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Abstract: Electric  power  is  widely  used  as  the  main  energy
source  of  ship  integrated  power  system (SIPS),  which  contains
power network and electric power network. SIPS network recon-
figuration  is  a  non-linear  large-scale  problem.  The  reconfigura-
tion  solution  influences  the  safety  and  stable  operation  of  the
power  system.  According  to  the  operational  characteristics  of
SIPS,  a  simplified model  of  power network and a mathematical
model  for  network  reconfiguration  are  established.  Based  on
these  models,  a  multi-agent  and  ant  colony  optimization
(MAACO) is proposed to solve the problem of network reconfigu-
ration.  The  simulations  are  carried  out  to  demonstrate  that  the
optimization  method can  reconstruct  the  integrated  power  sys-
tem network accurately and efficiently.
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1. Introduction
Ship  integrated  power  system  (SIPS)  utilizes  electric
power  propulsion.  In  this  system,  power  network  and
electric  power  network  are  integrated  for  the  equipment
to run normally. The system is characterised by high effi-
ciency  and  convenience.  It  can  be  seen  that  SIPS  has
gradually  become  a  development  trend  [1].  SIPS  can
meet the power demand of different types of system, in-
cluding  medium voltage  transmission,  power  conversion
devices,  zonal  distribution  systems,  and  power  electric
propulsion  systems.  With  the  continuous  expansion  of
system scale, control mode and fault protection for SIPS
are  becoming  more  and  more  complex  [2].  During  the
navigation,  to  ensure  the  normal  and  efficient  operation
of  the  power  systems,  the  ability  to  reconfigure  the  net-
work as soon as possible when the power system fails is
necessary. Many researches and strategies of network re-

configuration  are  used  in  the  terrestrial  power  system.
However, they are less useful for SIPS, due to the differ-
ence between the two kinds of  power systems.  Some al-
gorithms  were  proposed  for  the  ship  power  system  but
not  for  integrated  power  system.  SIPS  is  different  from
common ship power system in system scale, power capa-
city,  network  topology,  and  so  on  [3−9].  SIPS  network
reconfiguration  is  a  large-scale,  non-linear,  and  time-
varying problem. It  is  difficult  for existing algorithms to
get the optimal solution. Thus the SIPS network reconfigu-
ration method needs to be researched.

In  this  paper,  a  multi-agent  and  ant  colony  optimiza-
tion  (MAACO)  is  proposed.  Ant  colony  optimization
(ACO) is  a  probabilistic  algorithm used to  find the opti-
mal path. Multi-agent system (MAS) can provide a good
basis  for  building  complex  systems.  Combined  with  the
two techniques,  a  new method is  presented  for  the  SIPS
network  reconfiguration.  After  theoretical  analysis  and
simulation,  it  can  be  shown  that  MAACO  can  reconfi-
gure SIPS network very well. 

2. Simplified  network  topology  of  SIPS  and
mathematical  model  for  network  reconfi-
guration

 

2.1    SIPS simplified network topology

SIPS  generally  consists  of  four  power  stations.  Each
power station has two generators. Jumper wires are used
to  connect  the  stations.  The  generator  output  is
4 000 V direct current (DC), which is converted to 700 V
DC  by  converters,  and  then  transmitted  to  distribution
network  in  the  DC  area  [10,11].  Inverters  or  choppers
convert 700 V DC to 400 V AC or 230 V DC. There are
three kinds of loads in SIPS, propulsion loads, important
loads, and common loads. According to the loads’ impor-
tance,  they can be divided into three levels.  Level  1 and
Level 2 loads are usually equipped with normal transmis-
sion  routes  and  standby  transmission  routes.  When
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failures  occur  to  SIPS,  the  system must  change the  state
of the switches to isolate the failure loads, for Level 1 and
Level  2  loads  to  get  a  maximum  degree  power  restora-
tion and to run normally. Besides, unimportant loads can
be removed if necessary.

The  electrical  devices  in  SIPS  (including  feeders  and
jumper  wires)  are  abstracted  into  branches.  Meanwhile,
the connection points in two devices (feeders and jumper
wires)  are  abstracted  into  nodes.  Once  the  node-branch

topology model is established, branches and nodes can be
numbered by using the priority search theory [12].

