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Abstract: In this paper, a velocity filtering based track-before-
detect algorithm in mixed coordinates is presented to address
the problem of integration loss caused by inaccurate motion
model in polar coordinate sensors. Since the motion of a con-
stant velocity (CV) target is better modeled in Cartesian coordi-
nates, the search of measurements for integration in polar
sensor coordinates is carried out according to the CV model in
Cartesian coordinates instead of an approximate model in polar
sensor coordinates. The position of each cell is converted into
Cartesian coordinates and predicted according to an assumed
velocity. Then, the predicted Cartesian position is converted
back to polar sensor coordinates for multiframe accumulation.
The use of the correct model improves integration effectiveness
and consequently improves algorithm performance. To handle
the weak target with unknown velocity, a velocity filter bank in
mixed coordinates is presented. The influence of velocity mis-
match on the performance of filter bank is analyzed, and an effi-
cient strategy for filter bank design is proposed. Numerical re-
sults are presented to demonstrate the effectiveness of the pro-
posed algorithm.
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1. Introduction

Conventional tracking approaches [1] use thresholded
measurements as input. However, the algorithm perform-
ance may be degraded when the signal to noise ratio
(SNR) is low, since thresholding may discard targets with
weak echo intensities. On the contrary, track-before-de-
tect (TBD) methods jointly process consecutive frames of
raw sensor data [2—6] or data preprocessed with low de-
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tection threshold [7-9] to achieve performance improve-
ment in weak target detection and tracking.

The existing TBD algorithms are categorized into two
groups. One is the single frame recursive TBD, such as
particle filter based TBD [10—12] and multi-Bernoulli
based TBD [13,14]. The other is the multiframe TBD
(MF-TBD) or batch processing based method. Dynamic
programming based TBD (DP-TBD) [8,15—17] and velo-
city filter based TBD (VF-TBD) [18—22] are two typical
MF-TBD methods.

MF-TBD methods can improve the detection perform-
ance of weak targets through energy integration over
multiple frames. MF-TBD has been used to detect and
track weak moving targets in infrared and optical images
[20—24], and is applied to radar systems [15,25—27] and
sonar sensors [5,28,29] recently. DP-TBD conducts ener-
gy integration by searching for the local maximum value
within the feasible region. DP-TBD has an advantage of
handling weak maneuvering or motion uncertain targets
[30,31]. The integrated envelope of the target is extended
to a number of cells, leading to degraded detection per-
formance and estimation accuracy [16,25]. Compared
with DP-TBD, VF-TBD integrates target energy by
matching the target velocities in raw observation images.
The target integrated envelope can be well focused, lead-
ing to more effective target detection and parameter es-
timation.

Most of the existing MF-TBD algorithms [20—23,32]
perform measurement collection for multiframe integra-
tion based on a linear motion model in measurement
plane. When the algorithms are utilized in polar coordi-
nate sensors such as radar and sonar, the model mis-
match problem occurs, since the measurements are pro-
vided in polar or spherical coordinates, where the com-
mon motion with constant Cartesian velocity appears as a
nonlinear trajectory in polar sensor coordinates. In
[9,33,34], MF-TBD is used to process raw sensor data in
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range-azimuth plane. It is assumed that the target range
and azimuth vary linearly with time. However, this as-
sumption is violated especially when the target is near the
sensor, leading to poor integration performance. In [25],
the constant acceleration model in range coordinate is
used for multiframe integration in range-Doppler meas-
urement plane. Although a large searching region can be
employed to alleviate the impact of model mismatch in
some DP-TBD methods [8,31], a great number of noise
measurements involved in the region also lead to de-
graded performance. To eliminate model mismatch in the
range-Doppler domain, the accurate evolution equation of
target range-Doppler is derived and energy integration is
performed by matching the speed square in [26].
However, this method is limited to TBD for Doppler
radars and cannot integrate target echo energy effectively
in range-azimuth plane. In many radar or sonar sensor
systems, only range and azimuth measurements are
provided, it is of significance to investigate effective MF-
TBD in range-azimuth plane.

