Journal of Systems Engineering and Electronics
Vol. 33, No. 2, April 2022, pp.447 — 460

Knowledge transfer in multi-agent reinforcement learning
with incremental number of agents

LIU Wenzhang', DONG Lu®, LIU Jian', and SUN Changyin'”

1. School of Automation, Southeast University, Nanjing 210096, China; 2. School of Cyber Science and Engineering,
Southeast University, Nanjing 211189, China

Abstract: In this paper, the reinforcement learning method for
cooperative multi-agent systems (MAS) with incremental num-
ber of agents is studied. The existing multi-agent reinforcement
learning approaches deal with the MAS with a specific number
of agents, and can learn well-performed policies. However, if
there is an increasing number of agents, the previously learned
in may not perform well in the current scenario. The new agents
need to learn from scratch to find optimal policies with others,
which may slow down the learning speed of the whole team. To
solve that problem, in this paper, we propose a new algorithm to
take full advantage of the historical knowledge which was
learned before, and transfer it from the previous agents to the
new agents. Since the previous agents have been trained well in
the source environment, they are treated as teacher agents in
the target environment. Correspondingly, the new agents are
called student agents. To enable the student agents to learn
from the teacher agents, we first modify the input nodes of the
networks for teacher agents to adapt to the current envi-
ronment. Then, the teacher agents take the observations of the
student agents as input, and output the advised actions and va-
lues as supervising information. Finally, the student agents com-
bine the reward from the environment and the supervising in-
formation from the teacher agents, and learn the optimal policies
with modified loss functions. By taking full advantage of the
knowledge of teacher agents, the search space for the student
agents will be reduced significantly, which can accelerate the
learning speed of the holistic system. The proposed algorithm is
verified in some multi-agent simulation environments, and its ef-
ficiency has been demonstrated by the experiment results.

Keywords: knowledge transfer, multi-agent reinforcement learn-
ing (MARL), new agents.

DOI: 10.23919/JSEE.2022.000045

Manuscript received August 13, 2021.

*Corresponding author.

This work was supported by the National Key R&D Program of
China (2018AAA0101400), the National Natural Science Foundation of
China (62173251; 61921004; U1713209), the Natural Science Founda-
tion of Jiangsu Province of China (BK20202006), and the Guangdong
Provincial Key Laboratory of Intelligent Decision and Cooperative
Control.

1. Introduction

The research on reinforcement learning (RL) has made
great progress in recent years, and many RL algorithms
have been applied to solve various challenging problems
[1-6]. The success of RL in single-agent systems has also
been extended to multi-agent systems (MAS), where mul-
tiple agents behave together in a shared environment [7].
A direct idea of multi-agent reinforcement learning
(MARL) is to learn independently by using a single-agent
RL for each agent [8]. Independent learning may result in
non-stationarity during the learning process, because the
performance of each agent might be influenced by the
policies of others [9]. To stabilize the learning process
and improve the performance, the framework of central-
ized training and decentralized execution (CTDE) is
widely used in MARL [10—13]. CTDE based algorithms
collect the observations and actions of all agents during
the training stage, and execute the policies independently.
Most of the CTDE based algorithms assume the number
of agents (denoted by N) in a given environment is fixed,
and they can learn joint optimal policies for the MAS.
However, if there comes M new agents, the environment
for each agent will be changed, which means the joint op-
timal policies they learned before will lose the efficiency.
In this scenario, it is computationally expensive to learn
from scratch for new agents without considering the
knowledge that was learned in previous. Define the previ-
ous environment with N agents as the source environ-
ment, and the current environment with (N + M) agents
as the target environment. To transfer the knowledge
from source to the target and speed up the learning pro-
cess, we propose to build a new MARL algorithm, in
which the student agents (M new agents) can learn not
only from the environment but also from the teacher
agents (N old agents).

Recently, transfer learning (TL) algorithms have
shown the efficiency in accelerating the learning from the

448 Journal of Systems Engineering and Electronics Vol. 33, No. 2, April 2022

source domain to the target domain [14—16]. Without the
need for big data and long training time for target tasks,
TL algorithms make full use of the knowledge learned in
the source domain. For RL, the idea of TL can reduce the
number of samples that are required to calculate an op-
timal policy by reusing the knowledge that was learned
previously. By combining TL and RL, transfer RL (TRL)
was proposed to deal with the knowledge transfer from
one Markov decision process (MDP) to another MDP (in
this paper, we call them the source MDP and the target
MDP, respectively) [17—19]. If the target MDP is diffe-
rent from the source MDP, the optimal policy that was
learned before will lose the efficiency, because the data
distribution was changed. By using the experience know-
ledge of the previous environment, TRL aims to find an
optimal policy in the target MDP without the need for re-
training or large samples [20]. TRL algorithms are also
applied in MAS to speed up the learning process and im-
prove the performance [21-23]. Especially for coope-
rative MAS, in which agents aim to achieve common
goals cooperatively, the knowledge transfer across agents
[23—25] or tasks [26—28] are widely used to reduce the
dependency on the samples and simplify the problem.
However, most of the existing algorithms for multi-agent
TRL also assume that the number of agents N is fixed,
and the dimension of the input variables for each agent’s
policy is also determined by N.

In this paper, we aim at the MAS with incremental
number of agents in a shared environment. Hence, the tra-
ditional framework of MARL cannot adjust the network
structure dynamically and transfer the knowledge that
was learned before. The scenarios of MAS with incre-
mental number of agents appear commonly in many prac-
tical applications. For example, the unmanned warehouse
system with new robots being added to improve the effi-
ciency [29], the battle game with new players being
joined to enlarge the problem scale [30], and the
autonomous driving system in a highway environment
with incremental number of new vehicles [31], etc. In
these scenarios, how to let the new agents learn not only
from the environment but also from the behaviors of the
previously trained agents, is important to avoid learning
from scratch and accelerating the training process. De-
note the MAS with N agents as the source MDP and the
MAS with N+ M agents as the target MDP. The main
goal of the learning is to transfer the useful knowledge
from source MDP to target MDP without the need for re-
training, such that the agents in target MDP can find op-
timal policies with fewer training steps. In this paper, we
mainly consider the cooperative MAS, where agents be-
have cooperatively to achieve common tasks. However,
there are still some challenges to solve this problem. First

of all, the learning framework for target MDP needs to be
restructured without destroying the relationship between
the previous agents. Secondly, the new agents need to se-
lect useful knowledge from teacher agents to avoid nega-
tive transfer in the target environment.

To solve the above challenges, we propose a new
MARL algorithm to implement the knowledge transfer
from source MDP to target MDP. The main ideas of this
paper are extracting the experience knowledge of the
teacher agents and transferring it to the student agents via
online policy distillation. The contributions of this paper
are listed as follows:

(1) We study the MARL with incremental number of
agents, and design a new experience replay buffer for
knowledge transfer (ERBKT) for new agents, such that
they can learn not only from the environment but also
from the teacher agents.

(i) A new algorithm called multi-agent deep determi-
nistic policy gradient with incremental number of agents
(MADDPG-INA) is proposed to accelerate the learning
process from the source MDP with N agents to the target
MDP with (N + M) agents.

The rest of the paper is organized as follows: The re-
lated work about this paper is introduced in Section 2.
Section 3 is about the background and problem formula-
tion. Details of the proposed algorithm are presented in
Section 4. In Section 5, the simulation results are shown
to verify the performance of the proposed algorithm. Fi-
nally, the paper is concluded in Section 6.

