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Abstract: Link  prediction  of  combat  networks  is  of  significant
military  value  for  precisely  identifying  the  vital  infrastructure  of
the enemy target and optimizing the operational plan of our side.
Due  to  the  profound  uncertainty  in  the  battleground  circum-
stances,  the  acquired  topological  information  of  the  opponent
combat  network  always  presents  sparse  characteristics.  To
solve  this  problem,  a  novel  approach  named  network  embed-
ding  based  combat  network  link  prediction  (NECLP)  is  put  for-
ward to predict  missing links of  sparse combat networks.  First,
node embedding techniques are presented to preserve as much
information  of  the  combat  network  as  possible  using  a  low-di-
mensional  space.  Then,  we  put  forward  a  solution  algorithm to
predict links between combat networks based on node embed-
ding  similarity.  Last,  massive  experiments  are  carried  out  on  a
real-world  combat  network  case to  verify  the  validity  and prac-
ticality  of  the  proposed  NECLP.  This  paper  compares  six
baseline  methods,  and  experimental  results  show  that  the
NECLP  has  outstanding  performance  and  substantially  outper-
forms the baseline methods.
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1. Introduction
The rapid advancement in information technology and in-
telligence  has  stimulated  the  warfare  transmutation  from
platform-based  countermeasures  to  the  network-centric
warfare (NCW) [1−3]. As one of the most superior opera-
tional  concepts,  NCW  integrates  all  the  well-informed
geographically  scattered  forces  together  through  robust
computer  networking,  transforming  the  information  ad-
vantage  into  the  competitive  advantage  [4,5].  Hence,  all
knowledgeable  entities  in  the  battleground  consist  of  a
combat  network  and  cooperate  with  each  other  via  in-
formation flow [6,7].

Information superiority empowered by sensors accele-
rates the rhythm of decision-making [8]. The two-sides at
war are always disguising their own network structure by
performing electromagnetic interference or hiding essen-
tial infrastructure to prevent hostile forces from scouting,
thus  promoting  its  own  survivability  [9].  In  the  battle-
ground,  it  is  almost  impossible  to  acquire  perfect  intelli-
gence  of  the  opponent  combat  network.  Among  the  ac-
quired intelligence, therefore, it is common to have miss-
ing information, or in other words, missing links or nodes
of the combat network owing to the uncertainty and com-
plexity of the battleground. It would be beneficial in both
identifying  and  destroying  the  vital  infrastructure  of  the
opponent side and optimizing the operational plan of our
side if we could predict and recover the missing network
topology  in  advance  [10].  Hence,  this  would  surely  ad-
vance the effectiveness and efficiency of joint operations
and improve the chance of victory. Missing nodes identi-
fication  and  missing  links  prediction  are  two  significant
yet  different  academic  problems.  In  this  regard,  this  pa-
per mainly focuses on resolving the link prediction prob-
lem for combat networks, i.e., detecting the missing links
according to the observed network including all the nodes
information  and  making  the  improved  combat  network
more in line with the real one.

Link  prediction  has  been  a  hot  issue  of  network  sci-
ence and various measures have been put forward [11−15].
The simplest and the most classic framework for link pre-
diction  is  based  on  the  structural  similarity  of  the  net-
work  [16].  According  to  the  retrieved  information  from
the network,  the similarity-based measures  could be fur-
ther  categorized  into  three  divisions:  the  local  indices,
global indices, and quasi-local indices [11,17]. The local
indices,  such  as  Salton  index,  Sorensen  index,  common
neighbors, Adamic-Adar index, Jaccard’s coefficient, hub
promoted  index,  and  resource  allocation  index,  are  usu-
ally  based  on  the  local  common  neighbor  information.
The  global  indices  take  global  topological  information
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and consider the ensemble of all paths. These link predic-
tion  measures  including  Katz  index,  average  commute
time, and random walk with restart [18]. The third quasi-
local index is a tradeoff of local and global structural net-
work  information,  such  as  local  random  walk,  super-
posed random walk, and local path index [19]. Except for
the  similarity  index,  probabilistic  models  and  the  maxi-
mum likelihood algorithms are also proven to be power-
ful  measures  for  link  prediction  [20−22].  Based  on  the
observed  information  of  the  network,  the  probabilistic
models try to learn a model and then predict the non-ob-
served  links  according  to  the  learned  probabilistic  mo-
del.  Similarly,  the  maximum likelihood algorithms work
through  learning  some  specific  parameters  to  maximize
the probability of the observed network structure and then
predict the existing probability of the missing link.

