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Abstract: In the world, most of the successes are results of long-
term  efforts.  The  reward  of  success  is  extremely  high,  but  be-
fore  that,  a  long-term  investment  process  is  required.  People
who are “myopic” only value short-term rewards and are unwill-
ing to make early-stage investments, so they hardly get the ulti-
mate success and the corresponding high rewards. Similarly, for
a reinforcement learning (RL) model with long-delay rewards, the
discount rate determines the strength of agent’s “farsightedness”.
In  order  to enable the trained agent  to make a chain of  correct
choices and succeed finally,  the feasible  region of  the discount
rate  is  obtained  through  mathematical  derivation  in  this  paper
firstly. It satisfies the “farsightedness” requirement of agent. Af-
terwards,  in  order  to  avoid  the  complicated  problem of  solving
implicit  equations in the process of choosing feasible solutions,
a simple method is explored and verified by theoreti�cal demon-
stration and mathematical experiments. Then, a series of RL ex-
periments are designed and implemented to verify the validity of
theory. Finally, the model is extended from the finite process to
the  infinite  process.  The  validity  of  the  extended  model  is  veri-
fied  by  theories  and  experiments.  The  whole  research  not  only
reveals the significance of the discount rate, but also provides a
theoretical basis as well as a practical method for the choice of
discount rate in future researches.
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1. Introduction
The essence of reinforcement learning (RL) is actually an
optimization  of  strategies  and  algorithms.  The  research
history of the RL basic mathematical model can be traced
back to the proposal of Bellman equation in the 1950s [1].
The  development  of  animal  learning  psychology  in  the
1980s  inspired  a  renaissance  in  RL  research.  The  rapid
update of computer hardware in recent years has brought

about  a  new  wave  of  artificial  intelligence.  With  the
powerful  function  fitting  capabilities  of  deep  neural  net-
works, RL research has entered a new stage, attracting at-
tentions of countless researchers.

In  practical  application,  the  famous  production  is  the
AlphaGo  [2]  designed  by  DeepMind  company,  whose
outstanding  performance  in  the  game  of  Go  makes  RL
one of the most popular topics in this new era. Today, the
research  of  RL  is  not  limited  in  the  original  game  field
[3–6], but has expanded to various aspects of life and pro-
duction. For example, intelligent life involves the control
of  smart  cars,  unmanned aerial  vehicles,  and  various  ro-
bots  [7–10],  the  network  planning  of  smart  city  [11],  as
well  as  the  indoor  temperature  control  and  heating  en-
ergy optimization of buildings [12]. In industrial produc-
tion,  it  is  used  to  optimize  process  routes  in  chemical
manufacturing  [13].  In  medical  treatment,  it  is  used  for
the  motion  control  of  surgical  robots  [14].  Even  in  the
finance field, it can be used to optimize financial portfo-
lio  trading  strategies  intelligently  [15].  Besides,  RL  is
also applied to solve classic optimization problems, such
as  the  traditional  multiple  traveling  salesman  problem
(MTSP) [16].

In the RL model, the value of the discount rate can de-
cide  learning  results.  An  inappropriate  value  of  the  dis-
count rate may cause that agent would only focus on the
short-term low rewards,  rather  the  highest  reward  in  the
longer  future.  The  research  on  the  discount  rate  began
with Ainslie’s pigeon experiment to study the theory of delayed
rewards [17].  Later,  many researchers conducted various
experiments  from  perspectives  of  biology  and  medicine
[18–21 ].  In  terms  of  theoretical  research,  Papale  et  al.
studied  the  interactions  between  deliberation  and  delay-
discounting  [22];  Yamaguchi  et  al.  researched  the  “dis-
counted problem” on the learning preferences of animals
[23];  Knox  et  al.  studied  the  problem  of  temporal  dis-
counting from the perspective of human reward [24].