Fig.  1 shows  the  simplified  network  topology  model.
There  are  96  branches,  marked  with  “○ ”,  33  nodes,
marked with  “□”,  eight  generators  G1−G8,  four  propul-
sion loads M1−M4, eight motor loads M5−M12, 24 static
loads  I1−I24,  28  power  electronic  devices  P1−P28,  four
jumper  wires  L1−L4.  Dot  lines  stand  for  the  alternative
transmission routes.
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Fig. 1    SIPS simplified network topology
 
 

2.2    Mathematical model for network reconfiguration

After  SIPS  network  reconfiguration,  loads  should  be  re-
stored  at  a  maximum  extent.  Loads  ranked  Level  1  and
Level 2 must have the priority to be supplied. At the same
time, the operation times of switches should be taken in-
to account [13]. Based on the above requirements, the ob-

ject function can be expressed as

max F(x) =
n1∑
i=1

λ1Lg1i+

n2∑
i=1

λ2Lg2i+

n3∑
i=1

λ3Lg3i−ηS x (1)

where Lg1i, Lg2i, Lg3i represent three levels of loads, n1, n2,
n3 stand for the numbers of three level loads, λ1, λ2, λ3 are
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the  weight  coefficients, Sx  represents  the  switch  opera-
tion time, and η stands for the punitive weight coefficient.
Though  choosing  appropriate  weight  coefficients,  the
maximum number of loads restored and the minimum ope-
ration  times  of  switches  can  be  obtained.  The  values  of
the  weighting  coefficients  can  influence  the  results  of
simulations. In order to get the optimal values, many sets
of weighting coefficients are selected for the simulations.
Comparison  of  different  simulation  results  from  actual
situations  of  SIPS  shows  that  the  best  values  of  weigh-
ting  coefficients  are  as  follows:  1  for  Level  1  loads,  0.1
for Level 2 loads, and 0.01 for Level 3 loads. By adopt-
ing this set of weight coefficients, simulations results are
the closest to the real situations.

According  to  the  real  situation,  the  following  con-
straint conditions should be considered in the network re-
configuration:

(i) Limitation of capacity: Pi≤max Pi

(ii) Limitation of voltage: Vmin≤V≤Vmax

(iii) Constraint on power flows: UP=D where U refers
to  incidence  matrix  between  branch  and  nodes, P  repre-
sents  feeder  current  vector,  and D  stands  for  load  de-
mand vector.

(iv)  Transmission  routes  constraint:  only  one  route
connects  with  the  load,  the  normal,  or  the  alternative
route.

(v)  Priority  constraint:  loads  are  restored  in  turns  ac-
cording to the priority. 

3. MAACO
 

3.1    Multi-agent for SIPS network reconfiguration

Because  of  the  active  behavioral  capacity  of  agents,  se-
veral agents can form a network of MAS even if they are
loose  coupled.  Agents  in  MAS  are  separated  from  each
other. They are self-government, and will not be affected
by other agents. Through cerrain protocols, all agents can
be  linked  together  to  solve  one  specific  task  or  achieve
the same goal.  Therefore,  MAS can be  useful  to  solve  a
complex problem, which cannot  be achieved by a  single
agent  [14−18].  MAS  adopts  regional  control.  On  the
same  regional  feeder,  the  group  of  non-switch  devices
controlled by switches is considered as one agent.

Based  on  the  above  viewpoints,  several  feeder  units
can be found, and each one can be abstract as a regional
agent. A multi-agent model of SIPS network is proposed,
as shown in Fig. 2.

Agents  are  intelligent  and  autonomous.  Not  only  can
they  make  judgments  and  decisions,  but  also  communi-
cate with agents nearby, so as to maintain the safety and
stable operation of SIPS [19−21].
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Fig. 2    Multi-agent model of SIPS network 

3.2    ACO

Traditional  ACO  is  probability-based,  which  is  used  to
find  the  optimal  path  of  the  graph  [22,23].  When  ants
move from the initial point i to the end point j, the prob-
ability  of  ants  choosing  the  path  (i, j )  is  determined  by
pheromone of the edge (i, j) and local heuristic informa-
tion. To solve subset problems, we can set pheromone on
vertexes. Whether vertexes join in the subset or not is de-
termined  by  pheromone  and  local  heuristic  information
on them [24−27].