However,  almost  all  literature  focused  on  networks  in
biological  or  social  fields  [23],  and  little  has  been  in-
volved in the military area. Due to the increasingly com-
plex battleground environment, it is almost impossible to
collect  adequate  information  about  the  opponent  combat
network. Consequently, the acquired topological informa-
tion of the opponent combat network is extremely imper-
fect and it maintains sparse characteristics [24−27]. Yet, a
presumption  of  most  conventional  link  prediction  al-
gorithms  relies  on  the  availability  of  adequate  observed
information.  Thus,  the  classical  link  prediction  methods
may  be  weak  and  deal  with  combat  networks  ineffec-
tively with extremely sparse features [28].

Being  one  of  the  most  powerful  representation  learn-
ing  methods,  node  embedding,  aiming  to  map  the  net-
work  structure  into  a  low-dimensional  space,  is  con-
firmed to be a very practical way of solving link predic-
tion problems of a complex network with the sparse fea-
ture  [29−31].  Numerous  node  embedding  methods  such
as  DeepWalk  [32],  node2vec  [33],  and  large-scale  in-
formation  network  embedding  (LINE)  [34]  have  been
proposed.  Taking  advantage  of  the  deep  neural  network
frame,  these  methods  can  discover  the  latent  knowledge
hidden  in  the  network  and  preserve  as  much  linkage  in-
formation  as  possible  by  non-linearly  transforming
the  observed  network  structure  into  a  lower  dimension
one [35,36]. Therefore, this paper spreads the advantages
of node embedding techniques and presents an integrated
framework called network embedding based combat net-
work  link  prediction  (NECLP)  to  solve  the  link  predic-
tion problems of a combat network. The contributions of
the study are summarized as follows.

(i) We present a procedure of learning node embedding
to map the structural information of a combat network into
a  low-dimensional  space.  The  learned  node  embeddings

can  precisely  capture  the  latent  information  underneath
the network structural topology for link prediction.

(ii)  Based  on  the  node  embedding,  a  solution  al-
gorithm is put forward to resolve the link prediction mo-
del  for  combat  networks,  which  can  better  address  the
problem of sparsity for the combat networks.

(iii)  Extensive  experiments  on  a  case  study  of  real
combat  networks  are  carried  out  to  verify  the  effective-
ness  and  practicability  of  NECLP.  Compared  with  six
classic  baseline  measures,  the  proposed  NECLP  can
achieve better link prediction results for combat networks.

The remainder of the paper is designed as follows: The
problem formulation of combat network link prediction is
described in Section 2. In Section 3, a detailed introduc-
tion  to  the  unified  methodology  framework,  NWCLP,  is
demonstrated. To test the feasibility of NWCLP for com-
bat networks link prediction, experiments on an empiric-
al case are conducted and the results are analyzed in Sec-
tion  4.  Finally,  the  conclusions  and  future  work  are  dis-
cussed in Section 5. 

2. Problem formulation
According to the difference in prediction tasks,  link pre-
diction  can  be  classified  into  three  categories:  missing
link  detection,  future  link  prediction,  and  spurious  link
identification.  Missing  link  detection  attempts  to  predict
the already existent yet unknown links; future link predic-
tion  solves  the  problem  of  predicting  the  likelihood  of
two nodes connecting in the future; the spurious link identifica-
tion works to identify the noisy links, i.e., nonexistent yet
observed links.  In  this  study,  we concentrate  on the first
circumstance, i.e., predicting the missing links of a com-
bat network.

