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Abstract: Due to the randomness and time dependence of the
factors affecting software reliability, most software reliability
models are treated as stochastic processes, and the non-homo-
geneous Poisson process (NHPP) is the most used one.
However, the failure behavior of software does not follow the
NHPP in a statistically rigorous manner, and the pure random
method might be not enough to describe the software failure be-
havior. To solve these problems, this paper proposes a new in-
tegrated approach that combines stochastic process and grey
system theory to describe the failure behavior of software. A
grey NHPP software reliability model is put forward in a discrete
form, and a grey-based approach for estimating software reliab-
ility under the NHPP is proposed as a nonlinear multi-objective
programming problem. Finally, four grey NHPP software relia-
bility models are applied to four real datasets, the dynamic
R-square and predictive relative error are calculated. Comparing
with the original single NHPP software reliability model, it is
found that the modeling using the integrated approach has a
higher prediction accuracy of software reliability. Therefore, there
is the characteristics of grey uncertain information in the NHPP
software reliability models, and exploiting the latent grey uncer-
tain information might lead to more accurate software reliability
estimation.

Keywords: software reliability model, stochastic process, un-
certainty system, non-homogeneous Poisson process, grey sys-
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1. Introduction

With the rapid development of information technology
and the increasing scale of software system, the research
of software reliability becomes necessary. Unlike hard-
ware reliability systems, there is no physical mecha-

Manuscript received December 28, 2020.

*Corresponding author.

This work was supported by the National Natural Science Foundation
of China (71671090), the Fundamental Research Funds for the Central
Universities (NP2020022), the Qinglan Project of Excellent Youth or
Middle-Aged Academic Leaders in Jiangsu Province.

nism for software failure. The development and design of
software are all made by people, software inevitably oc-
curs failure. In order to ensure the quality of the software,
large numbers of carefully selected testing cases are used
to expose the faults as quickly and effectively as possible.
How much testing can make the software achieve accept-
able quality depends on the evaluation technology of soft-
ware reliability. Therefore, it is very important to eva-
luate software reliability for software engineer.

Software reliability evaluation is usually completed by
software reliability modeling, which is to estimate soft-
ware reliability according to the observed failure data by
the statistical method. The research on software relia-
bility modeling started from the Jelinski-Moranda (J-M)
model [1]. Since the 1970s, software reliability modeling
has developed rapidly, and many well-known models of
different viewpoints have emerged. Stochastic process is
one of the main frameworks for developing software reli-
ability models. Nelson data domain model [2], Musa exe-
cution time model [3], and the Goel-Okumoto (G-O) fai-
lure counting model [4], were all presented based on the
non-homogenous Poisson process (NHPP). Among these
models, the G-O model is the most famous model. It as-
sumes that the fault detection rate is a constant and the
debugging is perfect. Although this hypothesis deviates
from the real testing process greatly, it is an important
reference for the follow-up research. Many software reli-
ability models are proposed based on the G-O model by
considering various elements that affect software reliabil-
ity, such as incomplete debugging, fault detection rate,
testing-effort, and change point [5—8]. Markov processes
are also used to software reliability modeling by setting
the transition probability between states as the input para-
meter. Jelinski et al. [9] first used Markov process to soft-
ware reliability estimation. Kremer [10] studied software
reliability as birth and death process. Qu [11] analyzed
software reliability in the air traffic control system using
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Markov processes. Another family of software reliability
models is Bayesian model. The first Bayesian inference
software reliability model is Littlewood-Verrallmodel [12].
Other different Bayesian inference software reliability
models were proposed under different assumptions of pri-
or distribution [13—15]. Software reliability models based
on time-series forecasting method are also widely stud-
ied. Singpurwda [16] first used time series analysis for
software reliability estimation. Ho et al. [17] studied reli-
ability prediction of repairable system based on the auto-
regressive moving average (ARMA) model. Besides,
combination models with other methods are presented to
improve the prediction. Aly et al. [18] used genetic pro-
gramming (GP) to build models to predict the number of
errors. Jayadeep et al. [19] used a hybrid method com-
posed of auto-regressive integrated moving average (AR-
IMA) and neural network to predict the software reliabil-
ity. In recent years, the research on software reliability
has developed to machine learning. Karunanithi et al. [20]
first used neural network to research software reliability.
Now, neural network has been applied in software relia-
bility estimation for nearly 30 years, and numerous differ-
ent machine learning algorithms have been explored.
Qi [21] evaluated software reliability based on the back-
propagation neural network. Kiran et al. [22] created a
software reliability model from a heterogeneous en-
semble of several different neural networks. Roy et al. [23]
proposed an artificial neural network for software relia-
bility modeling by a novel particle swarm optimization
algorithm. Chaos theory is also used in software reliabil-
ity modeling. Zou et al. [24] studied three well known
software reliability models by extracting a fractal dimen-
sion. Shao [25] created a software reliability model to find
reliable estimates of chaotic invariants. Yazdanbakhsh
et al. [26] employed the nonlinear time series analysis to
test for chaotic behavior in software reliability models.
Above reviews show the software reliability research
methods are varied, and there has been no consensus on
the mechanism of software failure. In general, the soft-
ware reliability models based on the NHPP are the most
widely studied because of the simple mathematical struc-
ture and the easily implementation. However, software
internal structure is highly complex, and the NHPP soft-
ware reliability models sometimes occur a serious bias
from the actual value. Cai [27-29] has conducted mean-
ingful research on the problems of the NHPP software re-
liability models. He verified that the software reliability
behavior does not follow the NHPP in a statistically rigo-
rous manner and pointed out the modeling framework of
software reliability should not only consider the stochas-
tic as a form of uncertainty, but also consider other forms