In this paper, a VF-TBD algorithm in mixed coordi-
nates (MC-VF-TBD) is presented for polar coordinate
sensors to effectively deal with the raw range-azimuth
measurements. In [35], the system transfer function for
the mixed coordinate approach is derived, but comprehen-
sive analysis and design of VF-TBD in mixed coordin-
ates are lacking. Compared with [35], in this work, the
procedure for multiframe accumulation is provided, the
detection strategy is analyzed, and the investigation and
design of the velocity filter bank are presented in detail.
In the proposed MC-VF-TBD method, the position of
each cell is converted into Cartesian coordinates and pre-
dicted according to an assumed velocity. The predicted
Cartesian position is then converted back to polar sensor
coordinates, and the measurement value of the cell is ad-
ded onto the cell closest to the predicted position for mul-
tiframe integration in polar sensor coordinates. This
avoids the model inaccuracy caused by motion approxima-
tion in sensor coordinates and leads to more effective
multiframe integration. The procedure for multiframe in-
tegration and the target output envelope are described in
detail. To handle the target with unknown velocity, a ve-
locity filter bank in mixed coordinates is presented. The
u-width of target envelope in the velocity domain, repre-
senting the envelope width when the intensity equals
u times the peak one, is investigated. Since the use of too
few filters may decrease system performance while too
many filters may increase the complexity, the u-width is
used to efficiently design the filter bank. This is a tradeoff
between system performance and complexity.

The rest of the article is arranged as follows. The mea-
surement model in polar sensor coordinates is presented

and the problem of TBD in range-azimuth plane is dis-
cussed in Section 2. The integration procedure and detec-
tion strategy of the proposed method are provided in Sec-
tion 3. In Section 4, the velocity filter bank in mixed co-
ordinates is presented in detail. Simulation results are
provided in Section 5, followed by conclusions in Sec-
tion 6.

2. Problem formulation

The observation region is divided into N, X N, cells with
resolution of A, xA,, where N, and N, denote the num-
ber of cells in range and azimuth, respectively. In the kth
frame, the measurement set z; consists of N, x N, cells
and the echo value of each cell is given by z(n,,n),
n,=1,2,---,N,, ng=1,2,--- ,N,. The kth measurement
set z; is given by

Tk = {Zk(np;nﬁ) : np = 172"" 7Np,n8 = 172"” ’NH}' (1)

The set of all measurements in K frames Z,.x in the
processing batch is given by

Zi.x ={z1,20,"** , 2k} (2)

When no target exists, the measurement recorded in

cell (n,,n,) in frame k is expressed as
Zk ("m”e) = Wi (np,”s»)- 3)

The proposed multiframe integration procedure can
deal with weak targets in arbitrary background. For the
convenience of subsequent analysis, the background
noise is assumed to be additive independently and
identically distributed Gaussian noise. Although the
Gaussian case is considered, it will not affect the conclu-
sion of the paper.

When the target exists, the measurement is the sum of
the intensities of background noise and target echo, i.e.,
the z;(n,,n,) can be expressed as

Zk (np’né?) =S (nmnéh pp,k’ p(?,k) + Wy (n/HnQ) (4)

where s(n,,n, p,1. Poy) 18 the target echo envelope in
frame k. The Gaussian point spread function is utilized to
describe the target energy diffusion, whose parameters
depend on sensor characteristics and target size [2,31].
One gets

S(np’n(h pp,/apé?,k) =

2 2
vl 2] )
A, Ay )
In the above, A is the peak value of the target echo,
(PpxsPox) 1s the target position in polar sensor coordi-
nates, while 7, and 7, represent the extent of the echo

spread in range and azimuth, respectively.
It is of significance to exploit an effective strategy to
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detect weak targets with raw range-azimuth measure-
ments. The key to improve the weak target detectability
lies in effective integration of target echo values from
multiple consecutive frames. The motion model mis-
match in sensor coordinates may cause inaccurate integ-
ration, especially in the case with high speed targets in
low range bins. In [26], the exact target range-Doppler
evolution is derived and a speed square matched filter is
proposed for TBD in range-Doppler plane. However, this
method cannot accurately describe the target motion in
range-azimuth plane and is unable to effectively integ-
rate target echo. An accurate motion model in range-azi-
muth plane will facilitate the interframe integration to a
great extent. The multiframe integration strategy is
equally important. The method of searching for the local
maximum value for multiframe integration [7—9,31] may
cause inaccurate integration since the noise value may be
larger than target echo intensity under low SNR condi-
tions. In short, motion model mismatch in range-azimuth
plane and inaccurate multiframe integration discussed
above should be avoided by properly dealing with raw
range-azimuth data. In [35], the system transfer function
for VF-TBD in mixed coordinates is derived for effective
multiframe integration in range-azimuth plane. However,
the detailed multiframe integration procedure, detection
strategy, filter bank analysis and design are absent in
[35]. Thus, this paper is devoted to detailedly investigat-
ing VF-TBD in mixed coordinates to obtain effective
weak target detection in range-azimuth plane.