G = (V,E)

GO = (V,EO)
EO EM

⟨u,v⟩ ∈ EM

⟨u,v⟩
Similarity(u,v)

The combat network link prediction problem is formu-
lated as follows: for a combat network , where
V and E denote the sets of nodes and edges respectively.
We assume that  all  node information of  the  combat  net-
work  can  be  observed,  whereas  some  links  are  missing.
The observed combat network is denoted as ,
where  is the set of observed links. Let  denote the
missing  links  to  be  predicted.  For  a  pair  of  nodes

, the goal of the link prediction task is to pre-
dict the likelihood of the link between node u and node v.
The easiest framework for link prediction is based on the
similarity  score  calculated  with  an  algorithm.  Each  non-
observed link pair  are assigned to a similarity score

,  which  is  calculated  according  to  a  pre-
defined  similarity  function.  Then  the  node  pairs  are  sor-
ted  in  accordance  with  the  similarity  values  from  the
largest to the smallest, the bigger the value of the simila-
rity  score,  the  higher  the  possibility  of  the  link  in  the
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nodes. 

3. Network embedding based combat
network link prediction

A  unified  framework  is  introduced  in  this  section  to  re-
solve the combat network link prediction problem. Node
embedding  techniques  are  first  introduced.  Then,  the
node  embedding  similarity  is  calculated.  Finally,  a  solu-
tion  algorithm is  put  forward  to  predict  missing  links  in
combat networks taking advantage of node embedding. 

3.1    Node embedding

Representation learning can be regarded as  a  way of  us-
ing  machine  learning  methods  to  infer  data  representa-
tion.  Different  from  one-hot  representation,  distributed
representation uses dense vectors to represent data points.

G = (V,E)
v ∈ V

Zv ∈ Rd

As one of the distributed representation learning methods,
node  embedding  tries  to  map  information  entities  into  a
low-dimensional  space.  For  a  network ,  the
goal  of  node  embedding  is  to  encode  each  node 
with a vector  so that similarity in the embedding
space  (e.g.,  dot  product)  approximates  similarity  in  the
original network.

The procedure of learning node embedding is shown in
Fig.  1,  which consists  of three steps.  First,  define an en-
coder, which represents a mapping from nodes to embed-
ding.  Next,  define  a  node similarity  function,  which is  a
measure of similarity in the original network; a loss func-
tion  is  also  established  based  on  the  node  similarity.
Then,  optimize  the  parameters  of  the  encoder  to  mini-
mize  the  value  of  the  loss  function.  The  details  of  node
embedding are introduced as follows.
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Fig. 1    Procedure of learning node embedding
 

v ∈ V = Zv

Zv Z ∈ Rd×|V |

Zv

The  first  step  is  to  define  the  encoder.  For  each  node
,  an  encoder ENC(v)  is  defined  to  map v  to  a

low-dimensional  vector ,  where  is  a  matrix
with  each  column  as  a  node  embedding  and  is  the
d-dimensional embedding of node v.

The  next  step  is  to  define  a  node  similarity.  A  lot  of
similarity approaches have been put forward, such as ad-
jacency-based  similarity  and  multi-hop  similarity.
However,  these  similarity  measures  are  time-consuming
since we need to iterate over all pairs of nodes. Recently,
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random  walk  similarity  gets  much  attention  for  its  effi-
ciency  and  effectiveness,  and  one  does  not  need  to  con-
sider  all  node  pairs  when  training.  Only  pairs  that  co-
occur  on  random  walks  are  needed  to  be  considered.
Hence, we take the random walk approaches to calculate
node  similarity.  The  random walks  are  acquired  starting
from  each  node  on  the  combat  network  according  to
strategy R .  The  simplest  strategy  is  to  just  run  fixed-
length,  unbiased  random  walks  starting  from  each  node
(DeepWalk)  [32].  Grover  et  al.  [33]  also  put  a  flexible,
biased  random  walks  strategy  trading  off  between  local
and  global  views  of  the  network  (node2vec).  In  this
study,  we  take  these  two  random  walk  strategies  to  ob-
tain random walks.