2. Related work

In recent years, the CTDE has been found useful in
MARL to stabilize the learning process. For example,
Lowe et al. [10] proposed multi-agent deep deterministic
policy gradient (MADDPGQG) algorithm which collects the
observations and actions of all agents during the training
stage to approximate the agent-wise Q-functions, and ex-
ecutes the actions according to the agents’ local observa-
tions with distributed policies. MADDPG applies the act-
or-critic architecture and DDPG algorithm [2] to calcu-
late the policy gradient of each agent. For fully cooperat-
ive MAS, Foerster et al. [11] proposed the counterfactual
multi-agent (COMA) policy gradient algorithm to ad-
dress the credit assignment problem by calculating a
counterfactual baseline as the advantage functions. Dif-
ferent from above, Sunchag et al. [12] proposed value de-
composition network (VDN) to decompose the holistic Q-
value function into a sum of individual agent-wise Q fun-
ctions, which take the local observations and actions as
input. To improve the performance of VDN, Rashid et al.
[13] proposed a Q-mixing (QMIX) network to approxim-
ate the total Q-value function through a mixing network,
which takes the individual agent-wise Q functions and the

LIU Wenzhang et al.: Knowledge transfer in multi-agent reinforcement learning with incremental number of agents 449

global state as input. Because the COMA, VDN, and
QMIX have to calculate the Q-values of all actions du-
ring execution, they are unprocurable in MARL with con-
tinuous action spaces.

The problem of MARL will become more complex if
the number of agents increases. Hence, the knowledge
transfer across agents or tasks is considered to reduce the
samples and speed up the training. In [28], Omidshafiei
et al. introduced the single-task learning algorithm for
concurrent interactions among decentralized agents.
Then, they transferred the individual policies into one
policy to implement multi-task learning via policy distil-
lation [26,27,32]. To combine the knowledge across
agents, Wadhwania et al. [24] treated the multi-agent
single-task problems as single-agent multi-task problems
through policy distillation and value matching methods.
In [33], Chen also applied the policy distillation method
and proposed a new framework for MARL to implement
CTDE. Many of the TRL algorithms mentioned above are
offline to deal with the tasks in the source domain and
target domain. To enable online transfers, Taylor et al. [34]
proposed a parallel transfer learning technique that can
run the source and target tasks concurrently.

However, the algorithms above are proposed for the
predefined system with a fixed number of agents. In [35],
Agarwal et al. created shared agent-entity communica-
tion graph, which is invariant to the number of agents, to
learn transferable cooperative behaviors in the multi-
agent teams. The authors assumed that the environment
can be described as a set of interactable entities, however,
that will limit the applications in many practical prob-
lems. In [30], Wang et al. proposed dynamic multi-agent
curriculum learning (DyMA-CL) algorithm which starts
learning on an MAS with small number of agents, and the
number of agents will increase progressively by cur-
riculum learning [30]. A dynamic agent-number network
(DyAN) architecture was designed in DyMA-CL to adapt
to the increasing inputs of the networks. However, the
DyAN in [30] learns agent-wise local Q functions di-
rectly without considering the observations and actions of
other agents, which may result in local minima or non-
stationarity during the training stage.

Different from the above algorithms, our algorithm im-
plements the knowledge transfer for new agents and the
learning of previous agents in parallel, and there is no as-
sumption about the structure of the network parameters.
More details about the proposed algorithms are intro-
duced in the next sections.

3. Background and problem formulation

In this section, we first introduce the background of RL
for single-agent systems and multi-agent systems. Then
we present the problem formulation for TRL.

3.1 RL for single-agent systems

RL is built on MDP which can be described as a tuple
M =(S,A,P,R,y) [36,37]. The first two elements are
about the agent, which denotes the observed state space
and action space, respectively. P and R are about the en-
vironment, which denote the state transition probability
and reward mechanism, respectively. y € (0, 1) is the dis-
count factor. Agent observes an state variable s, € S at
time step ¢ to measure the environment and takes an ac-
tion g, € A under a policy x, and then the environment
will return a reward signal r, = R(s;,a;) to the agent. The
policy of the agent can be represented as a probability
distribution 7 : S XA — [0, 1], or a deterministic function
m:S — A. The goal of the RL agent is to find an optimal
policy n* to get maximal accumulated return G, =

Zykmk. A state s under policy 7 is evaluated by the

k=0 .)
state value function V" (s) = E, [Zk_oykmkls, = s], and a

state-action pair under m is evaluated by the Q-value

O (s,a) =E, Zykr,+k|s, =s,a,=al|. The Q-value is
helpful for agkégt to choose actions, and can also be
representedas Q" (s,a) =, +)/ZP(SH1 =ss, =s,a = a)

V= (s"). The optimal Q-function Q" satisfies the Bellman
equation as follows:

Q' (s,a)=r,+ymax Q' (s,d) (1)

where s is the state at next time step.
In single agent RL, an optimal policy can be represen-

ted by a;=argmax Q" (s;,a). There are many algori-
thms to get theaf)Aptimal policy that satisfies (1), such as
Q-learning, SARSA, and policy gradient, etc.

3.2 RL for multi-agent systems

MARL is built on a decentralized partially observable
Markov decision process (Dec-POMDP). A Dec-POM-
DP with N agents can also be described as a tuple M"Y =

({0",A", PLRY}Y ,y) . O"and A’ are observation space
and action space for agent i, respectively. Agent i takes
actions by following an independent policy 7' : O' x A’ —
[0,1], or ': O' — A'. P! is the state transition probabi-
lity for agent i. R represents the reward function for
agent 7 and y € (0, 1) is the discount factor. In this paper,
we mainly study the model-free MARL with continuous
actions, so we use the deterministic policy that outputs
the actions directly (¢’ = 7' (0!), where o} and a' are local
observed state and local action of agent i at time step ¢,
respectively), and the P’ is unknown during the learning
process. Given that the concurrency of execution for all

450 Journal of Systems Engineering and Electronics Vol. 33, No. 2, April 2022

agents, the greedy policy in single-agent Q-learning can-
not be applied in distributed policies. Instead, we apply
the MADDPG [10] algorithm with the framework of
multi-agent actor-critic to implement the MARL in this
paper.

For a cooperative MAS, agents aim to find optimal dis-
tributed policies 7 =zY ' coordinately to maximize the

N
holistic objective function J () = Z Ji (ni), where J' (')

. . i=1 .
is the expectation of accumulated total reward for agent i,

o

I
§ Y'rin
=0

Let n'(-|¢.) be the parameterized policy for agent i,
then the goal of the multi-agent policy gradient is to cal-
culate the gradient VJ () with respect to (w.r.t.) {95(}1 1>
and maximize the J () cooperatively via gradient ascent.

J(7') =Ey0 ,i=12,-,N. (2

3.3 TRL

In TRL, the knowledge that is learned in source domain
should be transferred to target domain, in order to reduce
the training time and improve the performance for the tar-
get MDP. Let M =<Sg,Aq,Ps,Rs,ys > denotes the
MDP for the source task, and My =< S;,Ar, Pr,Rr,yr >
denotes the MDP for the target task. ng and 7; denote the
policy for source task and target task, respectively. Simi-
larly, Qs (ss,as) and Qr(sr,ar) denote the source Q-
value function and target Q-value function, respectively.
Denote /I and 7I; as the policy space for the two differ-
ent MDPs, then the main goal of TRL is finding a trans-
fer functional T : I1; — II;, such that

mr =T (5) A3)
where 75 € Il is the optimal policy for source task, and
ny. € I is the target optimal policy that needs to be cal-
culated.