S̃ k(t) =
⟨
i1, i2, · · · , i j

⟩
S̃ k(t) pk

ip
(t)

(i)  The strategy of probability selection.  When time is
t,  the  partial  solution  to  ant k  is  supposed  as

.  The  probability  of  ant k  choosing
vertex ip  to  join  in  at  time t  is  set  as ,  which
can be expressed as

Pk
ip
(t) =


[τip

(t)]α[ηip
(t)]β∑

is∈allowedk(t)

[τis
(t)]α[ηis

(t)]β
, ip ∈ allowedk(t)

0, otherwise

(2)

τip
ηip

where > (t) is pheromone of vertex i at time t,  (t) is
the local heuristic information on vertex i at time t. In this
paper, local heuristic information is the set to the impor-
tance  of  the  load  in  network  reconfiguration. α,  β  are
parameters for the relative importance of pheromone and
heuristic  information.  The  collection  of  vertexes
allowedk(t)  includes  all  vertexes  which  ant k  can  choose
when time is t.

A pseudo-random proportion principle should be adop-
ted to avoid partial stagnation. With prior knowledge and
to explore new paths, the strategy of probability selection
is modified as follows:

Pk
ip
(t) =max{[τip

(t)]α[ηip
(t)]β}, q ⩽ q0 (3)

where q0  (q0 ≤1)  is  a  parameter  set  in  advance  for  new
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path  exploration.  A  random  decimal  named q  (q ≤1)  is
used to judge whether to choose prior knowledge or pos-
sibility selection first. In other words, if q>q0, we explore
new paths according to possibility selection with (2); other-
wise  choose  the  vertex  with  the  largest  pheromone  and
heuristic information.

(ii)  The  strategy  of  global  pheromone  updates.  To
solve  subset  problems,  pheromones  used  in  the  ACO
needs  to  be  set  on  vertexes,  therefore  pheromone  vari-
ables  need  dimensionality  reduction  to  one-dimension,
which is defined as follows:

τi(t+1) = (1−ρ1)τi(t)+ρ1∆τi(t, t+1) (4)
where ρ1 is the global pheromone’s volatile coefficient. Q
is  a  constant,  determined  by  the  objective  function F(x),
which  is  used  to  adjust  weights  of  the  optimal  phero-
mone.

∆τi(t, t+1) =

 QF(x), when vertex i is the best

0, otherwise
(5)

(iii) The strategy of local pheromone updates. Ants can
update  the  pheromone  during  the  process  of  searching  a
path, which is defined as

τi(t+1) = (1−ρ2)τi(t)+ρ2∆τ (6)
where 0<ρ2<1 represents a local update parameter, and Δτ
stands  for  the  increment  of  pheromone  when  ants  pass
through vertexes during the process. Usually Δτ is a con-
stant.

(iv) The restriction strategy of pheromone. The phero-
mone on the path is limited in the interval [τmin,τmax]. The
pheromone  on  the  path  is  limited  in  a  reasonable  range,
which  can  reduce  the  probability  of  stagnation.  The  up-
per and lower limits of pheromone can be defined as

τmax =
1

(1−ρ1)
1

Fbest

τmin =
τmax(1−

n
√

0.05)

(avg−1) n
√

0.05

(7)

where Fbest represents the global optimal solution and n re-
presents the number of decisions an ant needs to make an
iteration. The initial value of pheromone is set to be τmax. 

3.3    Strategy of K-nearest neighbor

In traditional ACO, the optimal solution to the combinat-
orial  optimization  problem  can  be  obtained.  With  the
change of  the local  update parameter,  the space near  the
known optimal solution can be effectively searched. The
load power and its weight coefficient are used as the basis
of the K-nearest neighbor strategy selection. The strategy
of the K-nearest neighbor has the ability of neighborhood
search and ensures the search of a better solution.