C(u)
PR(v|u)

PR(v|Zu)

For node u, let  be the multiset of nodes visited on
random walks starting from u.  estimates the con-
ditional  probability  of  visiting node v  on a  random walk
starting from node u using some random walk strategy R.

 refers  to  the  DeepWalk  conditional  probability
of  random  walk  co-occurrences  of  node v  starting  from
node u based on node embedding, which can be parame-
terized using a softmax function [32,33]:

PR(v|Zu) =
exp(ZT

u · Zv)∑
k∈V

exp(ZT
u · Zk)

. (1)

PR(v|Zu) PR(v|u)
The  goal  of  training  node  embedding  is  to  make

 get closer to . Thus, the loss function can
be obtained:

L =
∑
u∈V

∑
v∈C(u)

PR(v|u)−PR(v|Zu). (2)

v ∈C(u) PR(v|u) = 1For each , the , then (2) can be ex-
pressed as

L = A−
∑
u∈V

∑
v∈C(u)

PR(v|Zu) (3)

A =
∑

u∈V

∑
v∈C(u)

where . Combining (1) and (3), we ob-
tain

L = A−
∑
u∈V

∑
v∈C(u)

exp(ZT
u · Zv)∑

k∈V

exp(ZT
u · Zk)

. (4)

One  flaw  of  calculating  the  normalization  term  from
the softmax is  time-consuming,  and we can fix  it  with  a
negative  sampling  technique  [37],  and  the  loss  function
can finally be expressed as follows:

L̂ = −
∑
u∈V

∑
v∈C(u)

lg
exp(ZT

u · Zv)∑
k∈V

exp(ZT
u · Zk)

. (5)

So far, we have described how to optimize embedding
given random walk  statistics.  We use  the  stochastic  gra-

Z ∈ Rd×|V |
dient descent (SGD) algorithm to update the node embed-
ding  to minimize loss function L .  For detailed
information about SGD algorithm, please refer to [38]. 

3.2    Node embedding similarity

⟨u,v⟩ ∈ EMGiven  a  pair  of  nodes ,  several  similarity
measures  can  be  defined  according  to  the  learned  node
embedding,  such  as  Euclidean  distance,  Manhattan  dis-
tance,  Minkowski  distance,  Jaccard  similarity,  and  co-
sine similarity. In this paper, the cosine similarity is used
to represent the node embedding similarity.

sim⟨u,v⟩Denoted as , the cosine similarity between u and
v based on the node embedding is expressed as follows:

sim⟨u,v⟩ =
ZT

u · Zv

∥Zu∥ ∥Zv∥
(6)

Zu Zvwhere  and  represent the node embedding of node u
and v.

After  calculating  the  node  embedding  similarity,  we
then sort node pairs in accordance with the similarity va-
lues from the largest to smallest for link prediction. 

3.3    Solution algorithm for link prediction

The solution algorithm for link prediction is shown in Al-
gorithm 1.

Algorithm 1　Solution algorithm for link prediction

Input:
A case of combat network: G;

EOObserved combat network link set: ;
EMMissing combat network link set: ;

Random walk strategy: R;
Prediction link number: N.

Output:
ZNode embedding: ;

Predicted link set: P.
1: Construct training sets, test sets;
2: Initial node embedding;
3: Generate random walks W according to strategy R;
4: For each random walk in W do
5: Update node embedding using SGD algorithm (see (5));

EM6: For each node pair in  do
7: Calculate similarity score (see (6));
8: Rank node pair by order of the similarity scores;
9: Take the top N ranked pairs as the predicted links;
10: Return node embedding and predicted link set.
 