of uncertainty. Thus, he proposed a fuzzy software relia-
bility model by setting software failure time as a fuzzy
variable.

The viewpoint of Cai does not adopt any assumptions
related to the probability distribution and is to use another
uncertainty theory (fuzzy set) instead of randomness to
construct the software reliability model framework. Con-
sidering that a single uncertain system theory may not be
enough to describe the failure behavior of software, it
may be better to estimate software reliability with vari-
ous uncertainty theories at the same time. This paper in-
vestigates the characteristics of grey uncertain informa-
tion in NHPP software reliability models and proposes an
integrated approach combining stochastic process and
grey system theory to estimate software reliability.

The main work of this paper lies in the following two
aspects:

(i) Several grey NHPP software reliability models are
proposed;

(i1) A grey-based approach for estimating software relia-
bility under the NHPP is presented.

This paper is organized as follows: Section 2 reviews
software reliability estimation methods based on the
NHPP. Section 3 introduces grey system theory and the
related work on its applications in software reliability es-
timation. Section 4 proposes several grey NHPP software
reliability models. Section 5 presents a grey-based ap-
proach for estimating software reliability under the
NHPP. Section 6 tests the effectiveness of the grey-based
estimating approach under the NHPP through four real
datasets. Section 7 makes conclusions.

2. Software reliability estimation based on
the NHPP

Software reliability model based on the NHPP describes
software failure by a counting process and assumes the
occurrence of failures obeys the nonhomogeneous Pois-
son process.

Denote {N(#),t > 0} as the actual number of failures by
time ¢, a counting process {N(¢),t > 0} is called the NHPP
if the following assumptions are satisfied [30].

(1) N(0) = 0,{N(¢),t > 0} is an independent incremental
process.

(i1) P{N(t+At)—N(t) = 2} = o(Ar).

(1) P{N(t+Af) = N(t) = 1} = A(t) - At + o(Ar).

(iv) P{N(t+5)—-N(s)=n} = w

where m(?) is called the cumulative number of failures
and expressed as m(t) = f(;/l(s)ds, A(t) is the number of
failures of unit time at ¢.

