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Abstract: This paper dwells upon optimizing the azimuth samp-
ling interval of digital surface maps used to model radar ground
clutter.  The  resulting  equations  can  be  used  to  find  the  digital
map  sampling  interval  for  the  required  calculation  error  and
modeled  power  of  the  simulated  signal,  which  determines  the
resulting  distribution  of  backscatter  intensity.  The  paper  further
showcases how the sampling interval could be increased by pre-
processing the map.
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1. Introduction
Mathematical and semi-natural modeling of ground clutter
uses digital vector-based surface maps as source data [1–5].
Traditionally [1−4], when describing the ground surface,
several  categories  of  its  covers  are  classified  (grass,
forests,  residential  buildings,  snow,  and  so  on),  each  of
which  has  its  certain  echoing  properties  set  by  the  de-
pendence  of  the  normalized  radar  cross-section  (nRCS)
on the grazing angles. The location of the areas occupied
by these cover and their configuration is identified by the
map  [1−4].  However,  the  vector  format  is  inconvenient
for  the  formation  of  the  reflected  signal,  therefore  dis-
crete sampling is used to represent the continuous distri-
bution  of  covers  and  the  resulting  distribution  of  re-
flectivity.  This  inevitably  results  in  errors  in  the  simu-
lated signal parameters [3–8], thus making the simulated
distribution  of  backscatter  intensity  error-prone  as  well.
Errors  can  be  reduced  by  sampling  at  smaller  intervals.
However, too small an interval will increase the computa-
tional complexity.

Many works described a discrete surface model but did
not raise the issue of choosing a discretization step [2−5,8].
In some works, the step is determined based on the accu-
racy  of  the  selected  map  [1,4],  however,  the  impact  of

this choice on the characteristics of the simulated signal is
not evaluated. In [6], the influence of the sampling step in
azimuth on the simulation accuracy was shown and a me-
thod for determining the sampling rate based on the statis-
tical properties of surface reflections was proposed.

The  goal  hereof  is  to  substantiate  methods  that  could
increase the sampling interval while staying within the re-
quired margin of error of backscatter modeling.

Since  the  discrete  array  is  formed  by  polar  grid  cen-
tered at the radar [1], there are azimuth and range samp-
ling  of  Earth  surface  maps.  Notably,  sampling  interval
optimization for the range is for the most part a resolved
issue  [9,10].  This  is  why  this  paper  focuses  mainly  on
azimuth sampling.

Let  us  find out  how the azimuth sampling interval  af-
fects the power of the simulated return of a pulse surveil-
lance  radar  when  scanning  in  the  azimuth  plane.  As
known [4,8,11], the distribution of reflectivity across the
Earth’s surface,  i.e.,  the  distribution  of  nRCS  values  at
the  points α  for  azimuth  and r  for  slant  range,  which
defines  its  radar  image,  can  be  represented  by  a  random
two-dimensional (2D) field. This field is denoted as σ(α, r).
This distribution is  weighted by the radiation patterns of
the radar transmitter/receiver antennas, generating the an-
tenna  output  and  determining  its  power.  As  the  power
changes while the antenna system runs azimuth scanning,
this  change  determines  the  Earth’s surface  radar  image
scanned by azimuth.

For azimuth scanning of the radiation pattern [8,12,13],
the  power  of  surface  plots  equidistant  from  the  antenna
(this distance is denoted as r) can be found as

P (α0,r) ∼
w 2π

0
F(α−α0, θ(r)− θ0)σ(α,r)dα (1)

where F(α,  θ )  is  the  squared  product  of  the  pattern  of
transmitter and receiver antennas in the direction α and θ,
α0 and  θ0  are  the  pattern  axis  positions  by  azimuth  and
range, respectively, θ(r) is the elevation angle.

When using a discrete Earth surface map:
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Pd (α0,r) ∼ S es ·
N∑

i=1

F (i∆α−α0, θ (r)− θ0)σ (i∆α,r) (2)

where Δα is the azimuth sampling interval, Ses is the ele-
mentary cell area on the discrete map, N is the number of
azimuthal nRCS distribution samples.