In the past researches on RL, most of them just simply
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pointed out the general definition of the discount rate, but
there  are  few  specific  analysis  on  the  effect  of  the  dis-
count  rate  on  RL.  As  a  result,  0.9  or  a  higher  random
value is usually chosen by default in most of experiments
[25–28 ],  but  a  complete  set  of  theory  and  an  effective
choice method are not put forward. On the basis of previ-
ous  studies,  firstly  the  influence  of  the  discount  rate  on
the  RL  model  is  studied  from the  perspective  of  mathe-
matical theory in this paper, and the feasible region of the
discount  rate  is  deduced,  which  enables  an  agent  to  ob-
tain  the  highest  reward  in  a  long-delay  rewards  model.
Then  through  theoretical  derivation,  a  simple  solution
method  for  the  feasible  solution  of  the  discount  rate
which ensures the “farsightedness” ability of agent under
normal conditions is explored. Finally, a series of experi-
ments  are  used  to  verify  the  validity  of  theories  and  the
usefulness of the method. 

2. Importance of discount rate
RL is a process in which an agent continuously interacts
with environment to learn how to map current state to an
action  to  maximize  the  gains.  It  includes  two  objects:
agent and environment. The basic model is shown in Fig. 1.
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Fig. 1    Basic model of RL
 

RL is  a  semi-supervised learning method,  that  is,  dur-
ing  the  learning  process,  the  agent  is  not  told  which  ac-
tion  should  be  taken,  but  it  just  needs  to  try  constantly
different actions by itself and evaluate the value of differ-
ent states and actions according to different rewards. The
rewards  used  for  value  evaluating  generally  refer  to  not
only the immediate reward of the current action, but also
the  delayed  rewards  of  the  next  state  and  all  subsequent
states.

Therefore,  these  two  characteristics,  trial-and-error
search  and  delayed  rewards,  are  the  two  most  important
distinguishing  features  of  RL  [29].  Among  various  RL
models,  there is  a special  one.  That  is  the long-delay re-
wards model: the agent can choose between low rewards
in  near  term and high reward in  the  future.  If  it  chooses
the former, it will get only low rewards from beginning to
end. Otherwise, if  it  chooses the ultimate high reward, it
must endure long period of negative rewards firstly. This
model corresponds to the long-term investment process in
real  life.  The  most  typical  examples  are  the  education
process  and  the  scientific  research  process.  Only  after  a
long period of investment can the ultimate reward be ex-

Gt

{Rt+k+1} Gt

tremely  high.  The  goal  of  this  RL model  is  to  make  the
expected gain  maximal, which is a function of the re-
ward sequence . Generally  is defined as

Gt = Rt+1+γRt+2+γ
2Rt+3+ · · · =

∞∑
k=0

γkRt+k+1 (1)

γ (0 < γ < 1)

γ

γ γ = 0

Rt+1 γ

where discount rate  is a parameter , determi-
ning the effect of delayed rewards on the whole expected
gain. When  approaches 0, the agent is “myopic”. When
the  value  of  is  set  as  the  limit ,  the  agent  only
cares about the maximization of the current immediate re-
ward, and the goal of learning is to choose an appropriate
action to maximize the value of .  With  increasing,
the agent gradually becomes more and more “foresighted”
and pays the more attentions to future rewards.

There  are  two  kinds  of  concepts  of  the  value  in  RL,
namely the state value and the action value.

Vπ(s) s
π

The  state  value  is  described  by  state  value  function
,  which  denotes  the  value  of  state  of  the  agent

when following policy .

Vπ(s) = Eπ[Gt |S t = s] =
Eπ[Rt+1+γRt+2+γ

2Rt+3+ · · ·|S t = s] (2)

Eπ[·]
π t

S t t

where  denotes the expected value of a random vari-
able  given  that  the  agent  follows  policy ,  and  is  any
time step.  denotes the state representation at time .

Qπ(s,a) a
s π

The action value is described by the state action value
function , which denotes the value of action  on
current state  when following police .

Qπ(s,a) = Eπ[Gt |S t = s,At = a] =
Eπ[Rt+1+γRt+2+γ

2Rt+3+ · · ·|S t = s,At = a] (3)

At twhere  denotes the action representation at time .
γ

γ

γ

The  value  of  affects  discounted  future  rewards,
which  further  affects  the  value  function.  Therefore,  for
some  long-delay  rewards  models,  choice  of  is  ex-
tremely  important.  For  example,  in  a  realistic  scenario,
only after  years of study can a child have stronger abili-
ties than others, and then get a higher reward in work after
graduation. In this process, the immediate reward is nega-
tive because of the boring learning, but the final reward is
extremely  high;  on  the  contrary,  if  the  child  chooses  to
play or rest, the immediate reward may be a little higher,
but the final reward will  be very low. Similarly, when 
is  high  enough,  the  agent  will  consider  future  reward
more and choose the “boring learning”; on the contrary,
the agent will  not be “farsighted” enough and choose to
“play” or “rest” instead.

