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Abstract: Outdoor haze has adverse impact on outdoor image
quality, including contrast loss and poor visibility. In this paper, a
novel dehazing algorithm based on the decomposition strategy
is proposed. It combines the advantages of the two-dimensional
variational mode decomposition (2DVMD) algorithm and dark
channel prior. The original hazy image is adaptively decom-
posed into low-frequency and high-frequency images according
to the image frequency band by using the 2DVMD algorithm. The
low-frequency image is dehazed by using the improved dark
channel prior, and then fused with the high-frequency image.
Furthermore, we optimize the atmospheric light and transmit-
tance estimation method to obtain a defogging effect with richer
details and stronger contrast. The proposed algorithm is com-
pared with the existing advanced algorithms. Experiment results
show that the proposed algorithm has better performance in
comparison with the state-of-the-art algorithms.
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1. Introduction

The presence of outdoor haze normally reduces image
quality captured by imaging devices, leading to contrast
loss and distorted colors. Therefore, improving the image
dehazing technology is of great significance in both mili-
tary and civilian fields. This technology is applied in nu-
merous fields, including aerial imagery, video surveil-
lance, image guidance recognition, and automatic driving.
It is also a hot issue in computer vision.

Image dehazing methods are mainly divided into the
multi-image and the single-image dehazing methods. The
previous image dehazing algorithms estimates image
depth information from multiple images and restore the
images. However, it is difficult to obtain multiple images
in practice. Schechner et al. [1] proposed an image defog-
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ging method based on polarization, which utilized two
images in different directions to reversely push the image
degradation process for defogging. Other scholars [2—4]
achieved remarkable improvements based on the Schech-
ner’s method. However, as the degree of polarization de-
creases, the efficiency of the method decreases and the al-
gorithm fails if the camera moves. Miyazaki et al. [5]
captured images in different climates to recover the real
scene information and this algorithm had a good perfor-
mance on fixed cameras such as monitoring scenes. How-
ever, it is almost impractical to obtain images of the same
scene for moving cameras on different climatic condi-
tions. Therefore, the research focus has recently shifted to
the dehazing of a single image. The single-image dehaz-
ing method can be more feasible with greater practical
values in comparison with the multi-image dehazing
method.

The single-image dehazing algorithm is mainly di-
vided into three categories, image-enhancement-based al-
gorithms, image-restoration-based algorithms, and deep-
learning based algorithms. The image enhancement me-
thod does not concern the cause of the image degradation.
Moreover, it improves image quality in accordance with
the image information only, and suppresses or removes
unnecessary information of the image to promote the im-
age quality. It applies different techniques, including im-
age wavelet transform [6—8], image filtering [9—11], his-
togram equalization [12], and the Retinex based al-
gorithm [13—15]. However, the image-enhanced al-
gorithm is less robust, because it does not mention the
cause of the image degradation.

Based on the image restoration algorithm, the physical
model of the image degradation is established. Consider-
ing the cause of the foggy image degradation, the atmo-
spheric scattering model is applied to solve the relevant
parameters. Then, the real scene image is restored using es-
timation of atmospheric light and transmission. Fattal [16]
put forward the atmospheric transport model and pro-
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posed a method for estimating the global atmospheric
light and the transmission. Although this method esti-
mates the atmospheric light and transmission reasonably,
it is less effective when the signal-to-noise ratio is insuffi-
cient or the fog is too thick. Tan [17] proposed a method
for images with the following two characteristics. Firstly,
the fog-free image should have a higher contrast than the
foggy images. Secondly, the light variation should de-
pend on the distance from the object to the camera, and
the corresponding light variation in a small range should
be low and smooth. For images in these circumstances, he
established the cost function in the Markov random do-
main. Then the image was restored. However, this me-
thod had some disadvantages, for example, the image
may be supersaturated with a halo phenomenon. He et
al. [18] proposed the dark channel prior model, which has
received extensive attention and be applied broadly. With
careful observation, it has been found that fog-free ima-
ges usually have a channel whose pixel value approa-
ches 0. This method was used to estimate the transmis-
sion to recover the images. Then the guide filtering al-
gorithm [19] was proposed to solve the problems of large
computation and halo phenomenon existing in the soft
matting algorithm of the dark channel prior. Many scho-
lars conducted relevant researches on the basis of dark
channel prior. Tarel et al. [20] applied the median filter-
ing instead of the soft stencil and proposed a fast-dehaz-
ing algorithm to improve the algorithm efficiency. The
computational load has a linear correlation with the im-
age size, which significantly improves computational ef-
ficiency [20]. However, the median filtering has poor re-
tention of the edges and the atmosphere estimation hardly
reflects depth information. Moreover, it is a challenge to
achieve the expected effect for small edge regions with
large jumps.