3. MC-VF-TBD

To address the above challenges, MC-VF-TBD is presen-
ted to obtain effective weak target detection in polar
sensor coordinates by matching the constant target
Cartesian velocity.

3.1 Integration procedure for MC-VF-TBD

This section provides a detailed description of integra-
tion procedure for MC-VF-TBD.

The state of a target moving with constant velocity in
Cartesian coordinates is given by

{ px,k = px,() +vka

Dyi = Dyo + kT

(6)

where T denotes the interframe time interval, and
(Paxs Dyi) denotes the target position in the kth frame and
(vy,v,) represents the constant velocity. Equation (6) ig-
nores the process noise, which is always taken into ac-
count in traditional tracking algorithms [1]. It is a com-
mon assumption in matched filtering methods [20,21],
and is feasible within short duration. In the case of large

motion uncertainty, the algorithm performance may be

reduced on account of the neglect of process noise in (6).
By converting the target state in (6) to sensor coordi-

nates, the polar position of target in frame £ is obtained as

Pok = [Prit Doy

) . )

p .k

Pxi

Pox = arctan(

A CV target in the x-y plane may not move according
to a CV model in polar sensor coordinates due to the non-
linearity between the sensor coordinates and Cartesian
coordinates. In MC-VF-TBD, the predicted position of
the target in sensor coordinates is obtained accurately ac-
cording to an assumed velocity using mixed coordinates.
This approach avoids the model mismatch, which may
result from the motion approximation discussed above.
Accordingly, the performance of multiframe integration
is improved.

The target energy is assumed to be scattered over
quantized cell (n,,n.,) in frame k. By mapping it into
Cartesian coordinates, one gets

Rex = Ny COS (g Ag)
{ . : ®)
ey = N, SIN(7pAg)

Since no target position information is available in
practice, each quantized cell in the observed image will
be processed, i.e., n, =1,2,--- ,N,, n=1,2,---,N,.

The predicted Cartesian position in the last frame K is
obtained with assumed velocity (v,v) as

Ny = N, + V(K =k)T
Ny = Ny + V(K — k)T

©)

By converting (n,,,n,,) back to sensor coordinates, the
predicted polar position is obtained as

— 2 2
Ny, = N5, +n,

3 My
Ny = arctan| — /A,

px

(10)

where n,, and n,, denote the predicted positions in range
and azimuth, respectively. Note that n,, and n,, may not
be integers with 1 <n,, <N, and 1 <n, < Ny.

Then, the value in cell (n,,n.) in the kth frame is ad-
ded onto that of the cell closest to the predicted position
(M,0,1) in the last frame K for multiframe integration.
The detailed steps of multiframe accumulation in the pro-
posed method is illustrated in Table 1, where round(-)
represents the rounding operator. Since the predicted va-
lues of n,, and n,, may not be integers, the rounding ope-
ration enables integration of the energy onto the cell in
the last frame. A velocity filter bank can be used to cover
the unknown target velocity. The use of filter bank can faci-
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litate the multiple targets to be handled in different filters
of the bank with different assumed velocities. The multi-
frame integration in single target scenarios is the same as
that in multi-target scenarios. Different from the conven-
tional recursive tracking methods [1], the proposed me-
thod can directly perform multiframe integration after set-
ting the filter bank parameters without initialization as in
traditional tracking methods.

Algorithm 1 Multiframe integration in MC-VF-TBD

Input Z, x = {z1,2," " , 2}
Initialize integrated value:

U(n,ng) =0, n,=1,2,--- ,Nysng = 1,2,--- Ny

Set an assumed velocity: (v’;, vf.)
Fork=1,2,--- ,K do
For n,=1,2,---,N, do
For n,=1,2,---,N, do
Convert to Cartesian coordinates:
Hey = N, COS (MegAg)
ey = Ny SIN (1A )
Predict in Cartesian coordinates:
Npy = Nex + (K —k)V!
My =Ny + (K — k)vf
Convert back to polar coordinates:

— , 2 2
Ny, = npx + I’lm,

e = arctan i) /Ay
Apply rounding operatior?:ﬁx
n, = round(n,,)
ng = round (n,)
Integrate energy:
U (n,,ny) = U(n,,ng) +2¢ (Neps Neg)
End
End