The above scenario can be converted into a commonly
used model of RL: the treasure-detecting model.

As shown in Fig. 2, this model belongs to the Markov
decision  process  (MDP)  in  discrete  state  spaces.  The
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initial position of the agent is the state (0,0) in red in the
upper  left  corner.  The  agent  can  only  choose  right  and
down  actions,  and  only  move  one  grid  per  step.  It  is
defined that when the agent performs a rightward action,
it denotes investment to find the treasure. In this case, im-
mediate reward of action is a small negative value . It
is defined that when the agent performs a downward ac-
tion,  it  denotes  a  rest.  In  this  case,  immediate  reward  of
action is a zero value . Only when the agent chooses
to  keep  investing  in  finding  treasure,  that  is,  perform
rightward actions all the way and follow the green path to
the end state (5,0) in yellow in the upper right corner, the
treasure  could  be  obtained.  Otherwise,  the  agent  will
reach the end states (0,5),(1,4), ,(4,1)  in black ,  and in
this case no treasure could be obtained. It is defined that
the immediate reward of treasure is a great positive value

,  and  the  immediate  reward  is  a  zero  value  in
other end states.
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Fig. 2    Treasure-detecting model with long-delay rewards
 

Rmin γ

γ

γ

In  this  model,  in  order  to  get  the  treasure  reward,  the
agent  must  firstly  endure  multiple  consecutive  negative
rewards  before.  If  is  too  small,  the  discounted
value of treasure rewards will become too small to offset
the sum of the discounted value of the previous negative
rewards.  Finally  the  action  value  of  looking  for  treasure
will be less than the value of rest. The external manifesta-
tion is that the agent is not “farsighted” enough: no mat-
ter  how  many  episodes  of  training,  it  cannot  reach  the
treasure state, but will eventually prefer to the state (5,0).
That  is,  the  downward action which denotes  rest  will  be
chosen  from  the  beginning  to  the  end.  Obviously  the
choice of  has a vital influence on results of the agent’s
training.  Therefore,  the  specific  feasible  region  of 
would be discussed in detail in the next chapter. 

3. Feasible region of discount rate
In  the  long-delay  rewards  model  shown in Fig.  2,  in  or-
der  to  obtain  the  treasure  reward,  the  discount  rate  has
different feasible regions for different model parameters,
which  include  the  maximum steps  number  in  each  epis-
ode, the immediate reward of treasure, etc.

6×6 (n+2)×
(n+2)

At = 0 At = 1
T = (n+1)

T = (n+1)
n+1 n n−1 ,

· · · , n+1

Rt,A=0

Rt,A=1

n+1
Rt=T = RT M

n+1 n n−1 , · · · , n
RT = RT0

The  model  corresponding  to Fig.  2 is  further  abstrac-
ted:  the  state  space  is  expanded  from  to  

.  The  initial  position  of  the  agent  is  still  at  (0,0).
The treasure position is set to (n+1,0). The agent can only
choose  right  and  down  actions,  and  only  move  one  grid
per step. The action of rightward movement is defined as

;  the  other  is  defined  as .  The  steps  number
of the agent in each episode is determined as ,
that  is,  when the  agent  performs  actions  and
moves to a certain point among (0, ), (1, ), (2, )

( ,0), the current episode ends. During the move-
ment, if the next state is not the end state, the immediate
reward  of  action  of  rightward  movement  will  be ,
and the reward of action of downward movement will be

.  If  the  next  state  is  the  end  state,  then  if  the  end
state is the treasure state ( ,0), the immediate reward
will  be ,  otherwise  if  the  end  state  is  not  the
treasure state including (0, ), (1, ), (2, ) ( ,1),
the immediate reward will be .