According to (iv), the reliability in [¢,7+ x) can be cal-

e—(m(t+x)—771(s)) ,
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culated by
R(x|t) = P{N(t+x)— N(f) = 0} = e "+ (1)

Equation (1) shows the software reliability in specified
time can be estimated with the cumulative function of
failures m(r). Therefore, an important step in the NHPP
software reliability models is to establish the cumulative
function of failures m(#) by the failure data collected in
the testing process. However, the failure data collected is
only to represent a sample path, and the differences
between different sample paths are significant. We adopt
the simulation results of 40 trails of Cai’s two controlled
software experiments to describe this phenomenon. The
detailed data can be seen in [27]. As shown in Fig. 1, the
sample paths are very close to each other in the early
stage, but become more and more dispersed in the later
stage.
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Fig.1 Analysis of 40 trials from Cai’s control experiments

He et al. [31] has pointed out software reliability can
only be evaluated when software producers think soft-
ware products are stable and mature, that is to say, the
real sample paths of software failure are scattered with
each other. Besides, the collected failure data is discrete,
and the accuracy of extrapolation prediction cannot be
guaranteed by pure simulation of failure data by using the
continuous function m(¢). Therefore, it may not be able to
describe the failure behavior of software only according

to the NHPP software reliability model. In view of this,
we introduce grey system theory to the NHPP software
reliability modeling and not to pursue higher fitting ac-
curacy. We assume software failure approximately fol-
lows the NHPP, and want to know whether there is the
grey uncertain information in software system reliability.

3. Grey system theory and its related works
on software reliability estimation

Grey system theory, like probability statistics, fuzzy
mathematics and rough set theory, is an approach for
studying uncertain systems. It was first proposed by
Chinese scholar Professor Deng [32]. Different from other
uncertainty theories, grey system theory focuses on the
uncertainty problems of small data sets and poor informa-
tion. One of the main tasks of grey system theory is to un-
cover the mathematical relationships or the change laws
of system variables based on the available data, in which
each stochastic variable is regarded as a grey quantity
changing within a fixed region or within a certain time
frame.

In essence, grey system theory is to seek an organic
equilibrium between quantitative predictions and qualita-
tive analyses. The main adopted method is to construct a
suitable accumulated operator to preprocess the data to
eliminate the influence of data sequence distortion before
quantitative modeling analysis. For example, as shown in
Fig. 2, the original data sequences do not show any defi-
nite regularity, and after processing by different accumu-
lated operators, they show different change trend.

Up to now, grey system theory has been applied widely
and has produced more effectiveness by combining with
other approaches [33—36]. Meanwhile, grey information
modeling is also used to estimate software reliability
[37-43]. Gao et al. [37] first presented a software reliabi-
lity model based on the GM(1,1) model of grey system
theory. Ye et al. [38] and Mei [39] used Gao’s method to
evaluate software reliability. Zhang et al. [40] evaluated
software reliability by combing GM(1,1) model and neu-
ral network. Zhang et al. [41] proposed a software reliabi-
lity model by combining support vector regression model
and GM(1,1) model. Ma et al. [42] constructed a series of
grey Markov chain models by combining GM(1,1) mo-
del and Markov chain. Huang [43] studied grey fitting
problems of software failure data and proposed the multi-
step prediction algorithm. These related works show two
common points. One is that the adopted technology of
grey system theory is only limited to the GM(1,1) model.
The other is that the presented combination models are
only to modify the residual errors produced by the
GM(1,1) model.
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Fig. 2 Trend analysis of grey accumulated sequences

However, the analytical solution of GM(1,1) model is
the monotonous exponential function, and it cannot simu-
late the software failure data with obvious nonlinear cha-
racteristics. Therefore, to better describe the failure beha-
vior of software, it is necessary to extend the GM(1,1)
model based on the characteristics of software failure data.