End
Output U (n,,n5)(n, = 1,2,--- ,N,;ns = 1,2,--- ,Ny)

The procedure for multiframe accumulation in the pro-
posed method is summarized as accurate position predic-
tion in Cartesian coordinates and energy integration in
range-azimuth plane. The proposed method is actually a
type of three-dimensional matched filter. In contrast to
conventional matched filtering based TBD [20,21,24]
which is limited to weak target detection in x-y plane, the
proposed MC-VF-TBD method can obtain accurate pre-
dicted position of the target in range-azimuth plane by
matching the constant Cartesian velocity in mixed co-
ordinates. Consequently, the motion model inaccuracy is
avoided and the target echo can be integrated adequately
in the sensor observed plane. In addition, compared with

the matched filtering based TBD in [26] which is pro-
posed for weak target detection in range-Doppler plane,
the proposed MC-VF-TBD is capable of effectively deal-
ing with range-azimuth data, and can determine the
movement direction of target by respectively matching
the Cartesian velocities v, and v, in x and y directions,
while the method in [26] cannot due to its matching pro-
cessing of only absolute value of the target speed.

3.2 Detection strategy of MC-VF-TBD
The detection strategy in the proposed method is given by

max U (n,,n,) = max
vieR, vieR, vieR, VieR,,

K
H,
Z ik (nCp,k7 nce,k)vh,vh 2Vr
Y
k=1
(1)

it denotes the range-azimuth cell in
frame k which can be predicted to cell (n,,n,) in the last
frame K according to the above mixed coordinate ap-

where (1,4, Reox)

proach with assumed Cartesian velocity (vﬁ,va’), R,. and
‘R, are the set of assumed velocities, H, and H, repre-
sent the absence and presence of target, respectively, and
Vr is the detection threshold. The threshold can be selec-
ted according to the derivation in [22] or estimated
through Monte Carlo simulations as described in [6].

The background noise is assumed to be Gaussian dis-
tributed with zero mean and covariance o2, and the mean
value of the target echo peak is expressed as A in (5) at
the target position. The probability density of
Zk(nfp,k,nw,k)mk in (11) (for convenience, z; is used to
represent Zk(ncp’k,ncg,k)v,\z’vk later in this subsection) in the
absence or presence of the target is respectively given by

exp(—%) (12)

1
Azl Hy) = 5
V2no,,

and

A(zlHy) =

1 o
exp|— (13)

V2no, ( 207,
where A(z|Hy) and A(z|H,) denote the likelihood func-
tion in the absence and presence of the target, respect-
ively.

Then, the logarithm of likelihood ratio is expressed as
A(zH)) =z i_ A’
AzlHy) ~ o2 202

A(z) =1n (14)
By substituting (14) into (11), the detection strategy is
rewritten as
K

o, A% \m
= —
W:eg}%exe%‘.‘ Z A (A (z)+ 20_%1")50 Vr. (15)

k=1

Thus, the detection strategy in (11) is equivalent to
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K

i 2AV; - A’K
=z —_
v’\’e‘}{?%fxeﬁw ya A (Zk) 1?0 20’3 (16)

K
where Z A(z,) represents the logarithm of likelihood ra-

tio of p)kslssible target trajectory. The formula on the left
hand side in (16) denotes the maximum logarithm of like-
lihood ratio, which can be considered as the maximum
likelihood estimation of target trajectory. Thus, in the
case of Gaussian background noise, the detection strategy
(11) in the proposed method is equivalent to the general-
ized likelihood ratio test [36].

4. Analysis and design of velocity filter bank in
mixed coordinates

To deal with a target with an unknown velocity, a velo-
city filter bank in mixed coordinates is presented in this
section, in which each filter assumes a unique velocity to
match the actual Cartesian velocity of the target. The the-
oretical target output envelope in a filter is derived, and
the efficient filter bank design is provided.

It is assumed that the peak value A, initial position
(Ppo» Poo) and echo spread extents 7, and 7, are constant.
In order to facilitate the following derivations, the target
echo envelope in frame & in (5) is rewritten as

Pok— Ppo Poi— Poo
Sln,— g — =

A, A,

Pok—Ppo  Ppo >

o o - Ptz e).
F F Ap Ap

" — Pok—Poo  Poo ’
Mol Ng —Ag A, .

