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Abstract: The existing active tag-based radio frequency identi-
fication  (RFID)  localization  techniques  show  low  accuracy  in
practical applications. To address such problems, we propose a
chaotic  adaptive  genetic  algorithm  to  align  the  passive  tag  ar-
rays.  We  use  chaotic  sequences  to  generate  the  intersection
points,  the  weakest  single  point  intersection  is  used  to  ensure
the  convergence  accuracy  of  the  algorithm  while  avoiding  the
optimization  jitter  problem.  Meanwhile,  to  avoid  the  problem of
slow  convergence  and  immature  convergence  of  the  algorithm
caused  by  the  weakening  of  individual  competition  at  a  later
stage, we use adaptive rate of change to improve the optimiza-
tion  efficiency.  In  addition,  to  remove  signal  noise  and  outliers,
we  preprocess  the  data  using  Gaussian  filtering.  Experimental
results demonstrate that the proposed algorithm achieves high-
er localization accuracy and improves the convergence speed.
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proved genetic algorithm, Gaussian filter, passive tags.
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1. Introduction
Recently, the indoor location services have been increas-
ingly  demanded  [1,2].  With  the  advantage  of  high  im-
munity  to  interference  and strong penetration,  and  being
less  affected  by  indoor  environmental  factors,  the  radio
frequency  identification  (RFID)  localization  techno-
logy [3−7] has become a hot research topic in indoor po-
sitioning technology.

Bian et al. [8] proposed an algorithm that combines the
backward  propagation  neural  network  and  the  particle
swarm,  which  could  not  identify  a  suitable  neural  net-
work.  Eberhardt  et  al.  [9]  proposed  the  SpotON system,
which uses tags and readers to model signal transmission
and  combines  clustering  algorithms  to  improve  localiza-
tion  accuracy.  However,  the  cost  of  this  method  is  high
and it  cannot  be used in practice.  Intel  [10] achieved in-
door localization of targets by passive tagging and adding
the Monte Carlo algorithm, but as the method is based on
Bayesian filtering, it leads to a large system computation

and poor  real-time performance.  Xu et  al.  [11]  proposed
the  indoor  localization  algorithm based  on  K-means  and
support  vector  machine  (SVM),  the  system  achieves  an
accuracy of less than 1.5 m. Lan et al. [12] combined the
features of the network clustering algorithm and the den-
sity peak clustering algorithm and applied them to the lo-
calization  of  target  tags,  which  enables  the  localization
effect to meet the practical needs. But it requires second-
ary  clustering  and  large  computation,  and  the  average
value of error is about 0.128 m.

The  above  research  mainly  focused  on  arranging  ac-
tive tags with multiple readers, with disadvantages such as
hard maintenance,  high cost,  and low accuracy. We pro-
pose  a  chaotic  adaptive  genetic  algorithm  to  solve  the
postioning  problem.  We  arrange  the  passive  tag  arrays,
which  could  effectively  speed  up  the  algorithm  conver-
gence while improving the positioning accuracy. 

2. RFID localization principal
The  working  principle  of  RFID  is  that  after  the  tag  re-
ceives  the  RF  signal  sent  by  the  reader,  the  information
stored in the chip is sent out by the energy obtained from
the  induction  current  [13].  The  positioning  technology
mainly  includes  ranging-based  and  non-ranging-based
methods  [14−18],  among  which  the  positioning  method
based  on  received  signal  strength  indication  (RSSI)  is
simple  and  low-cost,  and  it  has  become  the  mainstream
research direction of positioning technology [19]. Consi-
dering the advantages of RFID with high volume data re-
ading, passive tag arrays are arranged, as shown in Fig. 1.
  

①

: Known tag; : Reader.

Fig. 1    Passive tag array
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We  divide  the  area  into  several  cells.  The  vertex  of
each cell is a known node with a unique ID, and the co-
ordinates are indicated by position, e.g. (0,0). The reader
is the unknown node, and the distance relationship is con-
verted by reading the RSSI signal value in the cell and us-
ing the  relevant  algorithm to  solve the  location informa-
tion.