4. Grey software reliability models based on
the NHPP

Due to the discreteness of data and the incompleteness of
information, grey system model is established in the form
of discrete difference equation representing approxi-
mately the continuous model. Therefore, we first pro-
posed several grey software reliability models by discret-
izing the NHPP models based on the grey modeling mecha-
nism. For illustrations, four traditional NHPP software re-
liability models are applied here, including the delayed
S-shaped model [44], the inflection S-shaped model [45],
the Yamada exponential model, and the Yamada Rayleigh
model [46]. These models are widely used and have a
great influence on the development of software reliabi-
lity research.

4.1 Grey delayed S-shaped software reliability model

The cumulative function of failures m(¢) of the delayed

S-shaped software reliability model is expressed as

m(t) = a(1-(1+be™), a>0;b>0. 2
Its differential equation can be represented as
dm(?) bt
— = —m(t)). 3
TR EY @)

According to the grey modeling mechanism and using
the undetermined grey background value coefficient 6,
the discrete delayed S-shaped software reliability model
is defined as

b’t,
1+bt,

Assume m(t,) =m(k=1,2,---,N), and n; denotes the
actual defects found by time f,, N denotes the total num-
ber of observed intervals. Thus, (4) becomes the follow-
ing form:

m(ti.y) —m(t) = (a—=(Om(t) + (1 - Om(t.1)). (4)

b, 0. 1-6 5
1+btk(a_( g+ (1 —0)n.y)). 4)

Transform (5) to obtain the following discrete equations:

N1 =Ny =

b*t b*t
a- 1 +l§tk — (O + (1= 0)nyy) - letk =My — M. (6)

Equation (6) is called the grey delayed S-shaped soft-
ware reliability model.

4.2 Grey inflection S-shaped software reliability
model

The cumulative function of failures m(f) of the inflection
S-shaped software reliability model is expressed as

_ e—bt
1+ce™
Its differential equation can be represented as

dm(r) b
— = —m(?)). 8
@ - Tacen @m0 ®

Similar to Subsection 4.1, the discrete inflection
S-shaped software reliability model is defined as

m(t)=a ,a>0;b>0;¢c>0. N

M) = m(1) = 1 a = Om(5)+ (1 = Om(1)
©)

Transform (9) to obtain

b

b
a'm‘@’hﬁﬂ‘@"m)'m =Ny — 1. (10)

Equation (10) is called the grey inflection S-shaped
software reliability model.

4.3 Grey Yamada exponential software reliability
model

The cumulative function of failures m(f) of the Yamada
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exponential software reliability model is expressed as
mt)=a(l-e™""), a>0;b>0;c>0. (11)

Its differential equation can be represented as

dm(r) ety
—g = bee a=m(). (12)

Similar to Subsection 4.1, the discrete Yamada expo-
nential software reliability model is defined as

m(t) —m(ty) = bee™™ (a— (Om(t) + (1 - Om(t,,))). (13)

Transform (13) to obtain

a-bee™ —(On+ (1 = Onypy)-bee™ =mpy — . (14)

Equation (14) is called the grey Yamada exponential
software reliability model.

4.4 Grey Yamada Rayleigh software reliability model

The cumulative function of failures m(t) of the Yamada
Rayleigh software reliability model is expressed as

m®) =a(l-e™="") a>0:b>0;c>0.  (I5)

Its differential equation can be represented as

dm@®) . ep _
5 = bete™ *(a—m(t)). (16)

Similar to Subsection 4.1, the discrete Yamada
Rayleigh software reliability model is defined as

M(tyy) —m(ty) = thkef# (a—(Om(t) + (1 - Dm(t,1))).
(17)

Transform (17) to obtain

a-bete™ s —One+ (1= Omenr)-bete™s = ne =i (18)

In the same way, (18) is called the grey Yamada
Rayleigh software reliability model.