In the studies of the dark channel theory, scholars usu-
ally optimized the estimation of the atmospheric light and
the calculation of the transmission. Wang et al. [21] pro-
posed a differential algorithm to estimate the atmosphe-
ric light and optimize the calculation method of the trans-
mission, while the image was too bright. Huang et al. [22]
calculated the transmission for bright and non-sky areas,
including white clouds. However, the algorithm did not
have reasonable performance in the dark area. Peng et al.
[23] investigated variations of the depth-related color to
estimate the ambient light and achieve better visual ef-
fects. Wang et al.[24] combined the variational model
and the dark channel prior model to suppress the noise
originated from the image dehazing.

With the recent development of the deep learning tech-
nology, learning-based dehazing methods have also been
proposed [25,26]. In recent years, deep learning-based
defogging methods have gradually become a hotspot in
the field of image defogging. The earliest deep learning-

defogging network is the DehazeNet proposed by Cai et
al. [27], which estimated the transmittance by deep learn-
ing methods for the first time. The network divides the
complete image into blocks, input the image blocks with
fog, and output the transmittance of the corresponding
blocks for image restoration using the atmospheric scat-
tering model. Ren et al. [28] proposed multi-scale convo-
lutional neural networks (MSCNN), a model from coarse-
scale network to fine-scale network which estimated the
transmittance by learning so as to achieve fog removal. Li
et al. [29] designed the all-in-one dehazing network
(AOD-Net) based on a reformulated atmospheric scatter-
ing model. Instead of estimating the transmission matrix
and the atmospheric light separately, AOD-Net directly
generated the clean image through a light-weight CNN.
Deep learning methods are limited by the size and qual-
ity of existing defogging data sets, so it is difficult for the
trained models to steadily output high quality defogging
results in real scenes.

Our goal is to obtain a dehazing effect with higher con-
trast and retain richer image details. We find that the fre-
quency components of images polluted by haze will be-
come lower. Therefore, this paper decomposes the origi-
nal hazy image into alow-frequency image and a high-frequ-
ency image. The haze information is all centered on the
low-frequency image. The high-frequency images con-
tain detailed texture information. The low-frequency ima-
ge is dehazed, and then fused with the high-frequency im-
ages. Furthermore, we optimize the atmospheric light and
transmittance estimation method to obtain a defogging ef-
fect with richer details and higher contrast.

The contributions of the present study are summarized
as follows:

(i) This paper proposes an image defogging algori-
thm based on decomposition strategy, which combines
2DVMD and improved dark channel prior algorithm.

(i) A new method is proposed for the atmospheric
light estimation, which uses different atmospheric light
estimation methods for the sky and the non-sky images.

(iii) The hazy image is adaptively decomposed into
low-frequency and high-frequency images according to
the image frequency band. Next, a more detailed and
higher contrast dehazing effect can be achieved by dehaz-
ing the low-frequency image and then fusing with the
high-frequency image.

The rest of this paper is structured as follows: the pro-
posed method is discussed in Section 2, the experimental
results are illustrated in Section 3, and Section 4 presents
the conclusions of this paper.

2. Methods

We find that the frequency components of images pol-
luted by haze will become lower, and the frequency com-
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ponents of images are mostly concentrated in the low-fre-
quency part, while the high-frequency distribution is very
small, as shown in Fig. 1. Thus, the basic idea of this pa-
per is to extract the low frequency components of the
hazy images. The haze information is contained in the low-

(b) Ground truth

Fig.1 Frequency spectrum of haze image and hazefree image

a) Hazy

The algorithm flow chart of this paper is shown in
Fig. 2. Firstly, the original foggy image is decomposed
into several intrinsic mode functions (IMFs) through the
2DVMD algorithm.

I1(x,y) = Inpy + Invipz + - -+ + T

(1

where Iy, denotes the low frequency component of the
original hazy images and g, Iivrs, - > Iivee Stands for
high components. Next, since the hazy information is in-
cluded in the low-frequency IMF component, the low-fre-
quency component is optimized by the improved dark
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frequency components and the detailed texture informa-
tion is included in the high frequency components. There-
fore, we restore the low frequency components and then
fuse them with the high frequency parts and finally get
high contrast processing results with good visual effects.

(c) Spectrograms

channel algorithm. For sky-included images, the sky seg-
mentation algorithm is applied to estimate the atmosphe-
ric light while for non-sky images, the quad-tree search
algorithm is adopted to search global atmospheric light.
The context information constructor is combined to op-
timize the transmission so that the atmospheric light and
the transmission can be employed to generate fog-free
images. Finally, fused with the high frequency compon-
ents, a high contrast, good visual effects, and haze-free
image is obtained. The program flowchart of the pro-
posed method is shown in Fig. 2.