4. Case study
The  practicability  and  effectiveness  of  the  proposed
NECLP are  verified  based  on  a  real-world  case  of  com-
bat networks, and substantial experiments are conducted.
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The  section  can  be  divided  into  three  parts:  dataset
description  and  experimental  settings,  results  analysis,
and parameter sensitivity analysis. 

4.1    Dataset description and experimental settings

In order to examine the practicability and effectiveness of
the  proposed  approach,  NECLP,  a  case  of  combat  net-
work  with  297  nodes  and 2  359 links  is  studied  in  this
section. 

4.1.1    Comparison of methods

Numerous classical baseline measures are taken for com-
parison, which is summerized as follows.

Proposed method: The NECLP learns the node embed-
ding  of  combat  networks  according  to  different  random
walk  strategies,  preserving  as  much  information  of  the
combat  network  as  possible  using  a  low-dimensional
space.  Two different  random walk  strategies  are  used  in
this paper: DeepWalk and node2vec. The number of node
embedding dimensions is set as 10; the walk length is set
as 80; the window size for optimization is set as 10. For
node2vec, the return hyper-parameter is set as 1, and the
input hyper-parameter is set as 0.5.

Baseline  methods:  six  classical  link  prediction  al-
gorithms  are  introduced  for  comparison  because  of  their
persuasive link prediction performance confirmed in pri-
or literature, including common neighbor (CN), Jaccard’s
coefficient (JAC), Adamic/Adar index (AA), preferential
attachment  (PA),  resource  allocation  (RA)  and  within
inter-cluster (WIC). 

4.1.2    Evaluation metrics

The precision, recall,  and area under the receiver operat-
ing characteristic (ROC) curve (AUC) are the three most
classic  metrics  for  link  prediction  performance  evalu-
ation [18,39].  Thus,  we choose  three  metrics  to  evaluate
the  link  prediction  performance  of  combat  networks
for  NECLP  and  the  baseline  measures.  The  precision
and  recall  metrics  assess  completeness  and  accuracy,
while  AUC  estimates  the  ranking  performances  of  link

prediction. 

4.1.3    Experimental setups

Substantial  experiments  are  conducted  to  verify  the  link
prediction performance of the proposed methods. All the
observed  links  of  the  combat  network  are  separated  into
ten  equal  portions  with  nine  portions  as  training  set  and
the  rest  one  portion  for  testing.  For  each  link  prediction
algorithm, link pairs among the test set are sorted by or-
der of  the similarity scores,  and the top f  percent  ranked
links  are  selected  as  the  predicted  ones.  In  this  study,
parameter f  is  set  as  20%,  we  also  carry  out  the  sensiti-
vity  analysis  of  parameter f  on  link  prediction  perfor-
mance in the following subsection. The ten-fold cross-va-
lidation  is  employed  when  calculating  the  precision,  re-
call,  and  AUC.  To  ensure  the  robustness  of  the  evalu-
ation results,  each experiment is conducted 20 times and
the  median  value  is  taken  as  the  final  results.  The  95%
confidence interval is also calculated to show the valida-
tion of the results. 

4.2    Results analysis

The link prediction performance of the proposed NECLP
and  the  baseline  methods  evaluated  by  precision,  recall,
and AUC are reported in this section.

As  shown  in Table  1,  our  proposed  node  embedding
method  NECLP  is  more  effective  than  the  baselines  for
predicting  missing  links  of  combat  networks.  Specifi-
cally,  in  terms  of  AUC,  NECLP-node2vec  achieves  the
best  link  prediction  performance,  which  is  about  11.8%
higher  than  that  achieved  by  the  best  baseline  method
RA. When calculating the recall and precision rate of the
link  prediction  results,  similar  results  are  obtained,  and
the  proposed  NECLP-node2vec  and  NECLP-DeepWalk
earned  more  than  10% points  than  all  the  baselines.  Be-
sides, the standard error of the proposed node embedding
methods,  NECLP-node2vec  and  NECLP-DeepWalk,  are
much  smaller  than  that  of  the  baseline  methods,  which
shows  that  the  performance  of  NECLP-node2vec  and
NECLP-DeepWalk is more reliable and stable.