With  the  use  of  the K -nearest  neighbor  strategy,  the
convergence  speed  of  the  traditional  ACO  can  be  im-
proved by reducing the scope of search space reasonably

[28,29]. Considering the features of SIPS network recon-
figuration, the specific strategy can be summarized as fol-
lows:

λiLgi j Lgi j

λi

(i)  Establish K  order-tables  of  restored loads  after  ini-
tializing ant colony. Each restored load is ranked in K or-
der-tables  according to ,  in  which  refers  to  the
load power and  refers to the weight coefficient.

λiLgi j

(ii)  Restore  the  highest  ranking  load  (load  with  the
maximum  value  of )  in  order-tables  and  adjusting
the remaining capacity of SIPS.

(iii) If the system capacity is sufficient, remaining loa-
ds can be restored according to the rank in tables. The pri-
nciple  is  to  give priority  to  recovering loads with higher
levels.

(iv)  The value of K :  we need to  make a  variety  of  at-
tempts to decide the value of K. The value of K is usually
taken directly from 3 to 10, or is equal to the square root
of  the  training data.  In  order  to  accelerate  the  speed and
improve the efficiency, the value of K  needs to be small
in the initial stage of ACO. On the contrary, for the pur-
pose  of  recover  loads  as  much  as  possible  in  the  final
stage, the value of K needs to be bigger. 

3.4    MAACO

On the basis of ACO and multi-agents with the characte-
ristics,  such  as  autonomous  learning,  competition,  and
collaboration, the algorithm named MAACO is proposed.
In  MAACO,  each  agent  has  the  ability  of  self-learning
and can compete and cooperate with its neighbors. Based
on  ACO,  information  can  be  shared  between  current
agent  and  global  optimal  agent.  The  agent’s action  stra-
tegy  is  modified  according  to  its  own experience.  When
failures occur, the neighboring agents can be selected first
for  small-scale  network  reconfiguration  based  on  the
characteristics  of  the  agents.  When  the  small-scale  net-
work  reconfiguration  is  unable  to  complete  failure  reco-
very,  the  global  network  reconfiguration  is  carried  out.
MAACO  can  converge  to  the  global  optimal  solution
faster  and  more  accurately.  Regional  feeder  agents  are
defined in Fig.  2.  In MACCO, agents  can get  the evolu-
tional  mechanism  of  ACO  by  autonomous  learning  and
data  exchanging  with  agents  nearby.  The  ant  colony  is
updated according to pre-set rules. In this way, the colony
can  get  the  optimal  path  more  quickly  and  accurately
[30−32].

In MAACO, a regional agent can be regarded as an ant
in the ant colony. Thus we can determine the topology of
the  ant  colony  of  SIPS  network  reconfiguration.  Solu-
tions to SIPS network reconfiguration can be obtained by
agents ’  autonomous  update  and  cooperate  with  agents
nearby. The multi-agent can get the optimal value of objec-
tive function in ACO. Fig. 3 shows the flow chart of net-
work reconfiguration based on MAACO.
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Fig. 3    Flow chart of network reconfiguration based on MAACO
 
 

4. Simulation
The  network  model  of  SIPS  shown  in Fig.  1 is  used  to
carry  out  network  reconfiguration  simulations  to  verify
the effectiveness of the proposed MAACO. Based on the
actual fault situation of SIPS, two examples are proposed
in the follwing subsections.

All  the  simulations  are  implemented  by  Matlab
R2018b  platform.  The  simulation  computer  is  equipped
with i5-5350H CPU, 8 GB RAM and Windows 7 operat-
ing system.

The  simulation  parameters  are  derived  from  the  real
SIPS. All the parameters of the SIPS devices are normali-
zed, which can be seen in Table 1.