VMD

Quadtree search

- Sky Haze-free
Qr iginal decomposition segmentation image
image ) ;
Morphologicall Global
"—’ operation | | atmospheric =
light

Transmission

optimization

Fig. 2 Flowchart of the proposed method

2.1 Hazy image adaptively decomposed

The variational mode decomposition (VMD) algorithm is
suitable for processing nonlinear and non-stationary sig-
nals, decomposing the original signal into modes with a
center frequency and limited bandwidth, and has strong
adaptability [30]. Here we use the idea of VMD. 2DVMD

is an extension of VMD. The 2D signals can be defined
in the frequency domain as follows:

2a;,(w), ww, >0
w(w), ww, =0
0, ww, <0

Ups (W)=

@
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Assume that each mode has a center frequency and a
finite bandwidth. The two-dimensional VMD problem is
transformed into a K mode function problem u;. Based
on the characteristics of the Fourier transform, (2) can be
rewritten as

Ups, 1(X) = U () * | 6(Cx, i) + o((x,wi))  (3)

X, W)
where * is the convolutional operator and w is the in-
stantaneous frequency of the mode function transforming
u; into the frequency domain, and u, is the constituent
element of the decomposed image that we obtain, j is the
imaginary part of the Fourier domain. w; denotes the fre-
quency interface of the kth selected mode when the fre-
quency domain half plane is set to 0. w; is a unit vector
which is orthogonal to w;: w,-w; =0. ¢6(-) is the Di-
rac equation. The variational mode decomposition can
keep each mode to be concentrated around the center fre-
quency w;, where the central frequency and mode com-
ponents can be obtained by minimizing a functional
which can be expressed as

pin[ SISt
Wk k
Y1 @
k

The solution of (4) can be transformed into an uncon-
strained variational solution problem by constructing an
augmented Lagrange function.

L({uk}, {xk}’ /l) =
Z U ||V(uAs,k(x)e_j<x’Wk>)”§ +

I—Zuk 2+</l(x),I—Zuk> )

k

where A and a, denote the Lagrange multipliers and the
corresponding penalty factors, respectively. Applying al-
ternating direction multipliers results in the following:

a' = argmin {a”j(w —w,)

[(1+sgn(w- wk))uk(w)]”z +

}» (6)

wi" =argmin {a|jiw—w,)[(1+
sgn(w - w)u(w)1|l3}. 7

The foregoing equations can be simplified in the fol-
lowing form:

Alw)

FO0)= D uilw)+ ==
k

2
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Fig. 3 shows the decomposition results of the 2DVMD
for K =3, a =500. It is observed that the haze informa-
tion is all retained in the IMF1, while the high-frequency
detail texture is preserved in the IMF2 and IMF3. There-
fore, the transmission can be estimated by the IMF1.

)

(a) Original image (b) IMF1

(c) IMF2 (d) IMF3

Fig. 3 Decomposition results of the 2DVMD

2.2 Atmospheric scattering model verification after
decomposition

In this section, we need to explain whether the image
after the 2DVMD decomposition in this paper meets the
atmospheric scattering model, that is, the rationality of
the 2DVMD algorithm used in this paper.

We find an interesting phenomenon. As shown in Fig. 4,
the two images in the first line are a hazy image and a
haze-free image captured in the same sense and the struc-
tural similarity index (SSIM) of the two images is 0.27.
The two images in the second line are IMF1 of the origi-
nal images after VMD decomposition and the SSIM is
0.09, which is lower than that of the first line. While the
third line are reconstitution images of high frequency
IMFs and the SSIM is 0.58, which is higher than that of
the first line. SSIM measures the similarity between two
images. From a certain point of view, we think that the
high-frequency IMF of fog-free images and foggy im-
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ages have a high similarity, while the low-frequency IMF
has a low similarity because of the influence of haze. We
think that we have kept haze in IMF1 as much as possible.

Original image SSIM=0.27

IMF1 SSIM=0.09

IMFs SSIM=0.58

(a) Groundtruth

(b) Hazy
Fig. 4 SSIM comparison after VMD decomposition

Fig. 5 (a) is the VMD decomposition result of a piece
of random signal. It can be seen from Fig. 5 that after
VMD decomposition, the original signal is decomposed
into a group of signals with a central frequency and a cer-
tain frequency band width, among which IMF1 is a low-
frequency signal and the rest IMFs are high-frequency
signals. Fattle [16] proposed the atmospheric scattering
model and indicated that the transmission was an expo-
nential function of depth of field.