7

As derived in [35], the integrated envelope of the tar-
get in a filter with assumed velocity (v, +Av,,v,+Av,)
can be obtained through the convolution of target echo
(17) and transfer function. One gets

Uy, (nyng, k,Av,, Av)) =

fln, - Pok — Ppo " — Pox—Poo |
, A, Ay

Posx.~ Do ok, — Po:
Zé(nﬁ b 0y pyo»"*"’) (18)

A
keRy P 6

where Av, = V! —v, and Av, = V] -, are the velocity mis-
match errors in range and azimuth, respectively, ¢ repre-
sents the Dirac function, R represents {1 —K,---,—1,0},
while p?, and pj, are the predicted range and azimuth
with assumed velocity (v’fvf) according to (6) and (7).
The term of summation in (18) represents the system
transfer function, which is used to obtain the predicted
range-azimuth according to an assumed Cartesian velo-

city for multiframe accumulation in polar coordinates.
Similar to the one-dimensional matched filter, the trans-
fer function can be obtained by flipping the target signal
in (17).

The target envelope in the velocity domain consists of
the maximum output value of each filter in the last frame
K as

u, (Av,, Av,) = um(@, %, K, AVX,AVV) (19)
: A, 7 A ’
Ppx Poxk

A K,0,0) is the maximum output value
0

in the filter with matched velocity. The normalized value

u, (Av,,Av,)
£ (19), ie., @, (Av,,Av) = ————=
of (19), i.e., @, (Av,,Av)) (0.0)
represent the integration loss caused by velocity mis-

match (Av,,Av,), and the loss factor is defined as
u=1i,(Av,,Av,). Fig. 1 shows the variation of loss factor
in one dimension with Av representing the velocity mis-
match error, where the vertical axis represents the loga-
rithm of the normalized value, i.e., 20Ig u. As illustrated
in Fig. 1, the value of loss factor u decreases as the mis-
match error increases.

where u,,

, can be used to

Logarithm of normalized peak/dB
%

-1.0 0.5 0 0.5 1.0
Velocity mismatch error Av (cell/frame)

—v— : 12 integration frames; —— : 10 integration frames;
—o— : 8 integration frames; —=— : 6 integration frames;
—o— : 4 integration frames, - --:20lg x=3 dB.

Fig. 1 Curves of u vs. velocity mismatch error Ay

It is an expected result because the velocity mismatch
has an adverse influence on multiframe integration. In ad-
dition, the loss factor decreases as the number of accumu-
lated frames K increase, since the prediction error of the
target position is amplified by the increased K, leading to
degradation in multiframe integration.

The target unknown velocity can be well matched by
increasing the number of velocity filters. However, the
use of too many filters will increase the system complex-
ity. In this work, the p-width of envelope in the velocity
domain, defined as the envelope width in Fig. 1 when the
normalized value equals u (u < 1), is used to efficiently
design the filter bank. The theoretical p-width will be de-
rived later. In [3], the 3 dB width (i.e., the u-width with
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u=1/2), which can be considered as the 3 dB velocity
resolution property of the filter bank, is used as a com-
promise between the needs for high system performance
and low complexity.

Due to the highly nonlinear motion model in polar
sensor coordinates (7), it is hard to derive the exact out-
put of the filter and some approximation is needed. Since
the linear model in polar sensor coordinates has the ad-
vantage of more tractable analysis, we expand (7) as
Taylor series and retain the first order term, the target po-
sition in polar sensor coordinates can be approximated as

o (i)
b, i
Pok = Z ((%h:o]k) X Ppo+VokT

i=0

0 (i)
Pok
Pox = Z[( |l< 0] ) X Poot —kT
AL Ppo

where (p{,.pil;) represents the ith order derivatives of

(20)

(7), ! denotes the factorial, v,, and v, respectively de-
note the initial radial and tangential velocities as

V0 = V5 COS Py + V, SIN Py, (21)

Voo =Vy COS Pgo — Vi sin Poo- (22)

By substituting (20) into (18), the output envelope in a
filter with mismatch error (Av,,Av,) can be approxi-
mated as

U (l’lp, Ny, ka Avx» Avv) =

A )
Zf( S Ty — 220 kT + kT)
Pyl A Aepp 0 Aﬁpp 0
(23)
where
Vo0 Vo0
“\n,— —kT,ng— ——kT | =
J ( "A, " Aappo )
Vo,0 2
pp,O + Vp_()kT 2 Py,o + ka
A-exp —Tp np_A—p —Mo| 1o — Ae_ s
(24)
Av, = Av,cos py + Avysin py, (25)
AVg = AV}. COS Pgo — AVX sin Poo- (26)

In the above, f, is the approximate target echo enve-
lope, Av, and Av, can be considered as the mismatch er-
rors of the initial velocity in range and azimuth, respect-
ively.