Different from the policy transfer in (3), another ap-
proach of TRL aims to transfer the value functions from
source task to target task, which is called the value trans-
fer. Value transfer aims to find a transfer functional
G : Qg (sg,as) — Qr(syp,ar), such that

0r =G(Q) “4)
where Q5 and Qj; are optimal value functions for the two
scenarios.

For a cooperative MAS with incremental number of
agents, let MY be the source MDP and MY be the target
MDP, where N and N represent the number of agents
and N # N. The tasks in these two MDPs are exactly
similar, and the knowledge learned in the source task is
useful to deal with the target tasks. Hence, there is no
need to train from scratch for the student agents like tra-

ditional learning algorithms.

4. Knowledge transfer algorithm for MAS
with incremental number of agents

In this section, we first build the framework of MARL in
source MDP with N agents. Then, we propose the al-
gorithm for the MAS with incremental number of agents,
which includes: parameters resetting, experience replay
buffer for knowledge transfer, and knowledge transfer for
new agents.

4.1 Multi-agent actor-critic in M}

As mentioned in Section 3 the greedy policy for each
agent based on its local Q-value function does not work
in decentralized execution, because the actions for these
agents are executed concurrently in MAS. Although the
value decomposition based algorithms are able to learn
local Q-value functions and greedy policies such as
VDN [12] and QMIX [13], they cannot deal with the
MAS with continuous action spaces. Hence, the frame-
work of multi-agent actor-critic (MAAC) with centralized
training and decentralized execution is used to imple-
ment the MARL in this paper.

For agent i in MAAC with continuous action space, a
parameterized deterministic policy 7' (0']6") takes the lo-
cal observation o' as input and outputs the actions a' to
make the agent behave independently without consider-
ing the observations and actions of the other agents. The
parameterized critic takes observations and the actions of
all agents to evaluate the state-action values Q' (0,a|6?;)
for agent i, where 0 =[0',0%---,0"] and a = [a',d%,---,
a"]. We use an neural network that is parameterized by
6 to approximate the evaluated Q-value function for
agent i as

0'(0.al6) = F.(®.(0.0)). 3)
@ (0,a) = ¢. ZN: (Wio'+Wha'+b7)|, (6)
j=1

J

where j is the index of agent, Wc”1

matrix for the observation variable, W,
weight matrix for the actor variable, and b is the bias
vector. ¢ (-) is the activation function and the F’(-) rep-
resents the critic network of agent i. Similarly, the policy
of agent i is also approximated by another neural net-

work as

is the input weight
is the input

#(0'16,) = Fi (") @)

where F' (-) represents the actor network for agent i.
According to the MADDPG proposed in [10], let
Ji(7') be the accumulated average return defined in (2)

LIU Wenzhang et al.: Knowledge transfer in multi-agent reinforcement learning with incremental number of agents 451

and Q' be the Q-value function for agent i in MY . Then
the gradient of ' w.r.t. 6. is

Vi J' (1) = E [V (0) Va0 (0.0) lycrir] . (®)

Equation (8) provides the gradient of the parameters
for actor networks, which can be used to update the
policies via gradient ascent. If it is assumed that the
policies of other agents are fixed when the critic network
of agent i is updating, then according to the Bellman
equation of single-agent MDP in (1), we can also get

Q" (0,a)=r +yQ" (0',71'* (0’)))

N'] is the joint observation at

next step and 7" (0') = [n‘*(o"),nz* (02’),~~~ v (ON,>] is
the joint optimal policy of the MAS. According to (9), the
loss function of the critic network is designed as

Li=E [(yiQ" (o,,atlei,))z] (10)

where y =ri+yQ (0,m(0)), and Q| is the target
Q-value function for agent i. Agent i will get an optimal
value function Q™ by minimizing (10). We approximate
the expectations in (8) and (10) through sampling in the
experience replay buffer Ds. After each step, the tran-
sitions {< of,a, 7,0, >}\, are stored into the D. Then
agents sample from D; to update the parameters. Details
of the algorithm are referred from [2] and [10].

We use the MAAC framework with MADDPG al-
gorithm to learn the optimal policies and optimal value
functions in MY, which are denoted as n and Qf

(i=1,2,---,N), respectively.

where o = [0' L0200

4.2 MADDPG with incremental number of agents

Now, we consider there comes M new agents in the cur-
rent scenario. The number of agents has been increased
from N to N’ = N+ M. The previous N agents in My are
treated as teacher agents, and the M new agents are
called as student agents. Because the teacher agents have
learned the optimal policies in MY, their behaviors in the
new environment will be useful to extract the knowledge
that was learned before. The teacher agents first modify
their network structure to adapt the target MDP MY ', then
they share the experience for student agents. The student
agents will deal with the information from these teacher
agents and choose the advised output to guide the learn-
ing process. In the new scenario, there are three issues
need to be handled: (i) Adjust the network structure in the
MAAC for both teacher and student agents; (ii) Get the
supervising information from teacher agents as the
experience knowledge; (iii) Transfer the knowledge from
teacher agents to student agents during the learning process.

First of all, the input of the critic networks should be

extended to include the components (observation and ac-
tion variables) of the new agents, such that the MAAC
framework still works in MY . Secondly, while the teacher
agents are updating their policies and value functions,
they also provide the advising variables as supervising in-
formation to share the experience with the student agents.
We call that as online transfer, in which the teacher
agents and student agents are trained concurrently [26].
Online transfer is different from traditional offline trans-
fer. In the offline transfer of RL, the agents in target MDP
first transfer the knowledge from source MDP to get a
jump start of the performance, then they apply the well-
initialized parameters to start RL in target MDP [17].
Offline transfer is not efficient compared with the online
transfer, because it lacks the new interactive data of the
target MDP during the transferring stage.

(1) Teacher agents maintain knowledge from source
MDP while the student agents are initialized randomly.
We use the subscript T to represent the elements in tar-
get MDP. Let W', and W, be the input weight matrix
for the observation and action variables of mth new agent
respectively, then the target Q-values for agent i can be
represented by a critic network

0 <0T’aT|951) =Fer (QDE,T (OT’aT)) (11)
where

N
@ (0r,ar) = 6 Y W0/ + Whaa' +b)+

J=1

M
Wz +W;72am)), i=1,2, ,N+M, (12)
m=1

and o; =[0",0%---,0""M], a;=|d".a,---,a"™M]. For

c.

teacher agents, the parameters of W/, W/,, and b} are
maintained from MY, and W, and W, are set as zeros.

The target policies for new agents are represented by
M reinitialized actor networks

7 (010)) = Fi (o), i= N+ LN+2,-- N+ M, (13)
and for teacher agents, the start policies are initialized as
w4 (010) =75 (o), i= 1,2, N. (14)

Here, we assume that for each teacher agent i
(i=1,2,---,N), the observation spaces of MIT‘" is the
same as that of MY, ie., O,=0, (and similarly,
AL = AL). However, in some scenarios where O’ # O,
there need an observation transition function ¢': O} —
O%. ¢ satisfies Vo, €O, and €>0, R (¢(0}),a5)—
RL (0},a%) <€, Yai € AL . In this paper, we apply the prior
knowledge of the environment to design the transition
functions ¢’ for network initialization. One can also build

452

an observation-to-observation matching to approximate
the ¢'. Another way to adapt the increasing dimensions of
the observation is using the attention mechanism, which
embeddings the information of entities in the environ-
ment to a vector with fixed size [30]. However, once the
additional observed information in the target environ-
ment is embedded, the optimality of the teacher agents’
start policies in (14) cannot be guaranteed. In addition, if
the observations are laser scanning data or images, it will
be intractable to embedding the information of each en-
tity. Hence, the attention mechanism lacks generality in
our settings.