The real scene image can be regarded as approxi-
mately continuous or locally continuous, that means the
depth of field is linearly changed, the transmittance of
depth of field of the linear change is shown in Fig. 5(b),
in the blue line, after decomposition of VMD, the IMF1 is
obtained as shown in Fig. 5(b) in red line, we can see that
the two curves almost overlap and the fit coefficient is
R?=0.992. As a result, we can see that VMD decomposi-
tion does not destroy the atmospheric transmission model.
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Fig.5 VMD decomposition of atmospheric scattering model
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2.3 Low frequency IMF dehazing

Fattal [16] studied the physical models of the atmosphe-
ric scattering and the light reflection imaging which is
widely applied in computer vision. The IMF1 can be ex-
pressed as

IIMFI(-xsy) =Jv(xsy)t(-x7y)+A(] _t(x,)’)) (10)

where I (x,y), A, and J,(x,y) denote the observed
foggy image, global atmospheric light, and the image or
scene with no fog reflection, respectively. #(x,y) is the
transmission. From (10), we can find that J, can be ob-
tained by solving #(x,y) and A.

2.4 Transmission estimation

2.4.1 Preliminary estimate of transmittance

He et al. [18] indicated that for some pixels in the local
area of the non-sky part of the natural image, at least one
of the color channels (R,G,B) has a gray value that ap-
proaches 0 which is called dark channel prior (DCP) and
it can be expressed as follows:

dark _ : : c
rw=mi(mn ro) -0 an
where J¢ and 2(x) are one of the color channels of the
image J, and the corresponding neighborhood window
centered on pixels, respectively.

Here we need to verify whether the image after
2DVMD decomposition still meets the dark channel pri-
or. We select 100 images without haze and sky for statis-
tical analysis, and calculate the dark channel after
2DVMD decomposition. The result shown in Fig. 6(a)
and Fig. 6(c) are examples of a haze-free image and its
IMF1 after 2DVMD decomposition. Fig. 6(b) and Fig. 6(d)
are statistical results of 100 images, average histogram of
their original images and average histogram of their
IMF1 images. From Fig. 6 we can see that after 2DVMD
decomposition, the characteristics of the dark channel of
the image does not change substantially, more than 90%
of the gray distribution is below 60. Therefore, it can be
concluded that after 2DVMD decomposition, the IMF1
image still satisfies the dark channel prior model.

Equation (10) can be rewritten in the following form:

I'(xy) _ Je(x,y)

e t,,(x,y)T +1- to(x,y). (12)

It is assumed that the transmission value in the neigh-
borhood Q(x) is constant, which is recorded as £,(x).
Then a DCP operation is conducted on both sides of (10)
as follows:

min( min If(y)) =

yeQ(x) \ce(RG.B) A€

IC
t,(x) min ( min
yeQ(x)

))+1—f0(x). (13)

ce(R.G.B) A€

25

15

Percentage/%

5

0
0 50 100 150 200 250
Gray value

Original i
(a) Original image (b) Dark channel histogram
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(c) IMF1

(d) Histogram

Fig. 6 Drak channel piror model verification

. . . . r
It is assumed that A is constant and min ( min o) =
yeQ(x) \ce(RG,B) A€

0. Therefore, the transmission can be roughly estimated
with

L(x)=1- min( min I"(y)). (14)

veQ(x) \ce(RG.B) A€

In order to make the images more natural and enhance
the corresponding visual effects, it is necessary to retain a
part of the atmospheric fog during the image processing.
In this regard, the correction factor is set to 0.95.

yeQ(x) \ce(R.G.B) A€

£,(x)=1 —/lmin( min Ic(y)) (15)

From (15) we can get the preliminary estimate of the
transmittance ¢,.

2.4.2 Precise estimation of transmittance

Because this transmittance is not accurate enough, direct
use of this transmittance will cause a very serious halo ef-
fect. It is necessary to refine it. The transmission can be
expressed as follows:

) (xy) = e 00 (16)

where p is the scattering coefficient, D is the depth of
field. ¢, is the precise estimation of transmittance. Equa-
tion (16) indicates that the transmission is a function of
field depth. Hence, the pixels with the same field depth
within the same local area have similar transmission s.
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Based on this prior [31], we use the contextual regulariza-
tion to construct the objective function

§+lewk°(Dk®tu)lll (17)

ke

A
L=~
2

t,—1;

where w, is a weighting function constructed to approach
the difference in transmission between adjacent pixels to
zero. D, is the differential operator, ® is the convolution
operator, o is the Hadmard product.

As Meng et al. [31] mentioned, as the color difference
between adjacent elements reduces, the two pixels are
more likely to have the same field depth. Therefore, the
weighting function can be expressed as follows:

=M @-Te)I?