Distance  computation  model:  the  distance  between
nodes is calculated by the Shadowing model [20].

d = d0×10
RSSI(d0)−RSSI−Xσ

10n (1)
RSSI d

d0

RSSI(d0) n

Xσ
σ

where  is the signal strength value,  is the distance
from the  unknown  point  to  the  signal  source,  is  usu-
ally  set  to  1  m,  is  the  loss  when 1  m,  is  the
path loss factor which is determined by the environment,

 is  a  Gaussian  noise  variable  with  a  mean  value  of  0
and a standard deviation of , in dBm.

Xσ

RSSIi di

, · · · , RSSIi

RSSI di

ρi = −10lgdi

In practical applications, we ignore the influence of 
on the calculation results. To make the parameters best fit
the  propagation  characteristics  of  the  current  environ-
ment,  we suppose a  set  of  measurement  data  ( , ),
among  them i=1,2,3 k,  corresponds  to  the
value  of  measured  when  the  distance  is .  Let

, we have the following estimates:

n = n̂ =

k∑
i=1

(ρiRSSIi)

k∑
i=1

(ρi− ρ̄)2

, (2)

RSSI(d0) = RSSI−nρ, (3)

RSSI =
K∑

i=1

RSSIi ρ̄ =
1
k

k∑
i=1

ρiwhere , .
 

3. Genetic algorithm
Genetic  algorithm  has  a  good  global  search  ability  and
can  get  rid  of  the  situation  of  local  optimal  solution
without prior  knowledge.  When calculating the accuracy
requirements, it only takes a short time to compute while
maintaining the robustness [21−24]. 

3.1    Fitness function setting

Assuming the position of the unknown point is (x, y), we
take  the  three  tags  with  the  strongest  signal  in  the  cell:
(x1,y1), (x2,y2), (x3,y3). The distance is d1  , d2, d3. Then, we
construct the fitness function

f (x,y) =min

 m∑
i=1

∣∣∣∣ √(x− xi)+ (y− yi)−di

∣∣∣∣ . (4)
 

3.2    Feasibility area

Based on the trilateral ranging algorithm [25], we denote

the three reference nodes as a, b, c, and the distance from
the unknown node p to the reference node as (d1, d2, d3).

Taking  the  three  points a,  b, c  as  the  center  of  the
circle,  we  can  find  the  intersection  point  between  the
three circles using the following formula and the intersec-
tion point is the coordinate of the unknown node:

(xa− xp)2+ (ya− yp)2 = d2
1

(xb− xp)2+ (yb− yp)2 = d2
2

(xc− xp)2+ (yc− yp)2 = d2
3

. (5)

However,  due to the influence of factors such as mul-
tipath effects in practical applications, there can be errors
in  the  distance  obtained  by  the  RSSI  ranging  model,  re-
sulting in that the three circles can not intersect at a point.
There are four possible situations, which are shown in the
Fig. 2.
  

(a) Three circles intersect in pairs (b) Two circles do not intersect

(c) Two circles intersect (d) Three circles do not 

intersect with each other

 

Fig. 2    Feasible solution area
 

To  select  the  feasible  region  of  unknown  nodes,  we
first combine the three equations of (5) in pairs, and then
we  derive  the  effective  points I,  J,  K  by  comparing  the
distance with the third circle center coordinate according
to  the  solution  of  the  equation,  and  then,  we  determine
the feasible area by the range of the three effective pointsmin X(I,J,K) ⩽ x ⩽max X(I,J,K)

min Y(I.J,K) ⩽ y ⩽max Y(I,J,K)
. (6)

 

3.3    Crossover operator

We  use  the  crossover  operation  and  generate  a  single
point  crossover  based  on  the  chaotic  sequence  [26,27],
which  can  improve  the  accuracy  of  the  algorithm  while
avoiding the problem of optimal chattering.  The specific
design is as follows: first, after initializing the population,
we  sort  the  parents  according  to  the  size  of  the  fitness
function value, and then pair them based on the principle
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W1 W2

W1 = λ1
1λ

1
2 · · ·λ1

m W2 = λ
2
1λ

2
2 · · ·λ2

m

of “matching each other”. For example, when the parents
( , ) are paired, the number of genes in each parent’s
chromosome is m, then , .