After the initialization of the network parameters, the
teacher agents will maintain the knowledge from source
MDP and behave in the target environment with a well
jump start [17]. The networks of student agents are ini-
tialized randomly. In the next part, the teacher agents will
provide advising outputs for student agents to transfer the
knowledge that was learnt before.

(i1) Augment the transition buffer with supervising sig-
nals from the teacher agents. During interacting with the
environment, all of the teacher agents and student agents
in M?" update their policies and values based on the
MAAC of (11), (13), and (14). However, in order to
make full use of the experience of teacher agents learned
in M3, we need to get the advices from teacher agents as
the supervised information for student agents. Denote Dy
as the experience replay buffer for knowledge transfer
(ERBKT) in MY . Unlike Dy in Subsection 4.1, both of
the supervised information and the transition data at each
time step are stored into Dy together for online transfer.

Let a

adv

vised Q-value for student agent i (i=N+1,N+2,---,

and ¢, represent the advised action and ad-

Journal of Systems Engineering and Electronics Vol. 33, No. 2, April 2022

N + M), respectively. Since the optimal parameters in M5
are preserved by the teacher agents, a', and ¢/, can be

a

defined as

afidv = argmaX{Q;‘(oT’ﬁjl (07‘)),

#1.(0)

05 (05,7, (07)), -+,) (07,7} (0r))} (15)
and
q;dv = maX{QAlT(oTaﬁil (OT))a
03 (05,7 (0r)), -+, OF (07, 7y, (01))} (16)
where n’j (07) = [ﬁ-lT (0", 7 (0), - ,AENM (0N+M)]’ j=
1,2,---, N. ir’/ is the joint actions calculated by the actors

of N+ M agents, while the ith action is calculated by the
actor of agent j, i.e., @' = 7} (0').
S .) N+M

For student agents, {< 04y @iy 1150115 o, 15 Qg s >}[:N+] is
the transition data at time step ¢, and it is stored in the ex-
perience replay buffer D; (as shown in the left part of
Fig. 1). Thus, the data for student agents in D; contains
not only the information about current environment but
also the experience knowledge about the source environ-
ment. The advised information calculated here will be
useful for student agents when they share a common ob-
jective, i.e., the agents in the MAS behave cooperatively
to achieve similar goals. For competitive or mixed co-
operative-competitive MAS, the policies and values of
the teacher agents with different roles may be unable to
represent the tasks of the student agents. In that scenario,
we can get the advised actions and Q-values from the
teacher agents with a same role as the student agents.
Therefore, without loss of generality, we mainly consider
the learning of cooperative MAS with incremental num-
ber of agents.

-
0, : Lo)
H a4 4
I ! : P
lo/] % 1011 . ! rr
Actor ctor lotf ' o! - UV (- |5
: _ 0, Actor Predicted % (0] Policy | Jadv.t
network .netw?ri(Actor s network output E transfer loss)]
o/ l it - N 0,1 T network ! . L ;
0,~ Critic o~ Critic g : o/ . :
. — i ' Y
a,~>network a,—network 4 : oo | -] L
IQ ! 1o New agent i : > Critic Predicted : Value
z g H network output i, @,/ 6.7} transfer loss|
Agent 1 Agent N | B D » Ail0q)
o T a/ Ot 4 New agent i : Giav,s
[z |o [t | o e | g :
| Dadv.t : Target outputs :
Experience knowledge acquisition |gi, . ERBKT +»| Batch samples | :
———1{__for agent i : :
. . . H .. .] Knowledge
Online data collection for new agent i H Actor-critic learning : transfer)
.

Fig.1 Algorithm framework of MADDPG-INA

In fact, (15) builds a new policy (we denote it as 7,)
for agent i to behave in the environment under the guid-
ance of teacher agents. According to the definition of

4, it is not equal to the policy of any teacher agent (the
same as the advised Q functions). Hence, we learn from
the advised actions and values instead of downloading the

LIU Wenzhang et al.: Knowledge transfer in multi-agent reinforcement learning with incremental number of agents 453

parameters of the teacher agents directly, which is diffe-
rent from the algorithms in [39]. Since the teacher agents
and student agents share a common objective in the co-
operative settings, it is reasonable to evaluate the joint
policy through the critics of teacher agents. Denote Q'
as the advised Q function of student agent i and 7’ (o) =
|7k (01, iy (0) - AN (M) (= N+ 1N +2,-,

N+ M), where the policy of the student agent i is re-
placed by 7', . Then, according to (16) we have

Ol (05,7) = dly, > O} (0r.7(0r)), j=1,2,--,N. (17)

In this point of view, the 7', could be a good policy
for student agent i. However, the calculation of 7', is
heavily dependent on the actors and critics of teacher
agents, and it is not guaranteed to achieve the optimality
of objective function (2). Hence, the student agents
should be trained continuously in the target environment
to get independent optimal policies, and the a/,, and ¢’
should be good suggestions to help speed up the training.
We will show how to train the actors and critics of stu-
dent agents in the next part.

(iii) Augment the actor-critic loss functions with addi-
tional distillation losses: In this part, we modify the ob-
jective function and critic loss for each student agent, and
get the gradients to optimize the parameters. With the ex-
tended experience replay buffer D, the objective func-
tion of the student agent i are modified as

todal
PRA
=0
where a

wav, 18 the advised action for student agent i at
time step , B is the transfer factor, and L” is the loss
function for policy transfer, which can be defined as

L = o, |) (a7 o)) | (19)

We then get the gradient of the policy 7, w.r.t. 6. as

Jiu(7,) = Eo, —BLy (a7 (o)) (18)

Vi T (1) = En, [Vo2 (o) (e €' 0,0) Lo+

28(ans ()]

We call (20) the multi-agent deep deterministic policy
gradient with incremental number of agents (MADDPG-
INA). It can be found that once we have the advised ac-
tions in Dy, the V, Ji (#}) will be easy to compute based
on the original MADDPG [10]. In addition, for value
functions of the new agents, we also modify the loss
function (10) as

(20

Li:,stu (9;) =
Ep, [(yiQ’ (ot,atleﬁ,))z] +BL (g2, O' (0,a06)) (21)

where y =ri+yQi (0',n(0)), ¢, is the advised values
for agent 7, and LT is the loss function for value transfer.

. A \\2
L' =E,, [Z (i~ O'(01-a161) (22)
The gradient of L., w.r.t. 8, is
V%Lf =

Ep, [2(1+p) 0 (0,al0)) - () +Bdis,.)) Ve O] (23)

Remark 1 The choices of distillation loss. As in-
troduced in [26], there are three kinds of losses for policy
distillation: negative likelihood loss (NLL), mean square
error (MSE) loss, and Kullback-Leibler (KL) divergence
loss. According to the simulation results in [26], KL di-
vergence loss performs best compared with NLL and
MSE loss. However, the KL divergence loss and NLL are
unprocurable when the action space is continuous. Hence,
for deterministic policies with continuous action spaces,
the MSE loss is used in (19) and (22). While for stochas-
tic policies with discrete action spaces, the distillation
losses in (19) and (22) can be replaced by KL divergence
loss. In general, if we use the KL divergence loss in that
scenario, the advised actions and values in ERBKT
should be advised action distributions and advised value
vectors, respectively.

With the modified objective functions and value loss
functions, the student agents can learn not only from the
environment but also from the teacher agents. Specifi-
cally, it could be noted that the teacher agents also keep
learning to fine tune the network parameters during the
learning of student agents, such that the teacher agents
could provide more useful advised actions and values to
improve the transfer. The method that agent transfers
knowledge from the source environment while learning in
the target environment is called online transfer [17,38].
Compared with the offline transfer methods (agents
transfer knowledge before learning in the target environ-
ment) [39], the online transfer is more efficient because
the performance of teacher agents is also being improved
during transfer learning.