Equations (6), (10), (14), and (18) are examples of seve-
ral grey software reliability models proposed in this pa-
per. It can be seen that they are discrete difference equa-
tions and approximately equal to the original continuous
NHPP software reliability models. Therefore, these grey
software reliability models still remain some characteris-
tics of the NHPP, and the uniqueness is that they may simu-
late small and discrete data more realistically.

5. Grey-based approach for estimating
software reliability under NHPP

Software failures may be highly correlated in the early
stage of testing, while the number of failures would be
closer to a constant in the later stages. So a single me-
thod of uncertain systems may not be enough to deal with
the software failure process. This paper proposed a differ-

ent approach than previous and describe the failure beha-
vior of software based on multiple uncertainty theories of
stochastic process and grey system. Specifically, it is as-
sumed that the failure data not only has the characteris-
tics of stochastic process, but also has the behavior cha-
racteristics of grey system.

In addition, with the development of software testing,
the ultimate number of remaining failures will be re-
duced, and the amount of data will not be adequate. Such
that, for the NHPP software reliability models, the maxi-
mum likelihood estimate (MLE) may not work well.
Hirose [47] presented a typical example in which the pre-
dicted total failures emerge serious deviations. Such phe-
nomena also occurred in other cases [48,49]. In view of
this, the model parameters are estimated by the nonlinear
least square principle in this paper. Furthermore, differ-
ent models and different training data may result in dif-
ferent grey background value coefficients, so the grey
background value coefficient 6 is also set as a variable in
the interval [0, 1] to search for the best coefficient.

Next, we will take the grey Yamada Rayleigh model as
an example to describe the computational steps of the
grey-based approach for estimating software reliability
under the NHPP, and the other three grey models are simi-
lar.

The grey-based estimating approach under the NHPP
can be treated as a nonlinear multi-objective program-
ming problem, and the grey Yamada Rayleigh software
reliability modeling under the NHPP can be expressed as
follows:

min ) (i(t) =)’
k=1

N-1
min Z (R(t) = (Mar —10))°
k=1

_?
() = a(l—e0-))

S92 = abetie ™S — (Ong + (1= Oy, - bene™s
a>0,b>0,c>0,0<0<1
(19)

where n, denotes as the actual defects found by time .
There are four parameters a,b,c,6 that need to be esti-
mated. We will estimate these four parameters in two
stages. The computational steps can be summarized as
follows:

Step 1 Input the failure data into the grey Yamada
Rayleigh software reliability model (i.e., (18)).

Step 2 Calculate the symbolic solutions of parame-
ters a,b according to the least square principle.
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Step 3  Substitute the symbolic solutions of parame-
ters a,b into the Yamada Rayleigh software reliability
model (i.e., (15)).

Step 4 Calculate the optimal solutions of parameters
¢,0 according to the nonlinear least square estimate.

Step 5 Return to (18) to find the optimal solutions of
parameters a,b using the parameters c,6 estimated in
Step 4.

Step 6 Substitute all parameters into the Yamada
Rayleigh software reliability model to calculate the re-
lated software reliability measurements.

The nonlinear optimization in Step 4 needs to be done
by some computer software. In this paper, the optimiza-
tion is realized using the genetic algorithm (GA) by pro-
gramming in Matlab.

6. Numerical experiments

This section is to test the effectiveness of the grey-based
approach for estimating software reliability under the
NHPP. Four numerical experiments are to predict dyna-
mically the total number of failures in the software test-
ing process using four datasets come from Wood [50].
Meanwhile, the single NHPP software reliability model is
estimated by the MLE and is used for comparisons.
R-square is calculated dynamically to judge the fitting ac-
curacy, and the relative error of prediction is calculated
dynamically to compare the forecasting performance.
Moreover, the predictive validity is judged by plotting the
relative error of the normalized test time.

The relative error of prediction is defined as follows:
Assume the actual number of defects observed is M by
the end of test time 7. Use the failure data up to time
t,(t, <T) to get the predicted number of failures m(T) by
T, then the ratio (m(T)— M)/M is called the relative er-
ror. This procedure repeated with various f, yields the dy-
namical relative error.