By substituting (23) into (19), the envelope in the velo-
city domain is approximated as

e (Av,, Av,)) = Z fa(ppk

keRg
V,0KT Avpk T pgk _ veoKT N Avgk,T) 27
Ap Ap Ae Aepp,o Aepp,o

By expanding (27) as a Taylor series at Av, = Av, =0,
retaining only the first two terms, and substituting (25)
and (26) into (27), the envelope of the target in the velo-
city domain can be rewritten as

K(K-1QK -1)T?
Uyg (AVX, AV).) =~ Kfpa + ( )( ) .

12
Fov fa
A+ = AV | =
( AN,
qlAv‘f + quv}, +q;Av, Av, + K, (28)
where
=N, Jop o 29
F FCOS Pao+ Fpﬁ,osm Doo |» (29)
Lopa . fora
4= ( A = sin’ pyo + ﬁcosng_o , (30)
X
f” a -f‘gu a
2Npsmp(,ocosp90( e =, 31
N Apr,
K(K - DH(2K = DT?
N; = s 32
F B (32)
where f  and f; , denote the second order partial deri-

vatives of f, at the target position and f,, denotes its
peak value. As illustrated in (28), the envelope of the tar-
get in the velocity domain is a quadratic function about
the mismatch error of velocity, which is consistent with
Fig. 1.

Assume the pu-width [3] is the same in each direction,
ie., Av, = Av, = Ay,. By substituting (28) into (19), the
mismatch loss factor u can be re-expressed as

@+ @+ @)AV + K [
Kf ’

For a given mismatch loss u, the envelope u-width in

the velocity domain is given by

(;u_l)Kf;m N(l p )
q+qr+q; K0

where ~ represents positive correlation. It can be found
from (34) that the value of the -width is decreased as the
number of integration frames K increases. This is con-
sistent with what is illustrated in Fig. 1. In addition, Av,
is positively correlated to the radial distance p,,. This is
reasonable, since the size of the resolution cell is diverse
at different positions of the beam. The farther the cell is
from the beginning of the beam, the larger its size is.

We use Av, as the filter bank width to design the velo-
city filter bank, the number of velocity filters used in the
filter bank is

(33)

Av, =

n

(34)
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v — Vimi Vy = Vymi
NV _ | Lomax amin | - Yymax ymin 35
el e

where (Vimin, Vanax) a0d (Vymin, Vymax) are the possible velo-
city ranges in x and y directions, respectively, and [-] de-
notes the ceiling operator.

Due to the use of a number of filters to deal with un-
known target velocity, the computational complexity of
the proposed method O(KN,N,N,) may be a bit high,
where O denotes the order of computational complexity,
and N, is the number of filters determined by possible tar-
get velocity range and filter bank width in (34). However,
the computational complexity of the proposed method is
fixed, and not influenced by factors such as the number of
targets and clutter models, which is beneficial to system
design.

5. Simulation results

In this section, performance of the proposed MC-VF-TBD
is evaluated by Monte Carlo simulations. The sampling
interval is 10 s, the cell resolution of the sensor is (1 km,
2°), and the possible velocity is assumed to be within
(=200 m/s, 200 m/s) in each direction. Two performance
measures are used, where detection probability P, de-
notes the probability that the position of the target is de-
clared within two cells of the actual one and the threshold
is selected according to false alarm probability 1072, The
threshold can be estimated through Monte Carlo simula-
tions [6], or obtained according to the derivation in
[22,32]. Table 1 shows the threshold values for different
numbers of integration frames in the case of normalized
noise covariance o2 =1. Root mean square error
(RMSE) is given by

RMSE = %Z‘ @ —p) (36)

where p, is the actual target position and p; is the de-
clared one in the ith simulation while M =500 is the
number of simulations.

Table 1  Threshold values for different numbers of integration
frames
Number of Threshold Number of Threshold
frames K value Vr frames K value Vr
4 5.89 9 11.41
5 7.04 10 12.45
6 8.15 11 13.32
7 9.26 12 13.82
8 10.34 - -

5.1 Results in single target scenarios

A target is considered in low-range bins with initial Car-
tesian position (15 km, 10 km) and in high-range bins
with initial Cartesian position (350 km, 300 km), respec-
tively. The target Cartesian velocity is (—100 m/s, 100 m/s).