The  difference  between  (1)  and  (2)  is  the  error  of  the
modeled clutter power, which arises from the sampling of
surface reflectivity

E (α0,r) = P (α0, r)−Pd (α0, r) . (3)

Equations  (1) –(3)  can  be  used  to  find  the  errors  of
power  of  the  modeled  surface  return  from  the  given
nRCS distribution and the radar pattern shape for a given
nRCS  azimuth  sampling  interval  [6].  Let  us  now  con-
sider how to increase this interval. 

2. Diminution the  sampling interval  require-
ments  by  using  less  detailed  reflectivity
specification

Let us use a known nRCS model [4,11], which can be ex-
pressed as

σ(α,r) = σ0_m (α,r)+σ0_r (α,r) (4)

where σ0_m is a non-fluctuating component that depends on
the cover type, σ0_r is a random component that is a normal
random  process  with  the  correlation  function  [14,15],
which can be expressed as

R (∆1,∆2) = D0 exp
(
−∆1−∆2

ρ

)
(5)

where D0 is the variance of the random nRCS component,
ρ is the correlation radius, Δ1 = a − b and Δ2 = c − d are
the distances between points on the axes α and r, a and b
are the azimuth coordinates (α), c and d are the range co-
ordinates (r).

In essence, σ0_r forms a fine structure of nRCS distribu-
tion,  which  determines  the  sampling  interval  require-
ments.  The  question  is  when  it  does  not  have  to  be
modeled.

Let us take a look at model (4) and find the equation of
random  and  non-fluctuating  RCS  components  for  a  plot
of  the  Earth’s surface  sized  ΔαL by  Δr linearly.  The  lin-
ear  size  of  such  a  plot  in  terms  of  the  azimuth  coordi-
nate  is  related  to  the  angular  size  (Δα)  by  the  following
equation:

∆αL = tan(∆α)r.

The  variance  of  the  non-fluctuating  RCS  component
[16] is defined as

Dm (∆α,∆r) ∼ ∆α2
L∆r2σ2

0_m. (6)

The  variance  of  the  random  RCS  component  in  light
of (5) is defined as

Dr(∆αL,∆r) ∼

D
[w ∆αL

0

w ∆r

0
σ0_r (α,r)∂r∂α

]
∼

w ∆αL

0

w ∆αL

0

w ∆r

0

w ∆r

0
R (∆1,∆2)∂a∂b∂c∂d ∼

D0

w ∆αL

0

w ∆aL

0
exp

(
−|∆1|
ρ

)
∂a∂b ·

w ∆r

0

w ∆r

0
exp

(
−|∆2|
ρ

)
∂c∂d

(7)

D[·]
R (∆1,∆2) = D0 exp

(
−|∆1|
ρ
− |∆2|
ρ

)
.

where  is  the  symbol  of  variance  calculation  and

Given that the integrand is even, each of the double in-
tegrals in (7) can be transformed intow ∆αL

0

w ∆αL

0
exp

(
−|∆1|
ρ

)
∂a∂b =

2
w ∆αL

0

w b

0
exp

(
−∆2

ρ

)
∂a∂b =

2
w ∆αL

0
exp

(
b
ρ

)w b

0
exp

(
−a
ρ

)
∂a∂b =

2ρ
(
∆αL+ρexp

(
−∆αL

ρ

)
−ρ

)
.

Given  that,  the  variance  of  the  random  RCS  compo-
nent will be written as

Dr(∆αL,∆r) ∼

4D0ρ
2

(
∆αL−ρ+ρexp

(
−∆αL

ρ

))
·(

∆r−ρ+ρexp
(
−∆r
ρ

))
.

Thus, the variance equation can be expressed as

Y =
Dr (∆αL,∆r)

Dm (∆αL,∆r)+Dr (∆αL,∆r)
. (8)

σ0_m = 10−3 D0 = 10−8 ρ = 12

To illustrate this, consider modeling backscatter from a
square grass-covered plot given the 3 cm operating radar
wavelength with a grazing angle of six degrees. According
to [11,17], in this case, , ,  m.
Calculations run according to (8) show that  the effect  of
the random component attenuates as the plot increases in
size.  For  instance,  for  a  20 m × 20 m site, Y  is  approxi-
mately 4%; for an 80 m × 80 m site, Y is less than 1.5%. 