Wx,y)=e > (18)
where x and y are two adjacent pixels, and ||[I(x) — I(y)||
represents the difference between gray values of adjacent
pixels.

The first term of the loss function is the data item,
which is applied to measure the fidelity in the transmis-
sion optimization process. Moreover, the second term is
the correction term, which constrains the correlation
between the adjacent transmission. Finally, A is a regular
coefficient for balancing these two terms. It should be in-
dicated that the fine transmission can be obtained by mi-
nimizing the loss function.

In order to minimize the loss function, a variable u; is
introduced and the objective function is converted to the
form below:

to‘if||§+2||wf°"f“h

Jjew

uj=Dj®t0. (19)

£, =ar min/l
r=arg 3

A new loss function can be constructed by using the
variable splitting method.

to—?f“2+2||wjouj||l+
Jjew
§[2||uj_pj®to

Jjew

A A
f(tmtf’uj) = E

2
2] (20)
The accurate transmission can be obtained by minimiz-
ing the loss function. In this regard, u; should be initially
determined.
u; = argmin”wjoujn i+

B

W,
- F,O)-s1gn(Dj®to) 2

max(|Dj®t,,

Then, #, is determined.

A 112
t,— [, +

7 A
= argmin —
! g )

’g[znuj—D,-@t,,

Jew

] 22)

Fig. 7 shows the results of the transmission estimation
outcome. The algorithm in this paper is compared with
the algorithm by He et al. [18]. From top to bottom are
the original image containing fog, the estimated transmit-
tance of the two algorithms, the image defogging results
and the local amplification results of the image in the red
rectangle. It is obvious, according to the partial enlarged
image that the result processed by the algorithm pro-
posed by He et al. has a loss of information, while the al-
gorithm in this paper achieves a stronger contrast and re-
tains more details. The proposed algorithm can estimate
the transmission more accurately in comparison with He’s
algorithm [19]. Besides, it can reflect the depth informa-
tion of the images.

(a) Original image

Transmission

Recovered
image

Local
zoom in

(b) Method in [18]
Fig. 7 Results of the transmission estimation, obtained from dif-
ferent algorithms

(c) Proposed algorithm

2.5 Atmospheric light evaluation

Equation (10) indicates that the selection of the atmo-
spheric light directly determines the brightness of the re-
stored images. The method proposed by He et al. [18§]
was based on the maximum value of pixels in the fog ima-
ges corresponding to the top 0.1% of the pixels in the
dark channel images as the global atmospheric light in-
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tensity value. The selected atmospheric light by the me-
thod generally has a high brightness value so that the re-
covered images will be dark in accordance with (10). The
present study investigates the idea of [32], which claims
that the part of the sky area with a lower brightness value
is regarded as the atmospheric light. The application of
this technique increases the brightens of the obtained im-
ages and improves the corresponding visual effects.

Sky has a high brightness value and a slow variation
rate in terms of the gradation value, and it is located at the
top of the normal photograph. Therefore, the image gray
values are combined with the brightness and the posi-
tion information to perform the sky area segmentation.

For images containing the sky, the Otsu method is ap-
plied to the process. Then morphological opening and
closing operations are conducted to manipulate images.
Finally, the top region is identified as the sky. In order to
reduce the adverse impact of the noise on the method per-
formance, the first 0.5% of the pixels with the lowest sky
brightness is eliminated. Then the minimum brightness is
taken as the global atmospheric light.

For non-sky images, a quadtree search method is adop-
ted to evaluate the atmospheric light. Based on this evalu-
ation, the input images are divided into four squares.
Then the difference between the pixel average and the
standard deviation of each square is calculated as the
score, where the area with the highest score is selected to
be divided into another four squares. The process is re-
peated until the square area is smaller than the set
threshold. Then the brightest value is considered as the
global atmospheric light. Fig. 8 shows the estimation re-
sults for the global atmospheric light.

(a) Sky-involved image estimation

(b) Sky-free image estimation

Fig. 8 Estimation results for global atmospheric lights

2.6 Recovery of haze-free image

From (10) we can get that

IlMF ) _A 1_ )
J.(ny) = 1 (x y)t N ;) t(x y))_ 23)

From the sections above, we can obtain refined trans-
mittance #,, and atmospheric light A. To avoid a divide
by zero exception, we revise (23) as

_ Ir (x,y)—A(1-t;(x,y))
Joa = — @t oy

Therefore, the final recovered haze-free image can be
expressed as

Invp (x,y)—A (1 =1 (x,y))
max (¢ (x,y),0.1)
Iivp + Lips + < -+ + Iy (25)

J=

3. Experiment

Firstly, we conduct experiments to explore the influence
of parameters in 2DVMD on the results of dehazing.
Then, we conduct experiments to compare our proposed
algorithm with the state-of-art algorithms to verify the ef-
fectiveness of our proposed algorithm. Meanwhile, we
chose some commonly used indicators for further objec-
tive comparison of the performance of the algorithms.