 
 

Table 1    Link prediction performance for different methods

Method
Evaluation metric

AUC Recall Precision

Proposed method
NECLP-node2vec 0.754 ± 0.010 0.535 ± 0.019 0.007 ± 0.000

NECLP-DeepWalk 0.750 ± 0.011 0.518 ± 0.016 0.006 ± 0.000

Baseline method

CN 0.631 ± 0.028 0.389 ± 0.042 0.005 ± 0.000

JAC 0.616 ± 0.023 0.312 ± 0.032 0.004 ± 0.000

AA 0.659 ± 0.028 0.387 ± 0.042 0.005 ± 0.000

PA 0.518 ± 0.043 0.259 ± 0.052 0.004 ± 0.000

RA 0.672 ± 0.026 0.439 ± 0.037 0.006 ± 0.000

WIC 0.631 ± 0.028 0.389 ± 0.042 0.005 ± 0.000
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We also draw the ROC curve of the link prediction re-
sults  for  all  the  methods.  Each  point  of  the  ROC  curve
expresses a specificity (true negative rate) and sensitivity
(true  positive  rate)  pair  regarding  a  special  decision
threshold.  The  AUC  curve  displays  the  sensitivity  and
specificity at all possible thresholds. Hence, the closer the
ROC curve is to the upper left corner, the higher the over-
all accuracy of the prediction performance. It can be seen
that the proposed NECLP obtains a far better link predic-
tion  performance  of  combat  networks  than  all  the
baseline methods, as in Fig. 2. One advantage of our pro-
posed  NECLP is  that  the  NECLP could  discover  the  la-
tent  semantics  hidden  in  the  network  structure  and  leve-
rage  a  mixture  of  related  components  for  embedding.
When  comparing  the  two  random  walk  strategies,
node2vec  is  a  little  better  than  DeepWalk.  That  is  be-
cause node2vec has a more feasible way of choosing ran-
dom walks by adjusting parameters.
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Fig. 2    ROC curve of the prediction results for different methods
  

4.3    Parameter sensitivity analysis
 

4.3.1    Top  f  ranked links choosing analysis

f ∈ [0,1]
In the study, link pairs among the test set are sorted by or-
der of the similarity scores, the top  ranked links
are  taken as  the predicted ones when evaluating the link
prediction performance for different methods. How is the
parameter f  affecting the link prediction performance for
different  methods?  We  compare  the  link  prediction  per-
formance  of  the  proposed  NECLP  and  the  baseline  me-
thods  measured  by  precision  and  recall  under  different
parameter f. The link prediction performance is evaluated
with the parameter f changing from 0 to 1 while fixing the
value  of  other  parameters  so  that  the  effect  of  the  para-
meter f  can  be  determined.  The  results  are  displayed  in
Fig. 3.

Fig. 3(a) illustrates the link prediction results of diffe-
rent  algorithms  measured  by  precision.  Because  of  the

f > 0.5

sparse  characteristics  of  the  heterogeneous  combat  net-
works, it is worth noting that the precision of all the men-
tioned  methods  depicted  in Fig.3  are  all  relatively  low.
The  precision  performance  of  link  prediction  declines
with the growth of  parameter f ,  i.e.,  increasing the num-
ber  of  missing links  as  predicted ones,  which is  adhered
to  our  intuition.  When  the  value  of  parameter f  is  in  a
small  number,  say  below 0.4,  the  precision  outcomes  of
NECLP are far better than the baselines. With the advant-
ages  of  NECLP narrow down with  the  increase  of  para-
meter f, and even get reversed by some baseline methods,
such  as  CN,  JAC,  and  AA,  when  parameter .
However,  in  the  real-world  case,  the  parameter f  is  usu-
ally set with a small number, and the prediction is mean-
ingless  if  we  select  a  large  number  of  missing  links  as
predicted  ones.  In  contrast  with  the  precision  perform-
ance, the recall rate goes up with the increase of parame-
ter f.  Fig.  3(b)  presents  a  similar  tendency  of  recall  per-
formance when comparing the proposed NECLP with the
baseline methods.
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In short, the proposed NECLP can achieve a good link
prediction  performance,  especially  with  a  small  parame-
ter k. The combat networks analyzed in this study exhibit
sparse features, and the accessible linkage information is
extremely inadequate. Nevertheless, NECLP can descry a
way of overcoming the shortcoming by mining the valu-
able  latent  information  underneath  the  observed  structu-
ral information for link prediction. 