To show the efficiency of the policies and value func-
tions learned with (18) and (21), we provide the follow-
ing theorem.

Algorithm 1 MADDPG-INA

Input: Number of previous agents N, actor-critic net-
work parameters for MY, number of current agents N’

454 Journal of Systems Engineering and Electronics Vol. 33, No. 2, April 2022

(N’ =N+ M, M is the number of new agents).
Initialization: Initialize the network parameters for new
agents by (11) and (13), replay buffer D7, the target net-
works, the new component of the input of teacher agents.
1: for episodes =1 to N, do

2: Reset environment and get initialized observations

i\N
{op)ic: -

3: fort=0toT-1do

4 a e m(s)+ N, (g (s),0) (=12, N).

5: Get a', and ¢.,, by (15) and (16), respectively.
6 Execute {a/}Y,, then get {o',,}¥, and {r ,}Y,.

7 Store {< ol,d,ri, .0, .a.y, .q\,, > Yins; and

oi

{<oi,d,r o, >} into Dy.
8: Sample Ny, transitions as a mini-batch data in D.
9: fori=1to N do
10: Update critic network for agent i by minimizing
(10) with the sampled data.
11: Calculate (8) and update the actor network for
agent i by gradient ascent.
12: end for
13: fori=N+1to N do
14: Calculate (23) and update critic network for
agent i by gradient descent.
15: Calculate (20) and update actor network for
agent i by gradient ascent.
16: end for

17: Update target networks:
6 10, +(1-1)8 (i=1,2,---,N'),
O —10+(1-16(G=1,2,--- ,N').
18: ole—ol, (i=1,2,---,N).

19: end for
20: end for

Theorem 1 For a multi-agent MDP with incre-
mental number of agents, if the transfer factor 8 in (21)
satisfies 0 < 8 < 2/a+vy—1, then the optimality of the Q-
value by minimizing (21) is guaranteed, and the perform-
ance of student agents will be no worse than the teacher
agents.

Proof Denote Q as the Q-value function space,
Q™ € Q as the optimal Q-value function for student agent i,
and let Q) € O be the initial value function for iteration.
Define a functional 7 : Q — Q as

(TQ})(0.0) = 0}, (0,0) - (1 +) O, (0,0)—
(r;+l + ymaxQﬁV" (0,’) +ﬁQ;dv,t))‘ (24)

To simplify the theoretical analysis, we use the
max Q) (0,-) to calculate the target Q-value. With the

norm of ||-|,,, We can get

sup »

sup

oy, - 0| =Ty T0o"

sup

la-aa+pn(0)-0")+

ay(maij\,y (0’ ,) —maxQ” (o',))

<

sup
1-a(l+B-YI||C_ - O
1-a(1+B8-y)"||0)- 0"

Given that the @,y € (0,1) and 0<B<2/a+y—1, we
have [I-a(1+B-7v)<1. As a result, 13im|1—a(1+
B—y)I" =0, that means ’

lim 0}, - 0%, =0. (26)

<---<

sup

(25)

sup”

Therefore, we can get the optimal Q-value functions
for student agents by minimizing (21).

In addition, from (24) and T Q™ = Q™, we can find that
the optimal value function for student agent i satisfies

0" (0,a) = ﬁ (rj+l +ymax Q™ (0',a') +,Bqadv’,). 27)

According to the Bellman optimality of Q" (o,a) and
(16), for each teacher agent j we have:

1
1+8
where Q7 (0,a) is the Q-value function with policy 7; of
teacher agent j. As a result, the performance of student
agent will be no worse than that of the teacher agents. O

According to Theorem 1, the positive transfer of
MADDPG-INA for new agents can be guaranteed. Fig. 1
shows the learning framework for ith new agent. The
knowledge is transferred from teacher agents (agents
1,2,---,N) to student agent (agent i). The left part is the
online data collection for new agent i, which includes the
experience knowledge acquisition and the traditional in-
teraction data collection. The central part is the actor-cri-
tic learning for agent i. The right part is the knowledge
transfer mechanism which takes the advised actions and
Q-values as the supervising information for the actor net-
work and critic network of agent i. In addition, the teacher
agents also keep learning in the target environment
without the parts of online data collection and knowledge
transfer in Fig. 1. The pseudo code of the proposed
MADDPG-INA is provided in Algorithm 1. We also
build the target actor-critic networks [1] for each agent to
calculate the target values, and modify the parameters by
soft updating with a factor 7 [2]. N, (ni,(sj),(r) is the
Gaussian noise at step ¢ which is added to the policies
during exploration, and the o is the variance of N,.

Q" (0,a)>

(07 (0.a)+BQ7 (0.)) > 07 (0.a) (28)

LIU Wenzhang et al.: Knowledge transfer in multi-agent reinforcement learning with incremental number of agents 455

5. Simulation results

In this section, we evaluate the proposed method in two
multi-agent simulation environments: waterworld with
multi-agent, and cooperative box-pushing. All simula-
tions are run at a desktop with Intel Core i7-7700k
CPU@4.20 GHz.

We compare the following methods in our simulations:
the MADDPG algorithm in [10], the DyMA-CL in [30],
and our proposed MADDPG-INA algorithm. The net-
work architecture of MADDPG is designed according
to [10]. The architecture of DyAN in DyMA-CL al-
gorithm is designed according to [30].

5.1 Waterworld with multi-agent

In the environment of waterworld with multi-agent,
agents move in a shared area to capture the moving food
targets cooperatively, and avoid the poison targets and
obstacles [40]. Each agent gets the observations by thirty
range-limited sensors with uniform angular spacing, and
takes actions of a two-dimensional continuous force. The
observation variable for each agent is 212-dimensional,
and it includes the distances and velocities of the moving
food targets, moving poison targets, static obstacles, and
other agents. Fig. 2(a) shows the waterworld simulation
environment with three agents. For agent i, it will re-
ceive a positive reward of +1.0 if it encounters a food tar-
get, and will receive +20 if it captures the food target
with other agents cooperatively. We add a penalty of
—2.0 if the agent encounters with a poison target, and a
penalty of —1.0 if the agent collides with the obstacles,
boundary or other agents.

.AI.‘. . . Al‘. . .

’ . ‘Az ° . 2 ‘Az @

e O 1e | ° 1©]

=@ e
o . e .

(a) Three-agent scenario (b) Four-agent scenario with

one incremental agent

«: Poison target; ®: Food target; @: Static obstacle;
®: Agent; @: New agent.

Fig.2 Simulation A: waterworld with multi-agent

Details of the parameter setting are shown in Table 1.
We use three-layer MLPs as the actor networks and the
critic networks for MADDPG. The RELU activation
functions [41] are used for the hidden layers of these
neural networks. For each agent, the input of the actor
network is the local observation, and the output is the de-
terministic action. The critic network for each agent takes
the observations and actions for all agents as input, and it
outputs the Q value for the agent. First, we train the
MARL algorithms with three agents in this environment

as the source models, and get the convergent parameters
for each agent. Then, we consider the number of new
agents M =1,2,3 separately. The parameters of new
agents are initialized randomly. As shown in Fig. 2(b),
the new agent (or student agent) should learn to cooperate
with the current three agents (or teacher agents) to get
more rewards, and the current three agents should also
cooperate with the new agent. Since there are more
agents in the target environment, the optimal policies of
the holistic MAS will get more rewards than that in the
source environment.