The logistic chaotic sequence formula is as follows:
x(n+1) = 4x(n)(1− x(n)). (7)

ε1

ε1 ε
′

1 =

ε1× (m−1)+1 ε
′

1

W1 W2

We  take  a  random  number  between  (0,1)  and  itera-
tively generate  a  chaotic  value  between (0,1)  through
the chaotic sequence formula. Then, we save this value as
the  initial  value  of  the  next  generation iteration,  and use

 to compute the value of (1,m) rounding between, 
,  and  is  the  intersection  position

between  and . 

3.4    Mutation operator

Pm

Pm

The  traditional  genetic  algorithm  uses  a  fixed  mutation
probability  ( )  [23,28].  A higher  probability  leads  to  a
faster  searching  speed,  which  may  cause  early  conver-
gence,  while  a  lower  probability  causes  the  algorithm to
converge  slowly.  To  avoid  such  problems,  we  adopt  an
adaptive  based on fitness value to make the algorithm
maintain  the  diversity  of  the  population  while  ensuring
the  convergence  of  the  algorithm.  The  adjustment  for-
mula of mutation probability is as follows:

Pm =


Pm1, f ⩽ fmean

Pm1−
(Pm1−Pm2)( fmax− f )

fmax− fmean
, f > fmean

(8)

where Pm  is  the  mutation probability  of  the  current  indi-
vidual, Pm1  is  the  maximum  mutation  probability, fmax  is
the  maximum fitness  in  the  group, f  is  the  fitness  of  the
current  individual,  and fmean  is  the  average  fitness  in  the
group. 

3.5    Algorithm

There are five steps in the proposed algorithm. The spe-
cific process is shown in Fig. 3.

(i) The feasible domain is determined based on the tri-
lateral  localization  model  according  to  (5)  and  (6),  the
initial population size M and the number of genetic gener-
ations N  in  the  region.  The  upper  and  lower  bounds Pm1

and Pm2 are defined for the variation operator.
(ii)  The fitness  of  each individual  in  the  population  is

calculated  in  line  using  (4),  sorted  by  size,  and  then
paired according to the principle of “family matching” to
obtain the parent individuals.

(iii)  Crossover  operation.  For  each  pair  of  parents,  a
random number within (0, 1) is generated. Then, the gene
position  for  the  crossover  operation  is  calculated  in  ac-
cordance with the logistic (7).

(iv) Adaptive mutation operation. The fitness of an in-
dividual in the population is brought into (8) to obtain the
probability of variation Pm for that individual. After oper-

ating  on  all  individuals,  a  new  population  individual  is
obtained as the parent of the next generation.

(v) If the number of evolutions reaches the upper limit
N, the algorithms ends and the optimal individual and the
corresponding fitness are output, otherwise go back to (ii).
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Calculate fitness

value and rank
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Single point
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Adaptive
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Upper genetic

limit?

Optimal

individual

Yes

No

Fig. 3    Algorithm work flow
  

4. Experimental results
 

4.1    Data collection

×
×

The experimental workspace is arranged as a square field
of 10 m 10 m. Fig. 4 shows an experimental setup. The
cell  size  is  1  m 1 m,  and the  unique  ID and coordinate
information are  written  in  each tag.  We use  HZ9300-8C
reader  to  read  passive  tags,  the  reading  distance  is  0 –
5  m.The  hardware  specifications  are  shown  in Table  1.
The test cell is shown in Fig. 5.
 