3. Redacting  the  sampling  rate  by  conver-
ting the original map

It is easy to see that (1) is a convolution of the nRCS dis-
tribution and the  product  of  the  antenna pattern.  In  turn,
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f 1/∆α
Ĝ ( f )

F (α,θ)
GF ( f )

(2)  is  a  convolution  of  the  discrete  distribution  of  the
nRCS  and  pattern.  As  for  the  frequency  domain,  tran-
sition  to  a  discrete  nRCS distribution  results  in  its  spec-
trum G( )  being  reproduced  at  an  interval  of .
The  spectrum  of  (2)  is  the  nRCS  spectrum  multi-
plied by the spectrum of the product of the squared trans-
mitter pattern and squared receiver pattern , which
is denoted as .

GF ( f )

σ (α,r)

This  periodic  reproduction  of  the  nRCS  distribution
spectrum value  results  in  a  well-known phenomenon re-
ferred  to  as  spectral  overlap,  as  shown  in Fig.  1.  If  the
spectral  overlap  occurs  in  a  domain  bounded  by ,
the  spectrum  of  (2)  will  differ  from  that  of  (1).  Since

 has  an  infinitely  broad  spectrum  [12], overlap
will occur at any sampling rate.

  

−1/Δα 0

Absolute value

f1 f2 1/Δα f

: |GF( f )|; : |G( f ,Δα)|.

GF( f ) Ĝ( f )Fig. 1    Absolute values of the functions   and 
 

GF ( f ) G ( f )However, the functions  and  are monotoni-
cally decreasing [12], which enables finding such rates f1

and f2, respectively, above which the function values can

GF ( f ) G ( f )
be  neglected  (assumed  to  equal  zero).  Then,  given  that

 and   must  intercept  at  the  given  level,  the
sampling rate must be (see Fig. 1)

fd ⩾ f1+ f2.

f2 ⩽ f1

fd ⩾ 2 f1

This  equation  allows  lowering  the  sampling  rate.  It  is
essentially as follows.  If ,  then filtering the nRCS
distribution with a low-frequency filter whose bandwidth
equals f1 will return .

This  allows  reducing  the  nRCS  distribution  sampling
interval by a factor of

( f1+ f2)/2 f1. (9)

The  reduced  sampling  rate  and  the  corresponding  in-
crease  in  the  sampling interval  will  not  lead to  a  greater
error (see Fig. 1). In essence, the pattern shape and width
determine  the  sampling  interval.  This  leads  to  two  im-
portant conclusions.

First, it is necessary to find the sampling rate f1 for the
typical  approximations  of  the  main  pattern  lobe:  the
Gaussian  function,  the  2nd-  and  the  3rd-degree  cosine,
and  the  sinc  function. Table  1 summarizes  the  estimates
for three values of the normalized level (denoted as ε). It
shows the values f1 depending on the main-lobe width for
the first-zero level (denoted as W00) (for half-power level
in case of the Gaussian function W05)  and the number of
discrete samples per equal range ring N.

 
 

Table 1    Necessary cover azimuth sampling rate for the most common pattern models

Antenna pattern approximation
The upper frequency of the spectrum f1

ε = 0.001 ε = 0.01 ε = 0.1

F(α) = exp
(

4ln(0.5)
W05

α2
)2

2.8N/WN05 2.3N/WN05 1.7N/WN05

F (α) =
(

sin(2πα/W00)
2πα/W00

)2
3.8N/WN00 3.4N/WN00 2.6N/WN00

F (α) = cos2
(

π
W00
α

)
3.1N/WN00 2.9N/WN00 2.3NWN00

F (α) = cos3
(

π
W00
α

)
4N/WN00 3.6N/WN00 2.7N/WN00

 

Second, prefiltering the original nRCS distribution (the
original  vector-based  map)  by  azimuth  using  a  low-pass
filter  with  a  bandwidth  of f1  helps  reduce  the  sampling
rate of the original nRCS distribution to 2 f1.

In  general,  these  findings  allow  creating  an  algorithm
that will calculate the sampling interval for digital nRCS
distribution maps as follows:

(i)  Use  (8)  to  assess  the  need  to  model  the  random
component. If such modeling is not needed, set this com-
ponent to 0.

(ii)  Filtering the  original  nRCS distribution (the  origi-
nal vector-based map) by azimuth using a low-pass filter

with a bandwidth of  f1.
fd ⩾ 2 f1(iii) Set the sampling interval according to .