The value of the reward are defined as
Rt,A=0 = Rmin/ |Rmin| = −1
Rt,A=1 = Rzero/ |Rmin| = 0
RT M = Rmax/ |Rmin| = Rmax

RT0 = Rt,A=1 = 0

. (4)

According to (1), in this model, the gain function of the
agent in an episode of training is

Gt=0 = R1+γR2+γ
2R3+ · · ·+γnRn+1 =

n∑
k=0

γkRk+1, 0 < γ < 1;n ∈ N+;n≫ 1. (5)

Rk Ak

If  the  agent  can  get  treasure,  all  its  actions  must  be
rightward  movement.  Thus  and   should  meet  the
following conditions:

Rk = −1, 1 ⩽ k ⩽ n

Rk = Rmax, k = n+1
Ak−1 = 0, 1 ⩽ k ⩽ n+1

. (6)

Substituting (6) into (5), we get

Gt=0(Ak−1 = 0,1 ⩽ k ⩽ n+1) =

− (1+γ+γ2+ · · ·+γn−1)+γnRmax = γnRmax−
1−γn

1−γ . (7)

Rk Ak

When the agent  chooses other  paths,  compared to (6),
 and  would meet the following conditions:

Rk = −1, Ak−1 = 0; 1 ⩽ k ⩽ n

Rk = 0, Ak−1 = 1; 1 ⩽ k ⩽ n

Rk = 0, k = n+1∑
k

Ak−1 , 0, 1 ⩽ k ⩽ n+1

. (8)

Substituting (8) into (5), we get
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Gt=0

∑
k

Ak−1 , 0, 1 ⩽ k ⩽ n+1

 = n+1−
∑

k

Ak−1. (9)

Gt=0Obviously  as  for  (9),  when  is  the  maximum,  the
agent should choose downward actions all, that is,

Ak−1=1, 1 ⩽ k ⩽ n+1. (10)

Substituting (10) and (9) into (5),  at  this condition we
get the maximum gain

Gt=0(Ak−1=1,1 ⩽ k ⩽ n+1)=0× (1+γ+γ2+ · · ·+γn)=0.
(11)

γ

Qπ(s,a)

Rmax

Our  goal  is  to  find  the  feasible ,  which  guarantees
that  the  agent  can  learn  a  suitable  action  value  function

 after  enough  episodes  of  training.  This  function
is referred to simply as the Q-Table. When the agent ex-
ecutes a purely greedy policy based on the data in the Q-
Table,  it  can choose rightward action all  the way and fi-
nally  get  treasure  reward .  In  order  to  achieve  this
goal, the following conditions need to be met:

Rmax≫ n, (12)

Gt=0(Ak−1 = 0,1 ⩽ k ⩽ n+1) >Gt=0(Ak−1 = 1,1 ⩽ k ⩽ n+1).
(13)

Substituting (7) and (11) into (13), we get

γnRmax−
1−γn

1−γ > 0 (14)

⇒

Q(S = [0,0] ,A = 0) = Eπ[Rt+1+γRt+2+

γ2Rt+3+ · · ·|S t = s] = −1(1+0.6+0.62+0.63)+
20×0.64 = 0.416

Define

F(γ) =
γn(1−γ)
(1−γn)

− 1
Rmax
. (15)

F(γ)Take the derivative of  and we get

F′(γ) =
γn−1 [γn+1− (1+n)γ+n

]
(1−γn)2 . (16)

Define

J(γ) = γn+1− (1+n)γ+n. (17)

J(γ)Taking the derivative of , we get

J′(γ) = (1+n)γn− (1+n). (18)

0 < γ < 1With , we get

0 < γn < 1, (19)

J′(γ) < 0. (20)

J(γ) lim
γ→1

J(γ) = 0Thus  is decreasing. Because , we get

J(γ) > 0, (21)

F′(γ) > 0. (22)
F(γ)Thus  is increasing. Then we can get

lim
γ→0

F(γ) = − 1
Rmax

< 0, (23)

lim
γ→1

F(γ) =
1
n
− 1

Rmax
> 0. (24)

F(γ) (0 < γ < 1)

γ0 (0 < γ0 < 1)

Because  is  monotonically  increasing ,
according to  the “Zero Theorem”,  there  must  be a  solu-
tion ,  which  meets  the  requirement  of  the
equation:

F(γ0) = 0. (25)
γThus the feasible region of  meeting (13) is

γ0 < γ < 1. (26)

γ0In (26),  is the solution of (25). 

4. A feasible solution of discount rate
γ

γ0

In Section 3, the feasible region of discount rate  is de-
rived,  which enables  the  agent  so  “farsighted”  to  obtain
treasure. The key point is the solution of . Since (25) is
implicit, it is difficult to solve it. This chapter will intro-
duce a simpler method of choosing a feasible solution.