Table 1 Parameter settings

Parameter Simulation A Simulation B
Discount factor y 0.99 0.99
Transfer factor 1.0 20.0

Learning rate critic,a, 0.001 0.001
Learning rate critic,a, 0.001 0.001
Soft update factor z 0.001 0.001
Batch size Nyyen 64 64
Replay buffer size M 100000 100000
Initialize exploration variance o 0.2 0.5
Hidden layer units [100, 50, 25] [64, 64]
Episode number N, 15000 24000

For each compared method, we test the learning model
at every 50 episodes, and get the performance by averaging
the accumulated rewards over 10 trails (each trail con-
tains 50 steps) at that training stage. Overall, we get the
mean episode rewards over 15 experiments. As shown in
Fig. 3, the curves during the learning process are sepa-
rated into two phases. In phase 1, the environment con-
tains three agents. The training processes are stopped and
the models are stored after 15000 episodes. In phase 2,
we increase the number of agents and train the target
models continuously to evaluate the performance. Fig. 3
is about the average rewards of the holistic team, while
Fig. 4 shows the performance of the new agent(s). From
both Fig. 3 and Fig. 4, it can be found that the proposed
MADDPG-INA algorithm can achieve significant im-
provements of the learning speed and the final perfor-
mance compared with the MADDPG, which trains the
new agent(s) without any transfer. For DyMA-CL, the
new agent(s) can perform better than MADDPG while
the holistic team fails to learn a global optimal joint
policy. DyMA-CL cannot learn a good policy in phase 1
for source models, which limits its performance in the fu-
ture phases. Fig. 5 shows the testing performance for the
models that perform best over the 15 experiments. Over-
all, we can find that the MADDPG-INA has got the best
and stable testing performance compared with the
baselines. The improvements for the performance of new
agents in each scenario are significant.

456

o

s 200

2

= 150

3

% 100 fan

5 50 RS S

v

% 0 Eﬁé‘-‘i’?hase 1 Phase 2

= 0 05 10 15 20 25 30
Episodes x10*

---: MADDPG: (three agents); ---: DyMA-CL: (three agents);
—: MADDPG: (one new agent); —: DyMA-CL: (one new agent);
—: MADDPG-INA: (one new agent).

(a) One new agent

E 250

z |

o 200

3 150

2 100 .

& »ﬁ\;f"‘”'w

S 0 b="2"“Phase | | Phase 2

= 0 0.5 1.0 1.5 2.0 2.5 3.0
Episodes x10*

---: MADDPG: (three agents); --: DyMA-CL: (three agents);
—: MADDPG: (two new agents); —: DyMA-CL: (two new agents);
—: MADDPG-INA: (two new agents).

(b) Two new agents

e
= 300 ‘
g 250
3 200
2 150
‘2. 100 Al s
AT
= 50 » %cé"’ =
8 (l==—"Phase | | Phase 2
= 0 0.5 1.0 1.5 2.0 2.5 3.0
Episodes x10*

(c) Three new agents
--: MADDPG: (three agents); ---: DyMA-CL: (three agents);

Journal of Systems Engineering and Electronics Vol. 33, No. 2, April 2022

Fig.

—: MADDPG: (three new agents); —: DyMA-CL: (three new agents);

—: MADDPG-INA: (three new agents).

Fig.3 Compared learning performance of the whole team for simu-

lation A
° 50
= 40 A
—
3 30 .'N/V
2
'QE)_ 20
g 104 Vo
= 0
1.50 175 2,00 225 250 275 3.00
Episodes x10*
—: MADDPG: (one new agent);
—: DyMA-CL: (one new agent);
—: MADDPG-INA: (one new agent).
(a) One new agent
~ 100
§ 80 ATV
z AW \
3 A
g 60 /VJ\/\ WAM\’
2 40 J M il
& P
g 20" A"
Q
= 0
1.50 175 2,00 225 250 275 3.00
Episodes x10*

—: MADDPG: (two new agents);

—: DyMA-CL: (two new agents);

—: MADDPG-INA: (two new agents).
(b) Two new agents

Fig. 5

'g 140 |
120 N M e P A W
3 w v V‘ﬁ'
= 100 A v_/w\f [;!lh \ Y
° (VA R
'8 80 IA[‘N’ AP)
2 60 il
° 4 A
= 40 AJ
523 20
0
1.50 1.75 200 225 250 275 3.00
Episodes x10*

—: MADDPG: (three new agents);
—: DyMA-CL: (three new agents);
—: MADDPG-INA: (three new agents).

(c) Three new agents
4 Learning performance of new agent(s) for simulation A
70

(=)
(=]

W
(=]

Average return
N
(=)

o
(=]

[
(=]

Average New agent 1

(a) One new agent

~
(=]

(=)
(=]

wn
(=]

Average return
N
o

(%%
(=]

33
(=]

Average

New agent 1
(b) Two new agents

New agent 2

-
(=

(=)
(=]

W
(=]

~
S

Average return

(%%
S

Average New agent 1 New agent 2 New agent 3

20

(c) Three new agents
m=: MADDPG; mm: DyMA-CL; ==: MADDPG-INA.

Average return of the models that get the best performance

in simulation A

From the above results in simulation A, when the new

agents interact with the environment and search the op-
timal solutions by RL, they also ask the experienced pre-
vious agents for advices and get the supervising informa-
tion to take the shortcut. Because the cooperative tasks

LIU Wenzhang et al.: Knowledge transfer in multi-agent reinforcement learning with incremental number of agents 457

are similar for both source and target environments, new
agents can get the useful supervising information from
previous agents and avoid the negative transfer. As a result,
MADDPG-INA can reduce the interactive samples and
speed up the learning process of new agents.

5.2 Cooperative box-pushing

The cooperative box-pushing environment consists of
multiple agents, a heavy box and a marked target. For ex-
ample, as shown in Fig. 6(a), two agents (A, and A,) aim
to push a heavy box (B) to the target (7') cooperatively as
soon as possible. Each agent can observe its position, ve-
locity, and the relative positions of the other agents, the
box, and the target. They take two-dimensional (north
and east) continuous actions to behave in the environ-
ment. The positions of agents, box, and the target are ini-
tialized randomly. A, and A, will get a shared reward
r, = —dist(T,B), where dist(7,B) represents the Euc-
lidean distance from target to the box. In addition, each
agent will be penalized with —0.1 if it fails to catch the
box, and it will also be penalized with —0.1 if it collides
with other agents or the wall. Specifically, the box can be
pushed to move if and only if all agents in the environ-
ment apply forces to it together, which makes the prob-
lem more difficult [10,24]. Then, we increase the weight
of the box, such that it can be pushed if and only if four
agents push it together. Hence, there needs two addition-
al agents to finish the target task, as shown in Fig. 6(b).

Target gc“' agent 1 Target
« (D (Apen 1) « O
B Box
Box Agent | (B)
B A
Agent 1 ® () » New agent 2
(4) Agent?2 Agent 2 (A ey 2)
(42) @

(a) Two-agent scenario (b) Four-agent scenario with two

incremental agents

Fig. 6 Simulation B: box-pushing

In this simulation, we separate the learning process in-
to four phases. In the first phase, two agents push the box
cooperatively. We train the two-agent MARL models as
the source solutions for the next phase. Then, there are
two new agents being added at each phase. The parame-
ter settings for this simulation are listed in Table 1. Two-
layer MLPs are used as the actor and critic networks for
each agent. The activation function, input and output of
each agent are the same as those in simulation A. Diffe-
rent from simulation A, the dimension of the observation
for each agent is determined by the number of agents.
Hence, if there are new agents in the target environment,

we should first modify the input structure for each teacher
agent to adapt the target MDP.

