From (1) and (3), the following equation can be
obtained:

= Z (@} - (Ph+ PiXi + PoXia + -+ PLxi)] =
i=1
[@;@;xkl (D;ixkr (Dza);xkl (szkr]'
[Popi-- Py Popy - P )
The matrix equation (5) is obtained by substituting N
pairs of sample data into (4).

Y=XP %)

where P =[pyp;---pl--- p5pS---p<]" represents the con-
sequent parameter, which is an L-dimensional matrix, and
L=(r+1)-c; c is the number of fuzzy rules; r repre-
sents the number of input variables of the fuzzy model.
Y =[91,92,---,9n] is the output vector of Nx1; X is a
matric of N X L, and

X, = [@ @iy -+ DXy -+ D DXy -+ DX )
is the kth row of X. P =(X"X)"'X"Y is the required
parameter vector.
The purpose of consequent parameters identification is
to determine the coefficient of linear regression model (1).
In order to avoid inverse operation of the matrix, the RLS

method is used to obtain the parameter estimation vector
P by iterative optimization, and the recursive algorithm is

SI'X;F| '()’1+1—X1 ]'Pl)
P =P+t X (6)
i : 1+XI+1'S1'X’11;1
S. =S SI'XZTH X1+ S %)
I+1 i —1+X1+1 'SI'X;[H

where [=0,1,2,--- ,N - 1,5, is a matrix for auxiliary cal-
culation.

The initial condition is P, =0, S, = al. « is a constant
greater than 10 000. I is a unit matrix, which is LX L-
dimensional. The optimal conclusion parameter matrix in
the sense of mean square error (MSE) is obtained by
using (6) and (7), and the conclusion parameter and MSE
are output after recursion.

N
MSE = " (=9’ IN
k=1
where ¥, and y, are the kth output of the model and
actual system respective. In the next series of studies,
er = yr — 9 is used to evaluate the gap between the model
output and the source output.

2.2 Fuzzy c-means clustering algorithm

There are many methods to divide fuzzy space and esti-
mate premise parameters, such as the Gustafson-Kessel
clustering algorithm [24], the Gath-Geva clustering algo-
rithm [25], FCM and the fuzzy C-regression model
(FCRM) [26—31]. Among them, the FCM algorithm is an
effective method in practical application, which has the
characteristics of simple implementation and a high iden-
tification accuracy.

The purpose of FCM is to minimize the objective func-
tion

(U V) = ii(um(m,

k=1 i=1

st ug=1. ®)
i=1

In the above equation, N is the sample quantity, c is
the number of fuzzy rules, m represents the weight of the
membership function, usually an integer greater than 1.
The value of m will affect the accuracy of recognition,
and m = 2 is taken usually. u; characterizes the member-
ship of the kth sample point x; = (x4, Xp2, -, X) in the
ith clustering and u; >0; v; is the ith cluster center.
Vi=1,---,c, u; and v; are calculated by (9)—(11):

N N
Vi = AZ:; (uik)mxk/kz; ()" 9

2/(m-1)
%) (10)

Ui = 1/2 djk

J
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dy =|lx¢=vill >0, Viandk,
Ifd; =0, thenuy =1, uy =0, #1. (11)

U = (uik) iS
(v1,v2,-+-,v)T is the matrix composed of cluster centers.

a fuzzy partition matrix and V=

According to the given data point (xy,y;), the following
steps give a detailed offline calculation method:

Step 1
the value of ¢, weight index m, stop criterion &, and ini-

Initialize the number of iterations [ =0, set

tialize the matrix U randomly.

Step 2 Update the matrix V by (9).

Step 3 Use (11) to update the distance d;; of each clu-
ster.

Step 4 Update the matrix U by (10).

Step 5 If ||U(’) - U(""H < g, stop, otherwise skip back
to Step 2.