0 < γ < 1,n ∈ N∗,n≫ 1According to , we get

γn→ 0+. (27)

Define

f (γ) = γn(1−γ)− 1
Rmax
. (28)

Therefore,

f (γ) < F(γ). (29)

f (γ)Take the derivative of  and we get

f ′(γ) = nγn−1− (n−1)γn. (30)

Therefore, 
f ′(γ) > 0, 0 < γ < γ′0
f ′(γ) = 0, γ = γ′0
f ′(γ) < 0, γ′0 < γ < 1

. (31)

γ′0= n/(n+1) f (γ)
(0,γ′0) (γ′0,1)

f (γ′0) γ = γ′0

In  (31), .  Therefore,  increases  in
range ,  decreasing  in  range ,  and  gets  the
maximum value  at the point of .

f (γ′0) ⩾ 0
F(γ′0) > 0

According  to  (29),  when ,  there  must  be
.

γ′0= n/(n+1)Substituting  into (28), we get

f (γ′0,n) =
( n
n+1

)n (
1− n

n+1

)
− 1

Rmax
. (32)

f (γ′0,n) ⩾ 0Making , we get
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Rmax ⩾
(
1+

1
n

)n

(n+1). (33)

because

lim
n→∞

(
1+

1
n

)n

= e−, (34)

Rmax ⩾ (n+1)e. (35)
Rmax n

F(γ′0) > f (γ′0) > 0 e
γ′0 = n/(n+1) Rmax n

γ= n/(n+1)

γ

As  explained  above,  when  and   satisfy  (35),
there  must  be ,  where  is  the  natural
constant, and . Therefore, when  and 
in the model  are determined,  the first  step is  to compare
whether their value satisfies the constraint relationship of
(35).  If  yes,  it  is  the  simplest  to  choose  di-
rectly.  It  can  ensure  that  after  innumerable  episodes  of
training,  the  agent  can  learn  a  suitable  Q-Table,  and
choose a path of “bitter before sweet” to get treasure re-
ward.  If  no,  the  easy  method above is  not  applicable.  In
this case the only method to get a feasible solution of  is
to  solve  implicit  (25).  Any  value  in  the  feasible  region
can be chosen.

Rmax n
F(γ)

f (γ) γ

Then  setting  as  well  as  multiple  different  va-
lues, we get the corresponding change trends of  and

 with respect to  shown in Fig. 3.

Rmax = 20 ⩾ 5e = (n+1)e
F(γ) f (γ)
γ′0 = n/(n+1) = 0.8 Rmax = 5e = (n+1)
e F(γ) f (γ)
γ′0 = 0.8 f (γ)

F(γ)

As shown in Fig. 3(a), when ,
 and  both have a positive value at the point of

. In Fig. 3(b), when 
,  and  both have a positive value at  the point

of ,  too. What is different is  that  is  slightly
greater than zero, while  is extremely greater.

Rmax = 8 < 5e Rmax = 6 < 5e

f (γ)
γ′0 = 0.8 F(γ)

Rmax

n
n/(n+1) γ

Rmax > n
(γ0,1)

(0.77,1)
(0.855,1)

Compare Fig.  3(c) and Fig.  3(d),  which correspond to
the  conditions  and   respec-
tively.  They  do  not  satisfy  the  constraint  relationship  of
35, so both of their  are negative values at the point
of .  The  difference  is .  The  former  is  posi-
tive but the latter is negative. That means when  and

 do  not  satisfy  the  constraint  relationship  of  (35),
 is not necessarily in the feasible region of  and

cannot  be  used  directly.  However,  both  of  them  satisfy
, so they both have a solution as for the implicit

(24).  Every value in  feasible  region  can be a  fea-
sible solution, as the interval  in Fig. 3(c) and the
interval  in Fig. 3(d).

Rmax = n
F(γ) (0,1) γ

γ = 1 F(γ) = 0

Fig. 3(e) is an extreme situation: . As is shown,
 is negative in . Only when  takes the extreme

value , there is . It means that when the im-
mediate reward of treasure is too small to offset the sum
of  the  immediate  negative  rewards,  the  agent  cannot
choose the treasure. That is also consistent with the com-
mon sense. 