 

Fig. 4    Part of the experimental setup
 
 

Table 1    Hardware specifications

Parameter value

Operating voltage/V 3.6−5.5

Storage temperature/°C −20−85

Spectrum range/MHz 860−960

Output power/dBm 0−30

Acceptance sensitivity/dBm <−85

Tag buffer 1 000 sheets

Baud rate/bps 115 200

Chip model MR6P

Protocol standard ISO 18000-6C

Spectrum range/MHz 902-928
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In order to verify the effectiveness of the algorithm, we
randomly  selected  10  unknown  points  and  use  the  algo-
rithm based on trilateral positioning for positioning calcu-
lation using Matlab, as shown in Fig. 6.
 
 

Fig. 6    Positioned points
  

4.2    Calculation of ranging model parameters

×In  a  cell  of  1  m 1  m,  we find  the  ranging  model  from
RSSI value to distance. The specific steps are as follows:

(i)  Measuring  50  sets  of  RSSI  values  at  different  dis-
tances between 0.1 m and 1 m.

σ2

(ii) Using Gaussian filtering [29−31] to preprocess the
read signal strength values. RSSI obeys a (0, ) Gaussi-
an distribution, and its probability density function is

f (RSSI) =
1

σ
√

2π
e

(RSSI−µ)2
2σ2 (9)

where

µ =
1
n

n∑
k=1

RSSIk,

σ =

√√
1

n−1

n∑
k=1

(RSSIk −µ)2.

µ−σ ⩽ RSSIk ⩽ µ+σ
According  to  the  characteristics  of  Gaussian  distribu-

tion,  ( )  is  the  high  probability  oc-
currence area.

RSSI =
1
M

M∑
k=1

RSSIk (10)

µ−σ µ+σ RSSIkwhere M is the number of ( , ) in .

RSSI(d0) n RSSI(d0) n
(iii)  Using  linear  regression  to  find  the  values  of

 and  : =−70.18 =2.375.  The  fitted
curve is shown in Fig. 7.
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Fig. 7    Fitted curve
  

4.3    Analysis of positioning results

In order to verify and improve the performance of the ge-
netic algorithm, multiple positioning calculations are per-
formed  on  the  same  unknown  point  with  traditional  ge-
netic  algorithm,  and  finally  the  optimal  value  curve  of
each generation is obtained as shown in Fig. 8.
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Fig. 8    Iteration process

 
By comparing Fig. 8(a) and Fig. 8(b), we find that the

algorithm proposed in this paper has reached the optimal
solution  after  evolving  about  20  generations,  while  the
traditional genetic algorithm reaches the optimal solution
after  25  generations.  While  improving  the  convergence
speed, it weakens and avoids the optimal chattering prob-
lem  in  the  solution  process.  In  order  to  verify  the  posi-
tioning  effect  of  the  proposed  algorithm,  we  define  the
point position error E, the abscissa error E1, and the ordi-
nate error E2 as follows:

 

Tag Tag

Tag Tag

Reader

Fig. 5    Test cell

308 Journal of Systems Engineering and Electronics Vol. 33, No. 2, April 2022




E =
√

(x′− x0)2+ (y′− y0)2

E1 = |x′− x0|
E2 = |y′− y0|

(11)

x0 y0where  ( , )  is  the  actual  coordinate  of  the  unknown

x′ y′point, ( , ) is the estimated coordinate calculated by the
positioning algorithm.

The positioning calculation results of the chaotic adap-
tive  genetic  algorithm  and  the  trilateral  centroid  algo-
rithm based on ranging are shown in Table 2.

 
 