The 3 dB filter bank width used is approximately equal to
28 m/s according to (34) or Fig. 1 in Section 4 for six
frames.

For comparison, amplitude based DP-TBD (A-DP-
TBD) [9] and log-likelihood ratio based DP-TBD (LLR-
DP-TBD) [31] are considered.

The targets in low-range and high-range bins have the
similar integrated envelope, the integration result in low-
range bins is used as an example for comparison. Fig. 2—
Fig. 5 show the integration results from two conventional
DP-TBD methods, the conventional VF-TBD using the
approximate CV model in range-azimuth domain and the
proposed MC-VF-TBD with 10 dB SNR and six frames,
respectively. As shown in Fig. 2 and Fig. 3, the integ-
rated envelope of the target in DP-TBD methods is exten-
ded to many quantized cells caused by its integration
strategy based on local maximum value searching. This
may degrade the detection and tracking performance of
adjacent targets. As shown in Fig. 4, the conventional VF-
TBD cannot deal with targets in range-azimuth plane due
to the use of the inaccurate model. The target echo can-
not be integrated, while the noise value is accumulated
after multiframe processing, leading to decreased target
SNR. On the contrary, as illustrated in Fig. 5, the pro-
posed MC-VF-TBD can integrate the target echo effect-
ively in mixed coordinates without model mismat-
ch, and the well-focused target envelope facilitates increa-
sed detection and estimation performance of algorithm.
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Fig. 5 Integration result from the proposed MC-VF-TBD

Fig. 6 and Fig. 7 show the values of detection probabi-
lity and RMSE against input SNR in high-range bins, re-
spectively, while Fig. 8 and Fig. 9 show the correspond-
ing results in low-range bins, where o, denotes the stan-
dard deviation of process noise with unit of m/s’. As
shown in Fig. 6—Fig. 9, the proposed method can yield
superior detection and estimation performance over DP-
TBD methods. DP-TBD implements multiframe accumu-
lation by searching for the maximum intensity within the
possible transition region and adding it to the subsequent
frame. This allows the noise value to be increased, ad-
versely affecting target detection. Since the noise value is
likely to be larger than target echo intensity at low SNR
values, DP-TBD may occur inaccurate integration, cau-
sing performance degradation. On the contrary, the pro-
posed MC-VF-TBD integrates the target echo along the
target track by matching the target velocity. The echo
value of the target can be integrated adequately while the
noise value is accumulated slowly because of their inde-
pendence.

In addition, as illustrated in Fig. 6—Fig. 9, when the tar-
get is in low-range bins, the performance of DP-TBD de-
grades, while that of the proposed MC-VF-TBD does not.
In DP-TBD, the motion model approximation in range-
azimuth plane may cause model mismatch, which is even
more serious in low-range bins and results in significant

integration loss. In contrast, the proposed MC-VF-TBD
can eliminate model mismatch by performing accurate
target position prediction using mixed coordinates. Thus,
target echo can be integrated accurately and the al-
gorithm performance is not affected by the distance from
the target to the sensor.

It can be found in Fig. 6—Fig. 9 that the performance of
the proposed MC-VF-TBD is degraded in the presence of
process noise, while DP-TBD does not. It is expected
since the strategy of searching for data in a feasible transi-
tion region in DP-TBD allows motion uncertainty, while
in the proposed method, the velocity matching pro-
cessing cannot deal well with motion uncertainty but the
performance degradation of the proposed MC-VF-TBD is
acceptable in case of small process noise.
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By comparison, DP-TBD has an advantage of address-
ing weak targets in the presence of motion uncertainty or
maneuver, but suffers from target envelope expansion,
while the proposed MC-VF-TBD has higher energy in-
tegration efficiency when the actual target model is
matched with the assumed one, but the performance may
be degraded in the presence of model mismatch.