5. Experiments and discussions
γ

Rmax n
In previous sections, the choice of  is researched for dif-
ferent  as well as  in the long-delay rewards model.
Then the correctness of the theory is verified by a series
of experiments in this section. 

5.1    Experiments design

n = 4 6×6
Rmax

Take the model in Fig. 2 as an example. For this model,
there is , and state space is a  array. The value
of  is  set  as  20,  5e,  8,  and  6  respectively.  Train  the
agent  with  the  off-policy  temporal-difference  learning
method,  that  is,  the  Q-learning  method.  The  specific  al-
gorithm of Q-learning is shown in Algorithm 1.

Algorithm 1:  Q-learning (off-policy  temporal-difference
(TD) control)

α ∈ (0,1] ε > 0Algorithm parameters: step size  small 
Q(s, a) s ∈ S + a ∈ A(s)

Q (terminal, ·) = 0
Initialize ,  for  all , ,  arbitrarily  ex-
cept that 
Loop for each episode:

S　　Initialize 
　　Loop for each step of episode:

A S
ε−greedy

　　　　Choose  from using policy derived from Q
(e.g., )

A R S ′　　　　Take action , observe , 
Q(S , A)← Q(S , A) +α[R+γmax

a
Q(S ′, a)−　 　 　 　
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Q(S , A)]

S ← S ′　　　　

S　　until  is terminal

Rmax γ

· · · Rmax γ

ε−greedy

ε

α

Rmax γ

For every value of , the value of  is set as 0, 0.1 ,
0.2, , 1. For every specific combination of  and ,
the agent needs to be trained for 20 000 episodes respecti-
vely.  The  action  policy  during  training  is  the 
policy. In order to enhance the agent’s exploration ability,
the value of  is set as 0.5. In order to ensure stability of
the training process, the value of learning step length  is
set as 0.01. After the training process, test agent using the
pure greedy policy in the same model, and we can get Q-
Table and the optimal path as for every specific combina-
tion of  and . 

5.2    Results and discussions

Rmax γ

Rmax

γ

γ γ0

F(γ)

γ

Rmax

Rmax = 5e

γ

Rmax = 8 Rmax = 6

After training and tests, we get the optimal path using the
pure  greedy  policy  as  for  every  specific  combination  of

 and . The optimal paths are recorded in Table 1. As
shown in Table  1,  at  a  premise  that  is  fixed  as  20,
the  optimal  path  of  the  agent  changes  from  continuous
downward  to  continuous  rightward  when  increases  to
0.7.  However,  the above theory points out that  the agent
should change the path when  is greater than . That is,
according to zero point of  in Fig. 3(a), the solution
of equation 25 is 0.576, therefore, the optimal path of the
agent should change when  increases to 0.6 rather than
0.7 in this model.  Similarly,  in other groups correspond-
ing to different values of , there are also parts that are
inconsistent with theory. Such as , according to
Fig.  3(b),  theoretically  the  optimal  path  of  the  agent
should change when  increases to 0.7, but the actual re-
sult is 0.8. Under the conditions of  and ,
all  the  optimal  path  of  the  agent  are  continuous  down-
ward, which is obviously inconsistent with theory.

Rmax = 20 γ = 0.6
In response to discrepancy between theory and experi-

ment  under  the  condition  of  and  ,  the
corresponding  Q-Table  is  picked  up  and  shown  in
Table 2.
 
 

Rmax= 20 γ= 0.6Table 2    Q-Table under the condition of   and 

State
Action

0 1

[0,0] −1 0

[0,1] −1 0

[0,2] −1 0

[0,3] −1 0

[0,4] −1 0

[1,0] −0.742 49 0

[1,1] −1 0

[1,2] −1 0

[1,3] −1 0

[2,0] 1.108 516 0

[2,1] −0.999 27 0

[2,2] −0.999 97 0

[3,0] 5.794 161 0

[3,1] −0.899 89 0

[4,0] 16.190 77 0

Q(S = [4,0] ,A = 0) =
16.19

A = 0

Rmax = 20

According  to Table  2,  there  is 
. In fact, when the state converts to [4,0], the agent

gets treasure if it performs action . Thus the theore-
tical  action  value  should  be  equal  to  the  immediate  re-
ward of treasure .