Dataset 1 There are 19 test weeks and the actual
number of defects observed is 42 (that is, T =19,
M =42). The predicted numbers of defects and the
R-square under different test time are calculated by the
single delayed S-shaped model and by the grey delayed
S-shaped modeling under the NHPP. Table 1 listed these
results, and Fig. 3 plots the relative error of prediction
and the R-square against the different percentage of data
points.

As shown in Table 1, both the single delayed S-shaped
model and the grey delayed S-shaped modeling under the
NHPP have high R-square, the minimum R-square is over
0.953, and most of them are over 0.97, they can all simu-
late Dataset 1 well. However, the prediction obtained by
the single delayed S-shaped model is poor at the begin-
ning, especially at the eighth week. It is not until the 16th

week that the prediction is stable. On the contrary, the
prediction obtained by the grey delayed S-shaped mode-
ling under the NHPP is relatively more stable, and con-
verged after the ninth week. It is clearly seen from Fig. 3
that the R-square curves of the single delayed S-shaped
model and the grey delayed S-shaped modeling under the
NHPP are straight and close to 1, and the relative error of
the grey delayed S-shaped modeling under the NHPP ap-
proaches 0 after 45% of data points. However, the rela-
tive error of the single delayed S-shaped model fluctua-
tes and tends to 0 until 85% of the data points.

Table 1
S-shaped model on Dataset 1

Comparison results for different estimates of delayed

Test Defects  Delayed S-shaped Grey delayed S-shaped

weeks  found  Predicted R Predicted R2
1 1 - - - -
2 3 - - - -
3 8 - - - -
4 9 - - - -
5 11 159835  0.9616 17.8443 0.9608
6 16 38.1267  0.9533 33.1945 0.9579
7 19 37.1073  0.9732 35.3610 0.9740
8 25 61.9431 09717 442515 0.9720
9 27 474860  0.9827 42.7439 0.9791
10 29 42.8805  0.9852 40.4875 0.9815
11 32 447539  0.9893 42.1101 0.9870
12 32 38.6972  0.9846 40.6727 0.9874
13 36 441493  0.9902 41.898 0 0.9898
14 38 444800 0.9917 42.561 0 0.9913
15 39 433726  0.9929 42.1856 0.9918
16 39 41.4597  0.9917 41.1419 0.9907
17 41 427744 0.9939 41.9332 0.9930
18 42 42.8261  0.9945 42.069 0 0.9938
19 42 42.0000 0.9941 41.6576 0.9934
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Fig. 3 R-square and relative error curves of different estimates of
delayed S-shaped model on Dataset 1
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Dataset 2 There are 20 test weeks and the actual
number of defects observed is 100 (that is, T =20,
M =100). The predicted numbers of defects and the
R-square estimated by the single inflection S-shaped
model and by the grey inflection S-shaped modeling under
the NHPP for various test time are shown in Table 2. Simil-
arly, Fig. 4 plots the relative error of prediction and the
R-square against the different percentage of data points.

Table 2 Comparison results for different estimates of inflection
S-shaped model on Dataset 2

Table 2 shows both the single inflection S-shaped
model and the grey inflection S-shaped modeling un-
der the NHPP still have high R-square, the minimum
R-square is over 0.914 1, and most of them are over 0.96.
However, the prediction of the single inflection S-shaped
model is approximately equal to the actual defects until
the 19th week. In contrast, the prediction obtained by the
grey inflection S-shaped modeling under the NHPP is
much more accurate, and is almost stable after the ninth
week. Similarly, Fig. 4 shows the R-squares of the single
inflection S-shaped model and the grey inflection
S-shaped modeling under the NHPP are all close to 1, and
the relative error of the grey inflection S-shaped model-
ing under the NHPP approaches 0 after 45% of data
points. However, the relative error of the single inflec-
tion S-shaped model seriously deviates from 0, and tends
to 0 until 90% of the data points. Finally, the grey inflec-
tion S-shaped modeling under the NHPP converges ear-
lier than the single inflection S-shaped model by 45% of
data points.