3. Fuzzy identification method based on IVS

This part shows in detail the innovations of this article.
Firstly, the algorithm of IVS is discussed to determine the
important input variables for structure identification. Sec-
ondly, the FCM algorithm is used for parameter identifi-
cation. Then, the fuzzy model is constructed by combining
IVS with FCM. Compared with the previous fuzzy mod-
els, the advantage of this model can avoid the complex
iterative optimization process of fuzzy model parameters
and reduce the calculation amount on the premise of high
fuzzy modeling accuracy. It is suitable for online identifi-
cation of practical system and has important theo-
retical and practical guiding significance for the practical
application of fuzzy system in nonlinear dynamic system.

3.1 Improved IVS

The IVS method based on TSFCS is more suitable for the
nonlinear system with strong interdependence between
input variables. The two-stage fuzzy curve gives the cor-
relation between a single input variable and the output,
and the two-stage fuzzy surface describes the interdepen-
dence between two different input variables relative to
the output. In order to simplify the model, the correlation
between input variables is not considered temporarily,
and the difference calculation in the original algorithm is
abandoned. The simplified TSFCS method is called the
two stage fuzzy curve (TSFC) method, through which all
possible input and output correlation indexes are obtained
and sorted. The detailed process is discussed as below.
See Fig. 1 for the specific algorithm flow chart.

Input variables:
Local estimates X (J=1, -, M) Local averages
of the variance: of the output:
Vi (x,‘) Y (x/)

Output: y

Performance Performance
index: Pv/ index: PJ./
Performance
index: P

Fig. 1 Schematic diagram of TSFC

3.1.1 The first stage fuzzy curves

Based on the design concept that the more important the
inputs are, the more relevant the outputs are, the first
stage fuzzy curves are designed. Suppose x;,x;, *", Xy
are the possible input variables of the fuzzy system mo-
del, y is the output, and N is the sample quantity.

First, in each x;—y space, a Gaussian membership
function y,,(x;) is constructed:

(x;) = ex (—(xki_Xi)zJ (12)
Hyi(Xi) = €Xp B;

where x,,, X, -+, X, Vi 1S @ sample point in x; —y space,
k=1,2,---,N; B; is the width of the membership func-

tion, in general, B; = 0.2(max x;; — min xy,).
1<ks<N 1<k<N

Then, for each x;, a fuzzy curve ¥,(x;) is defined by

DD ()]
D e —— (13)

Zﬂk,‘(xi)
k=1

The fuzzy curves , in the above formula represents the
local weighted mean of y, for each x;, and ; decides the
range of the local neighborhood. If an input variable x; is
more relevant to the output y; than x;, then the difference
between j,(x,,) and output y, is less than that between
¥,(x j) and y;, which indicates the input x; is more signif-
icant than x;. Therefore, a performance index P, is intro-
duced to describe the importance of variables x;:

1 N
Py = 55 D Giw) — 0 (14)

Y ok=1

where y and v, = ZkN_l (s —¥)*/N is mean and variance
of all output {y;,y,,---,yn} respectively. A smaller P,
means that x; is more important. Therefore, sorting P;, in
the descending order, a list of all candidate input variables
also in the descending order of importance can be
obtained.



LYU Jinfeng et al.: Fuzzy identification of nonlinear dynamic system based on selection of important input variables 741

3.1.2 The second stage fuzzy curves

If i # j, P;, is equal to P;,, which makes it impossible to
identify which input Var1able is more important. The
fuzzy curve ¥,(x;) in the second stage aims to solve the
problem. The second stage fuzzy curve is given through
fuzzy curves in (13) as follows:

DG =3 - pyy(x0)]
k=1

V,(x;) = — < . (15)
Zﬂki(xi)
=1

The fuzzy curve 7,(x;) is a weighted estimation of the
output variance along the x;-axis. If there is a poor corre-
lation between an input x; and the output y, then there
should be ¥,(x;;) = v, for all x;;; on the contrary, if there is
a strong correlation between the input and the output,
then the value ¥,(x;) at any point is significantly different
from the global variance v,. The second stage fuzzy curve
can be used to calculate the performance index function
equation (16), the function of which reflects the contribu-

tion of all possible inputs to the output.