3.1 Impacts of VMD parameters on dehazing effect

3.1.1 Impacts of mode number K on dehazing effect

In our proposed algorithm, the value of K and « has cer-
tain influence on the result of defogging. As the value of
K parameter increases, the VMD decomposition theory
indicates that the frequency difference between modes is
becoming increasingly smaller, which means that the com-
ponents of the fog may not be included in the basic IMF.

When we set @ =2 000, K increases from 2 to 17, and
the images are processed respectively. Fig. 9 shows some
results that K =2,3,7,8,9. It is observed that as the value
of K increases, the contrast of the dehazing result tends
to increase. However, when the K value is too large, co-
lor distortion and over-brightness will occur. Further-
more, the Brisque, SSIM, peak signal to noise ratio
(PSNR), and entropy indicators are applied. The lower
the Brisque index is, the higher the image quality can be.
The higher the other indicators are, the better the image
quality can be. In addition, Fig. 10 indicates that the value
of the Brisque decreases initially and then increases ra-
pidly as the value of K increases. When K =38, the
Brisque reaches the smallest value. Moreover, the SSIM
value decreases as K increases. The PSNR decreases
first, and then increases and finally decreases. Further-
more, the entropy first increases and then decreases and
when K = 8 the maximum entropy is obtained.
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(a) K=2 (b) K=3 (c) K=7

(d) k=8 (e) K=9

Fig. 9 Influence of the parameter K on the result of dehazing
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Fig. 10 Quantitative analysis of influence of parameter K on the
result of dehazing
3.1.2 Impacts of the penalty factor @ on

dehazing results

From Fig. 11 and Fig. 12 we can see that compared with
K, « value has little effect on the dehazing result. Ac-
cording to the entropy index and the Brisque index, the
best effect occurs when a = 2 500. Moreover, according to
PSNR and SSIM, the best effect occurs when a = 4 300.

We can use the particle swarm optimization (PSO) al-
gorithm to search the optimal combination of K and «.
However, the algorithm still has the problem of too much
computation. This method can be used in the case de-
manding high precision but without requirements for cal-
culation time and real time. If there is a requirement for
calculation time, appropriate parameters can be selected
according to experiential judgment. In general, setting
K €[3,5] and a €2 000,5 000] is likely to lead to better
results.

(a) a=1 000 (b) a=3 000 (c) a=5 000

Fig. 11 Influence of parameter « on the result of dehazing
23

22 ¢

Brisque

21+

20 : ' ' '
0 1000 2000 3000 4000 5000

a
(a) Brisque



288 Journal of Systems Engineering and Electronics Vol. 33, No. 2, April 2022

0.459
0.432 +
=
%)
n
0.405 +
0.378 . . . .
0 1000 2000 3000 4000 5000
a
(b) SSIM
10.72
24
Z
l7e]
Ay
9.38
8.71 - - - -
0 1000 2000 3000 4000 5000
a
(c) PSNR
7.48
7.31
=
2
2
=
o
714} /\/\/\/\”\\
6.97 . . . .
0 1000 2000 3000 4000 5000
a
(d) Entropy
Fig. 12 Quantitative analysis of influence of parameter o on the

result of dehazing

3.2 Dehazing performance of the proposed method

The experiments are conducted on a computer with a
2.7 GHz Inter-Core CPU, 8 GB RAM. The software plat-
form is Matlab 2017a. We use four objective evaluation
factors which are PSNR, SSIM, Brisque and Entropy to
compare the performance of the algorithms.

3.2.1 Objective evaluation factors

The PSNR reflects the ratio of the maximum signal
volume to the noise intensity. It is found that the higher
the value, the better the image quality. The calculation
equation is described as follows:

A2

Z (fii— g;j)zl

J=0

PSNR = 101g (26)

M
—0

1
MXxN |4
The SSIM measures the image similarity from diffe-
rent aspects, including the brightness, contrast, and the
structure. It is found that as the structural similarity index
increases, the image distortion decreases.
(zﬂxﬂy + Cl )(Zo-xo-y + CZ)

SSIM(x,y) = 27
D=y roirey )

The Brisque index is a non-reference image quality
evaluation model based on the versatility of natural scene
statistics. The scene statistical model is applied to quan-
tize the image quality, where localized normalized bright-
ness coefficients are utilized in this regard. The SVM
model parameters with different distortion types are used
to train the hyperplane corresponding to different distor-
tion types. The final quality score [33] can be obtained by
the probability and quality corresponding to different dis-
tortion types.