Dataset 3 There are 19 test weeks and the actual
number of defects observed is 120 (that is, 7 =19,
M =120). The predicted numbers of defects and the
R-square estimated by the single Yamada exponential mo-
del and by the grey Yamada exponential modeling under
the NHPP are shown in Table 3. Meanwhile, Fig. 5 plots
the relative error and the R-square against the different
percentage of data points.

Table 3 Comparison results for different estimates of Yamada
exponential model on Dataset 3

Test Defects Yamada exponential Grey Yamada exponential

Test Defects Inflection S-shaped Grey inflection S-shaped
weeks  found  Predicted R2 Predicted R2
1 16 - - - -
2 24 - - - -
3 27 - - - -
4 33 - - - -
5 41 66.3894 09159 55.1628 09141
6 49 85.7874  0.9220 71.1501 0.9304
7 54 87.0057 0.9501 755131 0.9518
8 58 86.0565  0.9650 77.0651 0.9644
9 69 114.1563  0.9561 98.8765 0.9653
10 75 116.6969  0.9674 102.6451 0.9686
11 81 119.2928 0.9747 100.8727 0.9718
12 86 118.8128 0.9803 102.5417 0.9741
13 90 116.7822  0.9841 102.5982 0.9773
14 93 113.7481 0.9859 101.2632 0.9783
15 96 112.0970 0.9870 101.4722 0.9809
16 98 108.6041  0.9872 101.1054 0.9824
17 99 104.7258  0.9869 99.7897 0.9815
18 100 103.0323  0.9869 100.0392 0.9836
19 100 101.0997 0.9861 101.1259 0.9877
20 100 100.0000 0.9856 100.980 0 0.9878
o 2P/
= 1.0 & O 60 50 6 6 0 o 6 B
2 081 ® ]
é 0.6 .
- 04 .
s 02 M i
< 0 A N N N
g 02 M S
g 0. .
o —0.4] .
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—#— : Relative error of delayed S-shaped,
—p— : Relative error of grey delayed S-shaped under NHPP;
—H— : R-square of delayed S-shaped;
—&— : R-square of grey delayed S-shaped under NHPP.

Fig. 4 R-square and relative error curves of different estimates of
inflection S-shaped model on Dataset 2

weeks  found  Predicted R2 Predicted R2
1 13 - - -
2 18 - - - -
3 26 - - - -
4 34 - - -
5 40 782824  0.9792 64.1298 0.7320
6 48 100.7217  0.9837 86.3526 0.6750
7 61 138.7355  0.9625 92.0219 0.7907
8 75 1542108 09310 138.5518 0.8463
9 84 159.0036  0.9534 159.2504 0.8833
10 89 153.6955 0.9760 125.8609 0.9551
11 95 147.0843  0.9798 121.6978 0.9720
12 100  142.6860 0.9824 119.1437 0.9807
13 104 1369456 09818 117.2671 0.9857
14 110 136.8509 0.9845 122.8409 0.9763
15 112 129.7455 0.9809 120.7351 0.9895
16 114 1252981 09777 119.5513 0.9912
17 117 123.8234 09778 120.8430 0.9915
18 118  120.6101 0.9742 120.1751 0.9927
19 120 119.5196 09743 120.8021 0.9928
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Fig. 5 R-square and relative error curves of different estimates of
Yamada exponential model on Dataset 3

Table 3 indicates the R-square of the single Yamada
exponential model is still high, and the prediction con-
verges after the 17th week. By contrast, the R-square of
the grey Yamada exponential modeling under the NHPP
is not high at the beginning, but after the 11th week, both
the R-square and the prediction accuracy all converge.
The above analysis is clear in Fig. 5. The R-square curve
of the single Yamada exponential model is a straight line
close to 1, where its relative error seriously deviates from
0, and tends to O until the last data points. The R-square
and the relative error of the grey Yamada exponential
modeling under the NHPP have the same features, and
the relative error converges after 50% of data points, ear-
lier than the single Yamada exponential model by 40% of
data points.