P, = N( > Z‘ [7,(x,) — v, ] (16)

Different from Pj, in (14), a larger P; means that x; is
more significant. For the convenience of application, P,

and P; are unified into a performance index P;(0 <
P, <1):
P,
P = 5P, 17

The variable list sorted by importance from large to small
can be obtained by calculating the performance index
function P; and arranging it in the descending order. If
P; =0, it means a good performance; if P; = 1, it means a
poor performance.

3.2 The proposed T-S fuzzy identification approach

The T-S fuzzy identification approach discussed in this
article is illustrated in Fig. 2, which combines the TSFC
method and the FCM algorithm.

Identification of antecedent structure and antecedent parameters

Input-output
data
(81,85 5 Sun )

Select input variables
(Sls S2= T Sr)
based on TSFC

Identify consequent

based on FCM parameters by RLS

by (14)

|
|
|
|
Determine MF g (x;) |
t
|
|
|
|

Selecting important Antecedent parameters
input variables identification

Fig. 2 T-S fuzzy system identification approach based on TSFC

The detailed steps of the fuzzy modeling are described
as below:

Step 1 Use the TSFC method to sort input variables;

Step 2 Set termination threshold & and the number of
input variable r, conduct fuzzy subsets partition (determine
c);

Step 3 Calculate the antecedent parameters ,u;'(j(xkj)
according to (10);

Step4 Get X from (5);

Step 5 Solve P through (6) and (7);

Step 6 Calculate the model performance evaluation
index MSE. If MSE meets the identification accuracy,
then the identification algorithm will terminate; otherwise,
add ¢ and go to Step 3.

4. Simulation research

The main goal of this section is to verify the effectiveness
of IVS based on the TSFC method through several typical
nonlinear system models. To determine the reliable

dynamic characteristics, two methods, FCM and TSFC+
FCM algorithms, are used to carry out a comparative
study.

4.1 Example 1: Mackey-Glass chaotic system

4.1.1 IVS based on TSFC

The Mackey-Glass chaotic system [32] is considered as a

standard case, which is widely applied to research of
fuzzy model performance. It is obtained by

dx(n)  0.2x(r—17)

dr  1+x°0¢—17)

These 1000 datasets are obtained by (18). Applying
the TSFC method mentioned in Section 3, letting s; =
x(t—i)(i=1,2,---,18), y = x(t + 1), calculating the index
function P; of each variable s; and sorting all variables
according to the value of P;, the first six important input
variables s;, $,, §3, 84, §s and s,5 are screened out, and
the corresponding values P; are 0.0611, 0.1164, 0.1967,

~0.1x(1). (18)
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0.3003,0.4203 and 0.4960 respectively. The first six
input variables represented by them are x(r—1), x(—2),
x(t—3), x(t—4), x(t—5) and x(¢r - 18).

4.1.2 Experimental results

One thousand sets of data obtained by (18) are equally
divided into two groups to verify the prediction perfor-
mance of the model. The first group of data is used for
model training, and the latter group of data is used for
model testing.

In general, the six variables x(r—1),x(t—2), x(t—3),
x(t—4),x(t—5) and x(t—6) are selected as model inputs.
In this article, the above selected variables x(z—1),
x(t—2), x(t—3), x(t—4), x(t—5) and x(r—18) are used
for fuzzy modeling. Set the initial values of x(0) to x(17)
all as 1.2 and the rule number ¢ = 2. The performance of
our fuzzy model is shown in Fig. 3, where Fig. 3 (a)
exhibits the comparison of the original output and the
predicted output of the model, and Fig. 3 (b) depicts

Lt
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Data number
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Fig. 3 Contrast of established model with actual model for Example 1

The traditional FCM algorithm and the proposed algo-
rithm TSFC+FCM algorithm are respectively used for
modeling comparison of Example 1. Under the condition
that the fuzzy rules are both 2, the modeling accuracy
(MSE1) of the FCM algorithm and the TSFC algorithm
are 4.5655x10 " and 4.1627x10 ", and the prediction
accuracy (MSE2) are 4.6050x10° and 4.2957x10°,
respectively. From the experimental results, it can be con-
cluded that the prediction performance of fuzzy identifi-

cation based on the TSFC method is better than that without
IVS.