The performance of the compared algorithms is tested
by averaging the accumulated rewards over 10 trails
(each trail contains 80 steps) at every 20 episodes. Fig. 7
shows the simulation results of the mean episode rewards
over 15 experiments. The learning process is separated
into four phases. According to the environment setting,
the box can be pushed to move if and only if all agents
apply forces to it together, so the beginning performance
in the next phases is as worse as that in Phase 1. In this
setting, agents can push the box with bigger forces when
there are more agents. However, the more agents in the
environment, the more difficult for them to find the box
concurrently.

In Phase 1, we train the MADDPG and DyMA-CL se-
parately with two agents as the source model for the next
phase. For MADDPG-INA, it uses the MADDPG in
Phase 1 as the source model in Phase 2. After 6000 epi-
sodes, we start the learning process in the next phase with
two new agents. Fig. 7 shows the learning performance of
the compared algorithms across four phases. In this prob-
lem, the agents cannot get any positive reward until they
catch and push the box cooperatively. Hence, the DyMA-
CL with independent Q-value functions fails to learn a
cooperative optimal policy. From the result of the second
phase in Fig. 7, we find that the MADDPG-INA al-
gorithm can not only converge to the optimal solution
faster but also get better performance than the other al-
gorithms. With the limitation of the space size in the en-
vironment, when there are six agents in Phase 3 and eight
agents in Phase 4, the collision penalty will happen more
frequently. Therefore, we can see the decreases of the fi-
nal performance in the third and fourth phases. However,
it is still obvious that MADDPG-INA can perform better
than the other algorithms with a faster learning speed. Es-
pecially in Phase 4, the MADDPG is hardly to converge
while the MADDPG-INA can still learn with an increa-
sing performance. Fig. 8 is the average return of the mo-
dels that perform best among the 15 experiments. It is
also found that the MADDPG-INA can outperform the
other methods with significant improvements in the last
three phases.

In conclusion, if the number of agents is increasing in
the cooperative box-pushing environment, it will be more
difficult to find the joint optimal solutions. Firstly, the in-
put of the Q values should be extended to include the ob-
servations and actions of the new agents. Secondly, the
search space for all agents will also be enlarged. For ex-
ample, the new agents should first learn to navigate to the
box, then they push the box with the previous agents co-
operatively. Without the help of previous agents, the new

458

agents have to learn cooperative behaviors from scratch,
so it will be hard to finish the task by the whole agents
cooperatively. That is why the other algorithms fail to
perform well in the target environments with incremental
number of agents. However, by taking advantage of the

—40

Journal of Systems Engineering and Electronics Vol. 33, No. 2, April 2022

experience knowledge that was learnt previously, the new
agents can avoid many unnecessary trails to find the op-
timal solutions with the supervising information from
previous agents. That is also the reason why MADDPG-
INA can outperform other methods.

AN MY
\//v\)“,‘(/ WAL

T
Aa
—100} »!
—130 &/("'"L’/'VW/ Viaas I‘\’Vﬂl\l"\/
Phase 1

Phase 2

Phase 3

Mean episode reward

—-160
0 0.6

---: MADDPG: previous;

1.2 1.8 2.4

Episodes
---: DyMA-CL: previous; —: MADDPG; —: DyMA-CL; —: MADDPG-INA.

Fig.7 Compared learning performance for Simulation B

—100

Average return

—120

—140 :
Phase 4

: MADDPG-INA.

Phase 3
: DyMA-CL;

Phase 2
: MADDPG;

Fig. 8 Average return of the models that get the best performance
in Simulation B

6. Conclusions

In this paper, we propose a new algorithm called MAD-
DPG-INA to solve the cooperative MAS problem with
incremental number of agents. The core idea of the paper
is to transfer the knowledge from teacher agents to stu-
dent agents to accelerate the learning process. For each
student agent, we extend the traditional experience re-
play buffer as ERBKT to collect the advised values and
actions from teacher agents, and get the supervising in-
formation. Then the student agents in the proposed al-
gorithm learn not only from the target environment, but
also from the teacher agents to transfer the knowledge
that is useful for target tasks. With the advantage of the
experience knowledge from teacher agents, the new
agents in the MADDPG-INA algorithm can avoid many
unnecessary trails, and find the optimal solutions without
the need for large amounts of data. The simulation envi-
ronments of waterworld and box-pushing are applied to
implement the cooperative MAS with incremental num-
ber of agents, and the simulation results have verified the
superiority of the proposed algorithm.

References

[1] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-
level control through deep reinforcement learning. Nature,
2015, 518(7540): 529-533.

[2] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous
control with deep reinforcement learning. https://arxiv.org/
abs/1509.02971.

[3] DONG L, YUAN X, SUN C Y. Event-triggered receding ho-
rizon control via actor-critic design. Science China Informa-
tion Sciences, 2020, 63(5): 150210.

[4] FUJIMOTO S, MEGER D, PRECUP D. A deep reinforce-
ment learning approach to marginalized importance sampling
with the successor representation. Proc. of the 38th Interna-
tional Conference on Machine Learning, 2021: 3518-3529.

[5] LIY,QIXH,LIXD,etal. Deep reinforcement learning and
its application in autonomous fitting optimization for attack
areas of UCAVs. Journal of Systems Engineering and Elec-
tronics, 2020, 31(4): 734-742.

[6] GAO X, FANG Y W, WU Y L. Fuzzy Q learning algorithm
for dual-aircraft path planning to cooperatively detect targets
by passive radars. Journal of Systems Engineering and Electro-
nics, 2013, 24(5): 800-810.

[71 FANG M, GROEN F C. Collaborative multi-agent reinforce-
ment learning based on experience propagation. Journal of
Systems Engineering and Electronics, 2013, 24(4): 683—689.

[8] TAMPUU A, MATIISEN T, KODELJA D, et al. Multiagent
cooperation and competition with deep reinforcement lear-
ning. PloS One, 2017, 12(4): e0172395.

[97 NGUYEN T T, NGUYEN N D, NAHAVANDI S. Deep re-

inforcement learning for multiagent systems: a review of

challenges, solutions, and applications. IEEE Trans. on Cy-

bernetics, 2020, 50(9): 3826-3839.

LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic

for mixed cooperative-competitive environments. Proc. of the

Annual Conference on Neural Information Processing Sys-

tems, 2017: 6379-6390.

FOERSTER J, FARQUHAR G, AFOURAS T, et al. Coun-

terfactual multi-agent policy gradients. Proc. of the AAAI

Conference on Artificial Intelligence, 2018: 2974-2982.

SUNEHAG P, LEVER G, GRUSLYS A, et al. Value-decom-

position networks for cooperative multi-agent learning based

on team reward. Proc. of the 17th International Conference

on Autonomous Agents and MultiAgent Systems, 2018:

2085-2087.

RASHID T, SAMVELYAN M, SCHRODER D W, et al.

[10]

(11]

[12]

[13]

LIU Wenzhang et al.: Knowledge transfer in multi-agent reinforcement learning with incremental number of agents

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

Qmix: monotonic value function factorisation for deep multi-
agent reinforcement learning. Proc. of the 35th International
Conference on Machine Learning, 2018: 4292-4301.

PAN S J, YANG Q. A survey on transfer learning. IEEE
Trans. on Knowledge and Data Engineering, 2010, 22(10):
1345-1359.