Fig. 10—Fig. 13 show the performance comparison of
three methods against different numbers of integration
frames. As illustrated in these figures, detection perfor-
mance of all three methods is improved since the in-
crease in the number of frames facilitates multiframe en-
ergy accumulation. However, the estimation accuracy of
DP-TBD cannot be improved by increasing integration
frames. It is expected since the integration strategy of DP-

TBD (i.e., using the maximum value in the possible transi-
tion region for integration) may cause inaccurate integra-
tion in each frame when the noise intensity is larger than
the target intensity in low SNR conditions, while VF-
TBD can eliminate the integration loss by matching the
target velocity for data searching.
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Fig. 10 Detection probabilities vs. number of frames for 6 dB in-
put SNR in high range bins
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5.2 Results in multi-target scenarios

The proposed integration method can be used to sepa-
rately deal with multiple targets in different filters with
various assumed velocities. A multi-target scenario with
five targets is considered for simulations in this subsec-
tion. Their trajectories in polar sensor coordinates are
shown in Fig. 14, where targets 4 and B move with a
same Cartesian velocity of (120 m/s, 120 m/s), while tar-
gets C, D and £ move with a same Cartesian velocity of
(0 m/s, =100 m/s). The DP-TBD for multi-target pro-
cessing (MT-DP-TBD) in [16] is used to compare with
the proposed MC-VF-TBD.

270 I I I I I
mgantd
B
= 3 3 3 3 TargetiE
O 240 b ----- deeo beooe- I Lofter il
) | | | | <
= I I I I \
& : : : : v‘::v
230 -~ Tt T Tt FTTTTT P
Target B i i i Tq‘@lrget D
220~ M- b TRRRha P TR
*— Target C| | |
210 : s ; - s
45 46 47 48 49 50 51

Azimuth/(°)

Fig. 14 Trajectories of five targets in a multi-target scenario

Fig. 15 and Fig. 16 show the energy integration of mul-
tiple targets for 10 dB input SNR and six frames from
MT-DP-TBD and the proposed MC-VF-TBD methods,
respectively, where Fig. 16(a) and Fig. 16(b) are the in-
tegration results of the proposed filters with matching ve-
locities (120 m/s, 120 m/s) and (0 m/s, =100 m/s), respec-
tively. As shown in Fig. 16(a) and Fig. 16(b), the energy
of targets can be integrated accurately in their corres-
ponding filters of MC-VF-TBD and their integrated en-
velopes are focused. In contrast, the output envelopes of
MT-DP-TBD in Fig. 15 are extended to multiple cells,

this will cause adjacent targets to interfere with each oth-
er, and lead to performance degradation.
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Fig. 16 Multiframe integration in the proposed MC-VF-TBD

Fig. 17 and Fig. 18 show the values of detection proba-
bility and RMSE of multiple targets over six frames, re-
spectively. As illustrated in Fig. 17 and Fig. 18, the detec-
tion probabilities and RMSE values of the five targets
from the proposed MC-VF-TBD are superior to those
from MT-DP-TBD. As discussed above, the accurate in-
tegration in polar sensor coordinates in the proposed
method accounts for the performance superiority.
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As illustrated in Fig. 17 and Fig. 18, the algorithm per-
formance of the MT-DP-TBD method and the proposed
MC-VF-TBD method in detecting and tracking the cross-
ing targets (i.e., targets B and C) are both degraded,
caused by the mutual interference of targets. In compari-
son, the effect of target interference can be alleviated in
the proposed MC-VF-TBD method by handling targets B
and C with various velocities assumed in different filters.
Additionally, the target interference also accounts for the
algorithm performance degradation in detecting and esti-
mating the targets moving in parallel (i.e., targets D and
E). Compared with MT-DP-TBD, this performance de-
gradation is mitigated in the proposed MC-VF-TBD due
to its well-focused output envelopes of targets.

It is worth noting that although only several velocities
are considered in simulations, the proposed method can
handle targets with arbitrary velocities by adjusting the

matching velocity range, and the stationary target can be
detected in the filter with assumed velocity 0.

6. Conclusions

In this paper, MC-VF-TBD is proposed for polar coordi-
nate sensors to detect and track weak targets, where mod-
el mismatch across polar vs. Cartesian coordinates can be
avoided due to the use of a mixed coordinate approach.
The procedure for multiframe integration is presented in
detail. In order to cope with the target with unknown ve-
locity, a velocity filter bank in mixed coordinates is
presented. The envelope u-width in the velocity domain
is derived and the effect of velocity mismatch on the fil-
ter bank’s performance is analyzed. A method used to ef-
ficiently design the filter bank is presented to reach a
compromise between algorithm accuracy and computa-
tional complexity. Simulation results demonstrate the su-
periority of the proposed algorithm.
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