In addition, we compare our model performance with
other results in literature in Table 1, and our model has a
higher identification accuracy. The training MSE is
4.1627%x107° and the obtained prediction MSE is
4.2957x 107 for the test data.

Table 1 Performance contrast of different fuzzy models for Example 1

Model Number of Trainingﬁl\/ISE Testing}:/[SE
rules (x10 ) (x10 )
Guo et al. [11] - 9.61 10.24
Masoumi et al. [33] - 4.84 7.29
Zouetal. [13] 10 5.0216 6.7449
Liu [34] 2 0.6377 0.6518
Our model 2 0.41627 0.42957

4.2 Example 2: Box-Jenkins system

4.2.1 1IVS based on TSFC

The Box-Jenkins data set [35] includes 296 sets of input
and output measured values of the gas furnace process.
At time k, the gas flow of the system input is expressed
with u(k) and CO, concentration of the system output is
y(k). The purpose of this experiment is to select the optimal
inputs and predict y(k + 1). For this purpose, given
| outk=i+1), i=1,2,---,5
B { yk—i+5), i=6,7,8

i

The importance index P; of each input to be selected s;
is calculated according to (17) based on the TSFC me-
thod and arranged in the descending order. Here, the first
six input variables: s, S5, S7, S4, Sz and s3 are screened
out, and the values P; of them are 0.0705, 0.1494, 0.160
5,0.2604, 0.306 1 and 0.429 5 respectively, and the corre-
sponding actual inputs are y(k—1), u(k—4), y(k-2),
utk—3), y(k—3), utk—2).

4.2.2 Experimental results

In this section, the model generalization is tested through
two situations. In the first case, a full set of data is
devoted to establish the model to verify its superiority; in
the second case, the data set is equally divided into two
parts, the former is used for model training and the latter
is for examining the prediction ability of the model.

In most available literature, the input variables of the
Box-Jenkins system are u(k),u(k—1), u(k—2), y(k—1),
y(k—2) and y(k—3). The variables selected above are
used as the input of the model. Fig. 4 and Fig. 5 show the
model approximation performance in two cases respec-
tively.
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Fig.5 Contrast of established model with actual model for Example
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Aiming at the first case, it is available from Fig. 4 (b)
that the modeling error between 200—290 data groups is
relatively large compared with that between 1-200 data
groups. In [29], a classic fuzzy identification literature,
and [8], the error of Box-Jenkins gas furnace modeling
data also had an increasing trend in the same range. For
the second case, in the test model stage of [36] , the test
error was also increasing in the 160—290 range. It can be
concluded that since the data of gas furnace is the mea-
surement data obtained through experiments, there will
inevitably be noise interference, which will affect the mo-
deling results.

In both Case 1 and Case 2, the simulation results
obtained by the TSFC + FCM algorithm and the FCM
algorithm are displayed in Table 2 and Table 3. From
Table 2 and Table 3, the identification performance of the
model based on TSFC is obviously better than those with-
out IVS under the condition of the same number of input
variables. In both cases, detailed comparisons of our
model performance with others are given in Table 4 and
Table 5, which show that our model has a higher accuracy
than other models in literature. It should be noted that
those results in Table 4 and Table 5 are mostly obtained
by using the complex parameter optimization process. In
[10], the T-S fuzzy system with the least fuzzy rules was
established by using the iterative vector quantization clus-
tering method, and in [37], based on the establishment of
fuzzy structure by FCRM, the number of fuzzy rules was
optimized.