α

It  is  inferred  that  the  reason  for  the  error  may  be  that
the learning step  is too short, or the number of training
episodes is not enough. As a result that training is incom-
plete,  and the error  between the data in Q-Table and the
theoretical  value  is  too  large.  Next,  increase  the  number
of training episodes to 100 000 and perform a set of sup-
plementary experiments again. 

5.3    Supplementary experiments and
result discussions

Use the  same training model  in  Subsection 5.1;  increase
the  number  of  training episodes  from 20 000 to  100 000;
and carry out the experiment again.

Rmax γ

Rmax = 20
γ

γ0 = 0.567

After  the  supplementary  experiments,  we  get  the  op-
timal path using the pure greedy policy as for every spe-
cific combination of  and  again.  The new optimal
paths  are  recorded  in Table  3.  By  comparing Fig.  3 and
Table 3, it can be seen that experiment results at this time
are fully consistent with the theory. For , the op-
timal path of the agent changes when  increases to 0.6.
This  corresponds  to  the  point  of  in  Fig.  3(a),

 

Rmax γ

Table  1      Optimal  paths  of  agent  for  different  combinations  of
 and 

γ
Rmax

20 5e 8 6

0.0 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.1 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.2 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.3 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.4 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.5 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.6 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.7 {0,0,0,0,0} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.8 {0,0,0,0,0} {0,0,0,0,0} {1,1,1,1,1} {1,1,1,1,1}

0.9 {0,0,0,0,0} {0,0,0,0,0} {1,1,1,1,1} {1,1,1,1,1}

1.0 {0,0,0,0,0} {0,0,0,0,0} {1,1,1,1,1} {1,1,1,1,1}
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Rmax = 5e
γ

γ0 = 0.643 Rmax = 8
γ

γ0 = 0.77
Rmax = 6 γ

γ0 =
0.855

which is the solution of (25). Similarly, for , the
optimal  path changes when  increases to 0.7.  This  cor-
responds to the point  in Fig. 3(b); for ,
the optimal path changes when  increases to 0.8. This cor-
responds to the equation’s solution  in Fig. 3(c);
for ,  the  optimal  path changes when  increases
to  0.9.  This  corresponds  to  the  equation’s solution  

 in Fig. 3(d).
 
 

Rmax γTable 3    Optimal path for different combinations of   and   in
supplementary experiments

γ
Rmax

20 5e 8 6

0.0 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.1 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.2 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.3 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.4 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.5 {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.6 {0,0,0,0,0} {1,1,1,1,1} {1,1,1,1,1} {1,1,1,1,1}

0.7 {0,0,0,0,0} {0,0,0,0,0} {1,1,1,1,1} {1,1,1,1,1}

0.8 {0,0,0,0,0} {0,0,0,0,0} {0,0,0,0,0} {1,1,1,1,1}

0.9 {0,0,0,0,0} {0,0,0,0,0} {0,0,0,0,0} {0,0,0,0,0}

1.0 {0,0,0,0,0} {0,0,0,0,0} {0,0,0,0,0} {0,0,0,0,0}
 

Rmax = 20 γ = 0.6
We  also  get  the  Q-Table  under  the  condition  of

 and   in  supplementary  experiments,
which is shown as Table 4.
 
 

Rmax= 20 γ= 0.6Table 4      Q-Table  under the condition of   and   in
supplementary experiments

State
Action

0 1

[0,0] 0.416 0

[0,1] −1 0

[0,2] −1 0

[0,3] −1 0

[0,4] −1 0

[1,0] 2.36 0

[1,1] −1 0

[1,2] −1 0

[1,3] −1 0

[2,0] 5.6 0

[2,1] −1 0

[2,2] −1 0

[3,0] 11 0

[3,1] −1 0

[4,0] 20 0

It can be the seen that the experimental value in Table 4
has converged to the theoretical value.

S = [0,0] A = 0For example, in the case of , , the theor-
etical value can be calculated according to (3) as follows:

Q(S = [0,0] ,A = 0) = Eπ[Rt+1+γRt+2+

γ2Rt+3+ · · ·+ |S t = s] = −1(1+0.6+0.62+0.63)+
20×0.64 = 0.416.