3.2.2 Qualitative comparison

To verify the effectiveness of the proposed dehazing ap-
proach, it is tested on various types of hazy images. The
performance of the proposed method is compared with
that of various state-of-the-art dehazing methods: the
multi-scale correlated wavelet approach (MSCWA) [34],
deep features image net (DFIN) method [35], artificial
multiple-exposure (AME) method [36], saturation based
transmission map estimation (SBTME) method [37], low-
pass polarization filter (LPPF) method [38], approximat-
ing and eliminating airlight component (AEAC) method
[39], airlight refinement and non-linear color balancing
(ARNCB) method [40], lower bound non-linear bound-
ing function (LBBF) method [41], improved color attenu-
ation prior (ICAP) method [42], and atmospheric light fu-
sion (ALF) method [43].

The end-to-end dehazing results on challenging natu-
ral images are presented. Fig. 13 ~ Fig. 17 show a qualit-
ative comparison of our results with those of ten state-of-
the-art dehazing methods.

MSCWA results in poor robustness, as we can see
from Fig.13 to Fig.17 that the dehazing effect of Image 1
is relatively good, but the visual effect of Image 2 is poor
with low contrast and color shift especially in the back-
ground region. DFIN is an algorithm based on deep learn-
ing, the overall performance of the method is better, but
the performance will be affected by the training dataset
and the fog in the distance is not cleaned up in Image 2
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and Image 4. The AME algorithm cannot accurately re-
store the details of the image, resulting in low contrast.
The overall color of the result obtained by the SBTME al-
gorithm is dark and the details in the distance cannot be
restored accurately as we can see in Image 2 and Image 5.
The result of LPPF has certain halos and artifacts and the
fog is not completely removed, for example, the fog in
the distance of Image 1, and some parts of Image 2 are
white due to the fog not being removed, partly because
the transmittance estimation is inaccurate. The AEAC al-
gorithm darkens the results, as we can see from Image 3
that the road is dark and halos and artifacts appear in
Image 4 at the edge of the plants. ARNCB results in col-
or over saturated, the road in Image 2 looks unnatural and

£l

(a) Hazy image

(g) AEAC ( ARNCB

(i) LBBF

Fig. 13 Performance comparison of signal Image 1 dehazing methods using sample natural images

/]

appears unnatural patches, and details of the image are
partially overestimated. LBBF generates halo artifacts
near discontinuities as we can see in Image 4. ALF al-
gorithms do not completely remove fog, and the dehaz-
ing performance is bad. The ICAP algorithm has certain
artifacts, color shift occurs in Image 2, and the recovery
effect at long distances is not good, resulting in the loss
of details. For Image 5, due to the uneven thickness of
fog, all kinds of algorithms are difficult to remove the fog
clean, but the algorithm in this paper retains the image
details to the greatest extent and has the best visual effect.
The proposed algorithm has competitive results with
these methods, producing a better dehazed image with
controlled brightness, contrast, and more details.

d) AME

(j) ICAP (k) ALF (1) Proposed method

(c) DFIN

(d) AME (¢) SBTME (f) LPPF

(g) AEAC (h) ARNCB (i) LBBF

(j) ICAP (k) ALF (1) Proposed method

Fig. 14 Performance comparison of signal Image 2 dehazing methods using sample natural images

(a) Hazy image (b) MSCWA

(g) AEAC

Fig. 15 Performance comparison of signal Image 3 dehazing methods using sample natural images

(h) ARNCB (i) LBBF

(j) ICAP (k) ALF (1) Proposed method
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(a) Hazy image (b) MSCWA (c) DFIN

(d) AME (¢) SBTME (f) LPPF

(2)AEAC  (h) ARNCB (i) LBBF

() ICAP (k) ALF (1) Proposed method

Fig. 16 Performance comparison of signal Image 4 dehazing methods using sample natural images

(c) DFIN

(©) AEAC  (h) ARNCB (i) LBBF

(f) LPPF

(d) AME () SBTME

(j) ICAP (k) ALF (1) Proposed method

Fig. 17 Performance comparison of signal Image 5 dehazing methods using sample natural images

Fig. 18 presents the comparison of our results with
those of 10 state-of-the-art dehazing methods on real un-
manned aerial vehicle (UAV) sample images. These ima-
ges all contain the sky, which is difficult to deal with, es-
pecially for Image 1, most of the algorithms are oversa-
turated, and there is a serious color shift in the sky region.
The results of MSCWA overestimate the sky, and the sky
area effect is poor, resulting in low contrast. The results
of DFIN in Image 2 is dark and the contrast is low. AME
results in detail loses especially in Image 1, the mountain
in the long distance. SBTME results in bad color shift as
in Image 1. LPPF loses the image details in Image 2. AE-
AC over-enhances the sky in Image 2. ARNCB does not
remove the fog cleanly in Image 4. LBBF results in low
contrast. ICAP results in serious color shift in Image 1.
ALF algorithms do not completely remove fog, and the
dehazing performance is bad. In comparison, the pro-
posed method effectively recovers the image details and
removes fog.