Table 2  Performance comparison of IVS based on TSFC for
Example 2 (Case 1)
Model Input variables Number of rules MSE
FCM y(k—1),u(k) 2 0.4243
TSFC+FCM yk=1),u(k—4) 2 0.1655
FCM Yk —1),y(k=2),u(k),utk—1) 2 0.0757
TSFC+FCM y(k—1),y(k—2),u(k —3), u(k—4) 2 0.0609
yk=1),y(k=2),y(k - 3),
FCM ull),u(k = 1),u(k—2) 2 0.0570
k—1),y(k—=2),y(k—-3),
TSFC+FCM X )H W ) 2 0.0545

uk—=2),u(k=3),utk—4)
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Table3 Performance contrast of different fuzzy models for Example
2 (Casel)

MSEl MSE2

Model Input S, S
(Train)  (Test)
FCM y(k—1),u(k) 2 03252 0.9611
TSFC+FCM y(k=1),u(k—4) 2 0.0801 0.3803
FCM yk=1),y(k=2),utk),utk=1) 2 0.0305 0.5387
tsFcipem VKT DK =2)uk=3), 2 00164 0.1679

u(k—4)
k—1),y(k—2),y(k-3),

FCM Y= Doy s 0.0171 0.1438

u(k),u(k—1),u(k—2)

k= 1),3(k=2),y(k=3),
TSFC+FCM y y y 2

ulk—2) .k = 3). u(k — 4) 0.0152 0.1707

Table 4  Performance comparison of IVS based on TSFC for
Example 2 (Case 2)
Model Number of inputs c Training MSE
Tsekouras [28] 6 8 0.075
Liu [34] 6 2 0.0561
Lietal. [8] 6 4 0.0498
Lietal. [37] 6 3 0.0560
Li et al. [36] 6 3 0.0534
Our model 6 2 0.0545
Table 5 Performance comparison of different fuzzy models for

Example 2 (Case 2)

Model Number of rules  MSE1(Train) MSE2(Test)
Tsekouras [28] 7 0.022 0.236
Lietal. [37] 3 0.0159 0.1255
Lietal. [36] 3 0.0150 0.1470
Luo et al. [10] 2 0.0254 0.1243
Yan et al. [15] 2 0.0168 0.1402
Lietal. [14] 3 0.0149 0.1324
Our model 2 0.0152 0.1707
Our model 3 0.0150 0.1567

The gravitational search algorithm (GSA) was used to
optimize the antecedent parameters of the fuzzy model
in [14,36]. Yan et al. presented an improved hybrid back-
tracking search algorithm (IHBSA) to search the optimal
number of fuzzy clusters and the corresponding cluster
centers at the same time in [15]. However, the algorithm
proposed in this paper avoids the complex iterative opti-
mization process, which is the advantage of this model.

5. Application to the variable load
pneumatic loading system

Due to the characteristic of simple structure, small vol-
ume, and without pollution and wide applicability, the
pneumatic loading system has attracted much attention in
the latest research. It has been widely applied to industrial
automation, aerospace, health care and other fields [38].

However, the complexity of the gas flow, the charge and
exhaust characteristics of the two chambers of the cylin-
der, the nonlinear flow of the electric proportional valve
and other factors, lead to the pneumatic loading system
having strong nonlinearity and strong coupling, which
makes modeling and controling the variable load pneu-
matic loading system become a difficult problem in
industrial application. There are two approaches to build
the system model in practical application. One is to estab-
lish the mechanism model according to the dynamic law
of system operation; the other is to establish the data
model by collecting experimental data of system opera-
tion. In our research, the fuzzy model of the pneumatic
loading system is built based on data drive.

The pneumatic variable load test machine is suitable
for the precise loading of small load and the continuous
variable loading of the numerical value. It can simulate
the movement behavior of the moving interface of the
ground and space mechanism, and realize the friction and
wear simulation test between various moving interfaces
under the gravity and microgravity environment. The
structure block diagram of pneumatic loading system
controlled by electric proportional valve is shown in Fig.
6. The hardware system is mainly composed of air source,
pneumatic couplet, electric proportional valve, industrial
control computer, pressure sensor, data acquisition card,
cylinder, etc. Among them, the pilot electric proportional
valve of SMC ITV2050 is used to convert the electric signal
into the pressure signal; the MCL-L pull and press type
sensor is used as the detection element of the system; the
D/A and A/D are composed of Advantech PCI1710 and
Advantech PCI1710. The system controller is on IPC-
610h industrial computer, which is used to collect, pro-
cess, calculate and output the gas pressure signal.