Dataset 4 There are 12 test weeks and the actual
number of defects observed is 61 (that is, T =12,
M =61). The predicted numbers of defects and the
R-square estimated by the single Yamada Rayleigh mod-
el and by the grey Yamada Rayleigh modeling under the
NHPP are shown in Table 4. Similarly, Fig. 6 plots the
relative error and the R-square against the different per-
centage of data points.

In this dataset, the test week is relative small. Table 4
shows the R-square of the single Yamada Rayleigh model
is high, and the predicted total defects is equal to the actual
values after the ninth week. The difference is, the R-square
of the grey Yamada Rayleigh modeling under the NHPP
is not high at the beginning, but after the seventh week,
the predicted number of failures is very close to the actu-
al values, and the R-square also becomes high. Fig. 6
clearly shows the above results. The R-square curve of
the single Yamada Rayleigh model is a straight line close
to 1, and its relative error seriously deviates from 0. It is
very obvious that the relative error of the grey Yamada
Rayleigh modeling under the NHPP converges much
earlier than that of the single Yamada Rayleigh model.

Table 4 Comparison results for different estimates of Yamada
Rayleigh model on Dataset 4

Test Defects  Yamada Rayleigh Grey Yamada Rayleigh
weeks  found  Predicted R? Predicted R?
1 6 - - - -
2 9 - - - -
3 13 - - - -
4 20 - - - -
5 28 44.0892  0.9253 39.4451 0.6206
6 40 83.8606  0.9556 66.1143 0.7546
7 48 762715  0.9767 61.0024 0.8990
8 54 70.4148  0.9841 63.3178 0.9516
9 57 639641 0.9850 61.6199 0.9739
10 59 62.0392  0.9847 61.4499 0.9816
11 60 60.8038  0.9838 61.1707 0.9856
12 61 60.4684  0.9857 61.5068 0.9872
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—*— : Relative error of delayed S-shaped,
—b— : Relative error of grey delayed S-shaped under NHPP;
—&— : R-square of delayed S-shaped;
—o— : R-square of grey delayed S-shaped under NHPP.

Fig. 6 R-square and relative error curves of different estimates of
Yamada Rayleigh model on Dataset 4

7. Conclusions

Neither the single stochastic process model nor the com-
bined model for correcting residual errors can com-
pletely solve the problems in software reliability estima-
tion. In this paper, we investigate the characteristics of
grey uncertain information in the NHPP software reliabi-
lity models. A new grey-based approach for estimating
software reliability under the NHPP is presented and is
applied to predict the total number of failures in the soft-
ware testing process. The results of numerical experi-
ments indicate the predictive relative error of these single
NHPP software reliability models having high R-square
fluctuated greatly in the early and middle testing stages,
and sometimes even in the last testing stage. In contrast,
the new grey-based estimating approach under the NHPP
effectively improves this problem and can predict the fi-
nal stage much earlier although without higher fitting ac-
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curacy. Results also show that the new grey-based estima-
ting approach under the NHPP can almost offer a more
accurate prediction of the future total number of failures
at 50% of the test process, and the shorter the software
testing time, the more obvious the effectiveness (for ex-
ample, the experiment of Dataset 4). Therefore, this pa-
per verifies that the modeling method of combining ran-
domness and greyness might be better than that of single
randomness in software reliability estimation.

In addition, the grey-based approach for estimating
software reliability can be applicable to all NHPP soft-
ware reliability models. Therefore, the grey-based ap-
proach for estimating software reliability under the NHPP
is of practical significance in predicting the behavior of
software future failures in the early testing process.
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