 
 

Table 1    Parameters of SIPS devices

No. Device Power/kW Level No. Device Power/kW Level No. Device Power/kW Level No. Device Power/kW Level
1 G1 21 0 25 M7 1.270 5 2 49 G7 3.75 0 73 P18 0.005 0
2 G2 3.75 0 26 I6 0.769 2 2 50 G8 21 0 74 I20 0.05 3
3 G3 3.75 0 27 P10 0.005 0 51 P23 0.005 0 75 M8 1.270 5 2
4 G4 21 0 28 I7 0.05 3 52 M1 20 1 76 I8 3.0 2
5 P1 0.005 0 29 M8 1.270 5 2 53 M2 20 1 77 P19 0.005 0
6 M1 20 1 30 I8 3.0 2 54 P24 0.005 0 78 I21 0.05 3
7 M2 20 1 31 P11 0.005 0 55 P25 0.005 0 79 M9 1.270 5 2
8 P2 0.005 0 32 I9 0.05 3 56 P26 0.005 0 80 I10 1.493 7 2
9 P3 0.005 0 33 M9 1.270 5 2 57 P27 0.005 0 81 P20 0.005 0
10 P4 0.005 0 34 I10 1.493 7 2 58 P28 0.005 0 82 I22 0.005 3
11 P5 0.005 0 35 P12 0.005 0 59 M3 20 1 83 M10 0.729 5 2
12 P6 0.005 0 36 I11 0.005 3 60 M4 20 1 84 I12 1.270 5 2
13 M3 20 1 37 M10 0.729 5 2 61 P15 0.005 0 85 P21 0.005 0
14 M4 20 1 38 I12 1.270 5 2 62 I17 0.05 3 86 I23 0.05 3
15 P7 0.005 0 39 P13 0.005 0 63 M5 1.270 5 2 87 M11 1.270 5 2
16 I1 0.05 3 40 I13 0.05 3 64 I2 1.102 4 2 88 I14 1.392 2
17 M5 1.270 5 2 41 M11 1.270 5 2 65 P15 0.005 0 89 P22 0.005 0
18 I2 1.102 4 2 42 I14 1.392 2 66 I18 0.05 3 90 I24 0.005 3
19 P10 0.005 0 43 P14 0.005 0 67 M6 0.897 6 2 91 M12 0.769 2 2
20 I3 0.05 3 44 I15 0.005 3 68 I4 1.493 7 2 92 I16 1.230 8 2
21 M6 0.897 6 2 45 M12 0.769 2 2 69 P17 0.005 0 93 L1 0.005 0
22 I4 1.493 7 2 46 I16 1.230 8 2 70 I19 0.05 3 94 L2 0.005 0
23 P9 0.005 0 47 G5 21 0 71 M7 1.270 5 2 95 L3 0.005 0
24 I5 0.05 3 48 G6 3.75 0 72 I6 0.769 2 2 96 L4 0.005 0
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In the simulations, the ant colony represents the diffe-
rent states of branches of SIPS, with “1” for circuit closed
and “0” for circuit open [33]. 

4.1    Example 1

Supposing  that  Agent  17  fails,  the  simulation  results  of
network reconfiguration using MAACO are (i) Agent 63:
the initial state is 0, and the final state is 1 and (ii) the fit-
ness  value  is  5.632  85  and  the  switch  operation  times
(SOT) is 1.

Fig. 4 shows the variation tendency of the fitness value
and SOT.
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Fig. 4    Simulation results in Example 1
  

4.2    Example 2

Suppose that Agents 3, 31, 93, and 95 fail, and the simu-
lation  results  of  network  reconfiguration  using  MAACO
are

(i) Agent 79: the initial state is 0, and the final state is 1;
(ii) Agent 80: the initial state is 0, and the final state is 1;
(iii) Agent 84: the initial state is 0, and the final state is 1;
(iv) the fitness value is 5.610 25 and SOT is 3.
Fig.  5 shows  the  variation  tendency  of  fitness  values

and SOT.

In  the  beginning  of  reconfiguration,  the  fault  agents
communicate  with  agents  nearby.  The  neighbor  agents
estimate  self-capacity  firstly.  If  all  constraint  conditions
given  above  are  satisfied,  the  fault  agents  can  be  power
supplied by alternative routes. After simulation, it can be
found that in the 15th iteration, MAACO gets the best fit-
ness  value  5.610  25.  However,  the  minimum number  of
SOT is three which can only be achieved until the 28th it-
eration.  Therefore,  we  can  get  the  best  reconfiguration
solution after 28 times of iterations. 