[ Pressure |
|__sensor M

’

(==
/!

Pneumatic
couplet

Fig. 6 Structural diagram of the pneumatic system
Within the allowable scope of the dynamic system, this
system uses square wave load as the excitation signal, as
shown in (19):
30, 10k<t<10k+5
u() = { 150, 10k+5<r<10k+10 - (19
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It is continuously applied to the system in the opening
loop state, and the input and output data of the system
are collected for offline modeling. The sampling cycle
and sampling duration are 0.1s and 100s respectively, and
1000 sample data [u(f),y(f)] are acquired, where u(f) is
the current input of the pneumatic proportional valve
and y(r) is the actual pressure output of the pneumatic
loading system.

First, the appropriate input variables are selected by
using 1000 sets of training data denoted as

ut—11+i), i=1, 11
Y+ 11-i), i=12,---,21"

s

According to the method of TSFC, the first six important
input variables are screened out in sequence: s,
S, Sg, S10, 813 and s7, the values P; of which are 0.0212,
0.0262,0.0375, 0.0577, 0.0598 and 0.0702 respectively.
The corresponding actual variables are y(r—1), u(t—4),
y(t—=2), u(t—=3),y(t—3), u(t—2). The first four and six
variables are separately chosen to establish the T-S fuzzy
model, and the rule number is taken as 3. Then, FCM and
RLS are used for identification of the premise parameters
and conclusion parameters.

The approximation of the established model output to
the actual system output is displayed in Fig. 7 (a), and the
error between the two is shown in Fig. 7 (b). The perfor-
mance comparison of the input variable selection mo-
del of the pneumatic loading system is shown in Table 6.
Obviously, compared with the model with traditional
input variables, this model has a higher accuracy. When
the first six or the first four variables are adopted as
modelinputs,theMSEofthefuzzymodelis 2.016 80r3.0505,
respectively. However, when six or four conventional
variables are taken as model inputs, the MSE is 14.8809
or 24462 6. The approach error evaluation index of
the proposed fuzzy modeling method is obviously
reduced. The model based on IVS can effectively overcome
the impact on system modeling created by time delay,
which has great importance to the actual dynamic system
modeling.
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Fig. 7
pneumatic system

Comparison of established model and actual system for

Table 6 Performance comparison of IVS based on TSFC for pneu-
matic system

Number of

Model Input moe ISE

FCM u(t—1),u(t),y(t=1),y(t=2) 3 244626

TSFC-FCM  u(t—1),u(t=2),u(r-3),y(t—1) 3 30505
u(t—=2),u(t—1),u(t),

FeM (y(t—) 1)(,y(t—)2)( : 3 14.8809

TSFC-FCM u(t—1),u(t=2),u(t-3), X Jores

u(t—4) .y -1

6. Conclusions

In this study, a fuzzy model with important input variables
is established to improve the identification accu-
racy of fuzzy system and reduce the complexity of the
model. First of all, the improved IVS algorithm is
adopted, that is, TSFC is used to screen the necessary
input variables for model identification. Then, FCM is
used for identification of premise parameters and the RLS
method is used for identification of conclusion parame-
ters. Finally, we apply the algorithm to the fuzzy identifi-
cation benchmark problems and an actual system. The
research results reveal that the identification performance
of the T-S fuzzy model based on TSFC can be effectively
improved. Compared with the previous fuzzy model, the
combination of TSFC and FCM algorithms preprocess
the important input variables off-line, which can simplify
the complexity of fuzzy recognition and achieve a higher
recognition accuracy without optimizing parameters.
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