Table 2    Positioning results

Actual
coordinate

Improved
algorithm

Trilateral ranging
algorithm

E/cm E1/cm E2/cm

Improved Trilateral Improved Trilateral Improved Trilateral

(2.35,3.45) (2.321 9,3.499 8) (2.289 3,3.413 1) 5.72 7.90 2.81 6.10 4.98 3.66

(7.60,8.60) (7.566 7,8.570 1) (7.515 3,8.547 3) 4.48 9.98 3.33 8.47 2.99 5.27

(7.78,7.63) (7.767 4,7.690 0) (7.730 4,7.706 3) 6.13 9.10 1.26 4.96 6.00 7.63

(9.40,4.30) (9.361 2,4.350 0) (9.349 9,4.371 9) 6.33 8.76 3.88 5.01 5.00 7.19

(3.62,4.55) (3.673 5,4.568 7) (3.684 1,4.601 2) 5.67 8.20 5.35 6.41 1.87 5.12

(0.10,5.90) (0.131 9,5.862 0) (0.210 0,5.834 0) 4.96 12.83 3.19 11.00 3.80 6.60

(1.90,2.93) (1.893 3,2.893 3) (1.870 0,2.860 2) 3.73 7.59 0.67 3.00 3.67 6.97

(5.40,7.70) (5.362 6,7.724 7) (5.426 1,7.729 5) 4.48 3.94 3.74 2.61 2.47 2.95

(2.85,6.30) (2.800 0,6.254 4) (2.780 4,6.238 6) 6.76 9.28 5.00 6.96 4.55 6.14

(8.72,1.68) (8.767 3,1.641 8) (8.798 6,1.637 2) 6.08 8.95 4.73 7.86 3.82 4.28
 

As indicated by Table 2, the average error of point posi-
tion  of  the  improved  positioning  algorithm  is  5.4  cm
with  a  standard  deviation  of  3  cm;  the  average  error  of
horizontal  coordinate  is  3.39  cm;  the  error  fluctuation  is
4.68  cm;  the  average  error  of  the  vertical  coordinate  is
3.91 cm; the error fluctuation is 4.13 cm. The average er-
ror  of  point  position  of  the  trilateral  center  of  mass  al-
gorithm is 8.65 cm, the error fluctuation range is 8.89 cm;
the average error of horizontal coordinate is 6.24 cm with
a standard deviation of 8.39 cm; the average error of ver-
tical  coordinate  is  5.58  cm  with  a  standard  deviation  of
4.68 cm.

For ease of intuitive understanding, we show a plot of
the localization error curve is Fig.  9.  The algorithm pro-
posed  in  this  paper  shows  a  significant  enhancement  in
positioning  accuracy  over  the  three-sided  center-of-mass
positioning algorithm, with a  37% reduction in  position-
ing  error,  smaller  fluctuations  and  more  stable  position-
ing performance.
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Fig. 9    Point error
 

To further verify the effectiveness of the algorithm, the
reader is made to communicate with the smart mobile ter-
minal  for  connection,  and  the  RSSI  value  is  sent  to  the
host computer via Bluetooth to reproduce the positioning
of the trajectory. As given in Fig. 10, the algorithm in this
paper can reproduce the trajectory as well as accurate po-
sitioning.

 
 

6
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: True trajectory; : Improve algorithm;

: Traditional algorithm.

Y
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2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

2

Fig. 10    Trajectory positioning
  

5. Conclusions
In this paper, a chaotic adaptive genetic algorithm is pro-
posed to solve the RFID localization problem by arrang-
ing  a  dense  passive  tag  array  and  dividing  the  area  into
cells.  It  is  also  combined  with  the  trilateral  ranging  and
positioning algorithm to find the feasible domain and fur-
ther progress the convergence speed of the algorithm. In
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order  to  suppress  the  influence  of  noise  and  abnormal
data,  a  Gaussian  filter  is  used  to  process  the  received
RSSI values. Along with the experimental data, it  is cal-
culated that the average error of point position is 5.4 cm,
the  error  fluctuation  range  is  3  cm;  the  average  error  of
horizontal coordinates is 3.39 cm, the error fluctuation is
4.68  cm;  the  average  error  of  vertical  coordinates  is
3.91 cm,  the  error  fluctuation is  4.13 cm.  By comparing
with  the  other  state-of-the-art  algorithms,  the  proposed
algorithm  achieves  reliable  stability  while  progressing
the accuracy of RSSI-based positioning. Finally, the fine
positioning  performance  of  algorithm  is  further  verified
by reproducing the positioning of the driving trajectory.
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