4.3.2    Node embedding dimension analysis

The  node  embedding  dimension  is  a  significant  parame-
ter  influencing  the  link  prediction  performance.  How  to
design  the  value  of  node  embedding  dimension  reason-
ably  and  accurately  to  optimize  the  performance  of  the
NECLP algorithm remains an interesting question. In this
subsection,  we  carry  on  sensitivity  analysis  to  design
parameter  of  the  node  embedding  dimension.  The  AUC
prediction performance of NECLP-node2vec and NECLP-
DeepWalk with changing of the node embedding dimen-
sion  are  shown  in Fig.  4.  It  can  be  seen  that  the  AUC
score of the link prediction performance is getting better
with  the  increase  of  the  node  embedding  dimensions,
which  is  in  accordance  with  our  intuition.  Because  the
node embedding dimension measures the information ca-
pacity to some degree, the higher the node embedding di-
mension,  the  more  information  that  can  be  captured.
However,  the  growth  rate  of  AUC  gradually  decreases
with  node  embedding  dimension  increasing.  When  the
node  embedding  dimension  is  over  10,  the  AUC perfor-
mance  of  link  prediction  remains  almost  unchanged,  es-
pecially for the NECLP-node2vec method, and even expe-
riences  a  slight  fluctuation.  This  means  10-dimension
node embedding is great enough to capture the latent in-
formation underneath the network structural topology for
link prediction. It is also known the computational comple-
xity  increases  with  the  node  embedding  dimension,  thus
the node embedding dimension is set as 10 in the paper. 

5. Conclusions
Under  the  condition  of  informationization,  modern  war-
fare tends to be complex and volatile, and the electromag-
netic  battleground  environment  has  become  more  and
more  complicated.  It  is  extremely  hard  to  obtain  com-
plete  and  reliable  intelligence  on  the  opponent  network.
The  observed  topology  of  the  opponent  combat  network
is usually imperfect and presents sparse characteristics. If
we could predict and recover the missing links of the en-
emy combat network in advance, it would be beneficial in
both identifying and destroying the vital infrastructure of
the opponent side and optimizing the operational plan of
our  side.  In  this  study,  we  propose  a  link  prediction
framework called NECLP to take advantage of node em-
bedding techniques for combat networks link prediction.

The  proposed  NECLP has  several  merits:  (i)  the  self-
organization and self-learning ability of NECLP can help
preserve  as  much  valuable  information  as  possible  by
mapping  the  network  into  a  low-dimensional  space;
(ii) NECLP can better address the problem of sparsity for
the combat networks by exploring and exploiting the latent
information hidden in the network structure; (iii) NECLP
performs great achievement especially with lack of train-
ing  observations  and  produces  good  expansibility  which
can  also  be  practiced  in  other  complex  networks.
However,  this  paper  only  takes  advantages  of  the  struc-
tural  information  of  the  combat  network,  other  informa-
tion,  e.g.,  node  and  edge  attributes,  could  also  be  em-
ployed  to  predict  missing  links  in  future  research.  Be-
sides,  combat  networks  always  contain  various  types  of
nodes,  such  as  sensor  entities,  decision-making  entities,
and striking entities. Information flows on different types
of  entities  bear  some  valuable  semantics,  and  how  to
combine  this  information  with  node  embedding  tech-
niques  for  link  prediction  is  also  an  interesting  research
topic.
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