3.2.3 Quantitative comparison

In this paper, the outdoor dataset O-HAZE as shown in
Fig. 11 is exploited to quantify the dehazing performance
of different algorithms. Ancuti et al. [44] built the data-
sets, where hazy images have been captured in presence
of real haze, generated by professional haze machines,
and O-HAZE contains 45 different outdoor scenes depict-
ing the same visual content recorded in haze-free and
hazy conditions, under the same illumination parameters.

Hazy image

MSCWA [34]

DFIN [35]

H

AME [36] |

SBTME [37]

LPPF [38]

AEAC [39]

|
{

ARNCB [40]

| i
. B |
a ‘

LBBF [41]

. o
y ¥ :
. A

A
:

ICAP [42]

= &

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4

Fig. 18 Performance comparison of various single image dehazing
methods using sample real UAV images
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Table 1 presents the average performance of those al-
gorithms in terms of the PSNR, SSIM, Brisque, entropy
and running time. The top three performances are high-
lighted in red, blue and purple, as we can see from the ta-
ble that our algorithm has the best PSNR, SSIM and en-
tropy and has the second highest Brisque and running
time. PSNR and entropy index in some extent, reflect the
image contrast, and the results are consistent with the
subjective evaluation. The results of SSIM show the de-
fogging results obtained by the algorithm in this paper
with the highest similarity with the groundtruth, reflect-
ing its fogging results are better. Brisque is a no-refer-
ence indicator, its evaluation is from studying a lot of na-
tural images and it is not very sensitive to contrast of the
image, so the algorithm in this paper achieves the second
score. The state-of-the-art deep learning defogging me-
thod usually needs a lot of training data set and calcula-
tion parameters, therefore they do not have too much ad-
vantage in terms of running speed under the condition of
certain computing resources. The algorithm in this paper
also achieves the second performance in terms of run-
ning speed because this article needs certain iteration
during 2DVMD decomposition. We can find that our
method achieves the best performance on the whole.

Table 1 Quantitative comparisions of various algorithms
Algorithm PSNR SSIM Brisque Entropy Running time/s
MSCWA 17.41 08112 2253 693 1.73
DFIN 19.32 09052 10.12  7.07 3.11
AME 20.18 0.9034 17.5 7.12 2.14
SBTME 2321 0901 1098  7.53 4.30
LPPF 20.12 0.8918 19.2 7.41 1.17
AEAC 20.86 0.8945 153 7.26 1.35
ARNCB 20.52 0.8237 158 7.17 0.91
LBBF 22.23 09009 10.87 7.49 1.86
ICAP 20.17 0.88125 14.2 7.19 0.99
ALF 18.64 0.7938  20.1 6.98 1.22
Proposed algorithm 23.24 0917 10.13  7.62 0.93

4. Conclusions

The imaging equipment quality can be affected by out-
door haze conditions, which results in low contrast and
poor visibility, while single image dehazing has been a
challenge because of its ill-posed nature. This paper aims
to provide a method of dehazing to preserve image de-
tails. We find that the frequency components of images
polluted by haze will become lower, and the frequency
components of images are mostly concentrated in the low-
frequency part, while the high-frequency distribution is
very small. Thus, the basic idea of this paper is to extract

the low frequency components of the hazy images. The
haze information is contained in the low-frequency com-
ponents and the detailed texture information is included
in the high frequency components. Therefore, we restore
the low frequency components and then fuse with the
high frequency parts and finally get a high contrast and
good visual effect processing results. The 2DVMD me-
thod is used to adaptively decompose images into low-
frequency and high-frequency images according to the
image frequency band. Furthermore, we optimize the at-
mospheric light and transmittance estimation method to
obtain a defogging effect with richer details and higher
contrast. The proposed method is compared with ten state-
of-the-art algorithms respectively, namely, MSCWA,
DFIN, AME, SBTME, LPPF, AEAC, ARNCB, LBBF,
ICAP, and ALF on the O-HAZE dataset and the real
UAYV images and PSNR, SSIM, Brisque and entropy are
used as objective evaluation factors. Experiment results
show that the proposed algorithm has competitive results
with these methods, producing a better dehazed image
with controlled brightness, contrast, and more details.
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