 

4. Experiments

Example 1　　Let us consider the modeling of a 10 km
radius ground surface area, whose distribution of RCS is
shown  in Fig.  2 (antenna  mast  height  is  5  m).  For  this
purpose, a threshold is chosen to determine the upper fre-
quency  of  the  spectrum-such  a  frequency,  above  which
harmonics values do not exceed 0.1 of the maximum har-
monic in spectrum.
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Fig. 2    Ground clutter map
 

The  original  map  of  the  area  is  split  into  300  round
ranges.  Within  each  round, 10 000  samples  of  the  nRCS
are taken and the upper frequency is calculated based on
them.  Thus,  we receive  300 frequency values  (as  shown
in Fig.  3),  and  to  calculate  the  required  sampling  fre-
quency, we will select the maximum of them, which is 0.3.
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Fig. 3    Dependence of the frequency f2 on the number of a ring of
equal range for the distribution is shown in the Fig. 2 (ε = 0.1)
 

Let  us  choose  a  Gaussian  function  as  an  approxima-
tion  of  the  antenna  directivity  diagram.  To  calculate  the
frequency f1 ,  we  find  the  number  of  counts  per  beam
width:

W05 =
10 000 ·Wdeg

360

where Wdeg is antenna beamwidth in degree.
Then, using the formula from Table 1, we calculate the

value of the upper frequency f1 of the antenna diagram of
a  Gaussian  shape,  with  a  width  of  1,  2,  and  3  degrees.
The value of the frequency f1 and the gain (9) are entered
in Table 2.
Example 2　　Let us consider the same surface area

for a higher antenna position (antenna mast height is 25 m).

The Fig. 4 presents this map (maximum range is 10 km,
cells with discernible clutter are shown white, the map is
calculated  for  the  height  of  the  antenna  mast  equal  to
25 km). In this case, a larger number of surface areas are
illuminated  (as  shown  in Fig.  4)  and  the  distribution  of
the nRCS is more uniform. This leads to a decrease of the
upper frequency f2  (as shown in Fig. 5). In this example,
f2 = 0.045. The gain (9) for this example is listed in Table 2.
  
Table 2    Dependence of the gain (9) on the antenna beamwidth

Antenna beamwidth in degree
Gain of the method

1/(°) 2/(°) 3/(°)

Frequency f1 (ε = 0.1) 0.06 0.03 0.02

Gain (9) for the Example 1 3 5.5 8

Gain (9) for the Example 2 − 1.25 1.6
 

  

Fig. 4    Ground clutter map
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Fig. 5    Dependence of the frequency f2 on the number of a ring of
equal range for the distribution is shown in Fig. 4 (ε = 0.1)
 

Example  3　　Let  us  consider  the  modeling  of  the
section from Fig.  3.  However,  now the threshold for  de-
termining the  upper  frequency is  0.01.  For  this  case,  the
frequency distribution is shown in Fig. 6. The upper fre-
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quency  can  be  taken  as  equal  to  0.5.  The  frequencies f1

for  different  beamwidth  and  the  resulting  gain  are  listed
in Table 3.
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Fig. 6    Dependence of the frequency f2 on the number of a ring of
equal range for the distribution is shown in Fig. 4 (ε = 0.01)
  

Table 3    Dependence of the gain (9) on the antenna beamwidth

Antenna beamwidth in degree
Gain of the method

1/(°) 2/(°) 3/(°)

Frequency f1 (ε = 0.01) 0.08 0.04 0.03

Gain (9) for the Example 2 3.6 6.7 8.8
 

As  the  examples  show,  this  method  is  well  suited  for
modeling highly irregular ground surfaces when there is a
lot of shading. This is typical when the radar is operating
at  low  grazing  angles  [1].  The  method  is  also  good  for
cases where it  is  necessary to carry out  simulations with
higher accuracy. At the same time, the method is more ef-
fective when simulating the operation of radars with wide
antenna beams. 

5. Conclusions
Equations obtained can be used to find the minimum al-
lowed sampling interval for Earth surface maps given the
required error of simulated signal power.

The  paper  shows  how  to  reduce  this  interval  by  not
modeling  the  random  nRCS  distribution  component  and
by filtering the original distribution.
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