LONG M S, ZHU H, WANG] M, et al. Deep transfer learn-
ing with joint adaptation networks. Proc. of the 34th Interna-
tional Conference on Machine Learning, 2017: 2208-2217.
ZHUANGF Z,QI Z Y, DUANK Y, et al. A comprehensive
survey on transfer learning. Proceedings of the IEEE, 2021,
109(1): 43-76.

TAYLOR M E, STONE P. Transfer learning for reinforce-
ment learning domains: a survey. Journal of Machine Learn-
ing Research, 2009, 10(7): 1633-1685.

LAZARIC A. Transfer in reinforcement learning: a frame-
work and a survey. Proc. of the Reinforcement Learning,
2012: 143-173.

ZHU Z D, LIN K X, ZHOU J Y. Transfer learning in deep
reinforcement learning: a survey. https://arxiv.org/abs/2009.
07888.

TAYLOR M E, STONE P. Behavior transfer for value-func-
tion-based reinforcement learning. Proc. of the 4th Interna-
tional Joint Conference on Autonomous Agents and Multia-
gent Systems, 2005: 53-59.

BOUTSIOUKIS G, PARTALAS I, VLAHAVAS 1. Transfer
learning in multi-agent reinforcement learning domains. Proc.
of the European Workshop on Reinforcement Learning,
2011: 249-260.

SILVA F L D, COSTA A H R. A survey on transfer learning
for multiagent reinforcement learning systems. Journal of Ar-
tificial Intelligence Research, 2019, 64: 645-703.

SILVA F L D, WARNELL G, COSTA A HR, et al. Agents
teaching agents: a survey on inter-agent transfer learning.
Proc. of the 19th International Conference on Autonomous
Agents and Multiagent Systems, 2020: 2165-2167.
WADHWANIA S, KIM D K, OMIDSHAFIEI S, et al
Policy distillation and value matching in multiagent rein-
forcement learning. Proc. of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2019: 8193-8200.
YANG T P, WANG W X, TANG H Y, et al. Transfer among
agents: an efficient multiagent transfer learning framework.
https://arxiv.org/abs/2002.08030.

RUSU A A, COLMENAREJO S G, GULCEHRE C, et al.
Policy distillation. http://arxiv.org/abs/1511.06295.
PARISOTTO E, BA J L, SALAKHUTDINOV R. Actor-
mimic: deep multitask and transfer reinforcement learning.
http://arxiv.org/abs/1511.06342.

OMIDSHAFIEI S, PAZIS J, AMATO C, et al. Deep decent-
ralized multi-task multi-agent reinforcement learning under
partial observability. Proc. of the 34th International Confer-
ence on Machine Learning, 2017: 2681-2690.

LI Z, BARENJI A V, JIANG J Z, et al. A mechanism for
scheduling multi robot intelligent warehouse system face
with dynamic demand. Journal of Intelligent Manufacturing,
2020, 31(2): 469-480.

WANG W X, YANG T P, LIU Y, et al. From few to more:
large-scale dynamic multiagent curriculum learning. Proc. of
the AAAI Conference on Artificial Intelligence, 2020:
7293-7300.

CHEN D, LI Z J, WANG Y Q, et al. Deep multi-agent rein-
forcement learning for highway on-ramp merging in mixed
traffic. https://arxiv.org/abs/2105.05701.

CZARNECKI W M, PASCANU R, OSINDERO S, et al.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

459

Distilling policy distillation. Proc. of the 22th International
Conference on Artificial Intelligence and Statistics, 2019:
1331-1340.

CHEN G. A new framework for multi-agent reinforcement
learning—centralized training and exploration with decentra-
lized execution via policy distillation. Proc. of the 19th Inter-
national Conference on Autonomous Agents and Multiagent
Systems, 2020: 1801-1803.

TAYLOR A, DUSPARIC I, GUERIAU M, et al. Parallel
transfer learning in multi-agent systems: what, when and how
to transfer. Proc. of the International Joint Conference on
Neural Networks, 2019. DOI: 10.1109/[JCNN.2019.8851784.
AGARWAL A, KUMAR S, SYCARA K P, et al. Learning
transferable cooperative behavior in multi-agent teams. Proc.
of the 19th International Conference on Autonomous Agents
and Multiagent Systems, 2020: 1741-1743.

SUTTON R S, BARTO A G. Reinforcement learning: an in-
troduction. Cambridge: The MIT Press, 2018.

BELLMAN R, KALABA RE. Dynamic programming and
modern control theory. New York: Academic Press, 1965.
ZHAO P L, HOI S C. OTL: a framework of online transfer
learning. Proc. of the 27th International Conference on Ma-
chine Learning, 2010: 1231-1238.

LIY Y, ZHOU W, WANG H M, et al. Improving fast adap-
tation for newcomers in multi-robot reinforcement learning
system. Proc. of the IEEE Smart World, Ubiquitous Intelli-
gence & Computing, Advanced & Trusted Computing, Scal-
able Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation,
2019: 753-760.

GUPTA J K, EGOROV M, KOCHENDERFER M. Coopera-
tive multi-agent control using deep reinforcement learning.
Proc. of the International Conference on Autonomous Agents
and Multiagent Systems, 2017: 66—83.

NAIR V, HINTON G E. Rectified linear units improve re-
stricted boltzmann machines. Proc. of the 27th International
Conference on Machine Learning, 2010: 807-814.

Biographies

i

LIU Wenzhang was born in 1993. He is a Ph.D.
student in the School of Automation, Southeast
University, Nanjing, China. He received his B.S.
degree in engineering from Jilin University,
Changchun, China, in 2016. He is currently work-
ing toward his Ph.D. degree in control science and
engineering at Southeast University. His research
interests include machine learning, deep rein-

b

forcement learning, optimal control, and multi-agent cooperative control.
E-mail: wzliu@seu.edu.cn.

DONG Lu was born in 1990. She received her
B.S. degree in physics and Ph.D. degree in elec-
trical engineering from Southeast University,
Nanjing, China, in 2012 and 2017, respectively.
She is currently an associate professor with the
School of Cyber Science and Engineering, South-
east University. Her current research interests in-
clude adaptive dynamic programming, event-

triggered control, nonlinear system control and optimization.
E-mail: ldong90@seu.edu.cn

460 Journal of Systems Engineering and Electronics Vol. 33, No. 2, April 2022

LIU Jian was born in 1992. He received his B.S.
and Ph.D. degrees from the School of Automa-
tion and Electrical Engineering, University of Sci-
ence and Technology Beijing, Beijing, China, in
- 2015 and 2020, respectively. From September
v 2017 to September 2018, he was a joint training
% ﬁ student with the Department of Mathematics,
Dartmouth College, Hanover, NH, USA. From
2020 to 2021, he was a postdoctoral fellow with the School of Automa-
tion, Southeast University, Nanjing, China, where he is currently an as-
sociate professor. His current research interests include multi-agent sys-

tems, nonlinear control, event-triggered control, and fixed-time control.
E-mail: bkliujian@163.com

P
R

SUN Changyin was born in 1975. He received
his B.S. degree in applied mathematics from the
College of Mathematics, Sichuan University,
Chengdu, China, in 1996, and M.S. and Ph.D. de-
grees in electrical engineering from Southeast
University, Nanjing, China, in 2001 and 2004, re-
spectively. He is currently a professor with the
School of Automation, Southeast University,
Nanjing, China. His current research interests include intelligent con-
trol, flight control, and optimal theory. He is an associate editor of the
IEEE Transactions on Neural Networks and Learning Systems, Neural
Processing Letters, and the IEEE/CAA Journal of Automatica Sinica.
E-mail: cysun@seu.edu.cn