5. Comparison
 

5.1    Comparison between MAACO and
traditional ACO

Simulations are carried out by the use of traditional ACO
and MAACO. Simulation results are recorded in Table 2
and Table 3.

It  can  be  seen  that  the  MAS  accelerates  the  conver-
gence speed of ACO in Example 1. MAACO changes the
network topology in the minimum scope to reconfigure in
Example  2  based  on  communication  between  different
agents.

 
 

Table 2    Comparison between traditional ACO and MAACO in Example 1

Algorithm
Fitness value SOT

Best iteration
Maximum Minimum Average Maximum Minimum Average

Traditional ACO 5.632 55 5.508 03 5.586 26 26 1 5.8 29

MAACO 5.632 85 5.508 32 5.623 04 23 1 3.9 19
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Fig. 5    Simulation results in Example 2
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Table 3    Comparison between traditional ACO and MAACO in Example 2

Algorithm
Fitness value SOT

Best iteration
Maximum Minimum Average Maximum Minimum Average

Traditional ACO 5.602 15 5.506 82 5.545 87 25 6 8.8 37
MAACO 5.610 25 5.554 64 5.591 93 19 3 5.4 28

 
The numbers  of  best  iteration and SOT in the simula-

tion results are reduced by MAACO. The decreased num-
ber  of  the  best  iteration  means  the  reduction  of  the  al-
gorithm’s calculated quantities. The convergence speed is
accelerated.  Real-time  performance  of  SIPS  network
reconfiguration with MAACO is better. The reduction of
SOT means fewer changes in topology of SIPS. The sys-
tem  can  be  less  influenced  during  network  reconfigura-
tion.

Therefore, MAACO can get a better solution than tra-
ditional ACO in SIPS network reconfiguration. 

5.2    Comparison between MAACO and
other algorithms

Simulations have been done by the use of the genetic al-
gorithm  (GA),  particle  swarm  optimization  (PSO),  and
MAACO. In order to ensure the validity of the data, each
algorithm  is  simulated  50  times.  The  average  value  of
each result is recorded in Table 4 and Table 5 as follows.
  
Table  4      Comparison  between  MAACO  and  other  algorithms  in
Example 1

Algorithm Average fitness value Average SOT Best iteration
GA 5.587 36 4.5 32
PSO 5.608 79 4.2 28

MAACO 5.623 04 3.9 19

 
  
Table  5      Comparison  between  MAACO  and  other  algorithms  in
Example 2

Algorithm Average fitness value Average SOT Best iteration
GA 5.584 39 7.9 39
PSO 5.620 54 6.8 35

MAACO 5.591 93 5.4 28
 

Through  the  comparison  of  data,  it  can  be  found  that
the  number  of  fitness  value  between  GA,  PSO,  and
MAACO  are  basically  same.  The  problem  of  SIPS  net-
work  reconfiguration  is  solved  by  any  algorithm.  How-
ever, the number of SOT and of the best iteration are im-
proved by the use of MAACO for Examples 1 and 2.

By  the  comparing  with  other  intelligent  algorithms,
MAACO can not only accelerate the convergence speed,
but  also  reduce  the  number  of  changes  in  topology  of
SIPS. The effectiveness and advanced nature of MAACO
can be explained. 

6. Conclusions
In this paper, the SIPS simplified network model and the
mathematical  model  for  network  reconfiguration  are  set
up.  MAS,  ACO,  and  the  strategy  of K -nearest  neighbor
are  analyzed  theoretically.  Multi-agent,  ACO,  and
MAACO are combined. Simulation results and data com-
parisons  show  that  MAACO  can  improve  the  characte-
ristic  of  real-time by accelerating the convergence speed
of  the  algorithm.  It  can also  reduce the  switch operation
times  for  less  influence  on  the  whole  power  system.
MAACO is  very  suitable  for  SIPS  network  reconfigura-
tion,  which  can  effectively  improve  the  sustainability  of
SIPS.
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