It is consistent with the experimental value in Table 4.
Similarly,  it  can  be  verified  that  the  other  experimental
values  in Table  4 are  also  consistent  with  their  theoreti-
cal values. It  proves that all  of experimental values have
converged to theoretical values with a certain accuracy at
this time.

Rmax

n γ

Rmax γ

γ0

γ (γ0,1)

Rmax n
n/(n+1) γ

γ

Rmax n

The  supplementary  experiment  verifies  the  rightness
and feasibility of theory in Section 3 and Section 4. That
is,  for an RL model with long-delay rewards, when 
and  are determined, the value of  will have a qualita-
tive impact on training results. As for arbitrary combina-
tion  of  and  ,  we  just  need  to  solve  implicit  equa-
tion  (25)  and  get  the  solution ,  then  choose  the  arbit-
rary  value  of  from interval .  The  agent  can  cor-
rectly find treasure after enough training. Specially, when
the relation between  and  satisfies constraint  (35),
we can choose  as  the value of  directly.  That
method ensures convergence of results and eliminates the
complicated  process  of  solution  to  implicit  equations.
Through comparison of experiments in the following sec-
tion,  it  is  shown  that  in  practice,  the  completeness  of
training will also affect the training effect. In order to get
real  training  results,  and  ensure  the  error  small  enough
between the experimental value and the theoretical value,
it is not only necessary to control relationship between ,

 and , but also have enough training episodes to en-
sure the completeness of training. 

6. Model expansion and comparative
experiments

γIt  is  pointed  out  that  only  when  the  discount  rate  is
greater  than  a  certain  threshold,  the  agent  have  stronger
foresight ability and succeed in obtaining the treasure.

However, the choice of the discount rate is not the big-
ger the better.  The detailed proof is  demonstrated in this
section. 

6.1    From finite to infinite

T
In the model shown in Fig. 2, the move steps of the agent
in  each  episode  are  limited  in  a  finite  number  due  to
the  existence  of  the  end  state.  This  process  is  called  the
finite MDP. In reality, more problems are persistent tasks
that  run  for  an  infinite  long  time  but  have  no  end.  That
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T →∞
γ

process  is  called  the  infinite  MDP.  In  an  infinite  MDP
model, . That puts forward a new constraint on the
choice of discount rate  in (1).

According to  the finite  MDP treasure-detecting model
in Fig.  2,  the  state  transition  graph  of  the  infinite  MDP
model with long-delay rewards is shown in Fig. 4.

 
 

0

0

a=1 a=1 a=1 a=1 a=1

a=0 a=0 a=0 a=0 a=0

1 2 3 4 5

x
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…

Fig. 4    State transition graph of the infinite MDP model with long-
delay rewards
 

· · ·

Rmax

Rmax

Rzero

There  are  six  state  spaces  in  the  model,  namely  (0,0),
(1,0), (2,0), ,(5,0). The initial state is the leftmost state
(0,0)  in  red,  and  there  is  no  ending  state.  The  action
spaces of the agent are still right and down. The right ac-
tion denotes the effort, in which the corresponding imme-
diate reward is  if the next state is treasure state (5,0)
in  yellow,  or  if  the  next  state  is  the  other  in  green.
The  down  action  denotes  the  rest,  in  which  the  corres-
ponding immediate reward is .

The state transfer rule is that the agent moves one grid
per step. No matter what state the agent is in, as long as it
chooses to move down, it  will  immediately return to the
leftmost  state  (0,0).  It  can  only  reach  the  treasure  state
(5,0)  when it  chooses to move right  for  five consecutive
times. This state is the instantaneous transition state, that
is, when agent reaches the state (5,0), it will immediately
return  to  the  state  (0,0)  and  go  on.  The  whole  process
starts from the state (0,0) and has no ending.

n+2

At = 0 At = 1

T =∞

Rt,A=1

n+1
Rt,A=0

RT M

The  model  in Fig.  4 is  further  abstracted:  the  state
spaces are expanded from six to ( ).  The initial  state
is  (0,0).  The  treasure  state  is  (n+1,0).  The  action  spaces
are  still  right  and  down.  The  right  action  is  defined  as

 and  the  down  action  is  defined  as .  The
agent  moves  one  grid  per  step  and  its  steps  number  is

.  During  the  moves,  if  the  next  action  is  going
down,  the  next  state  returns  to  (0,0),  and  the  immediate
reward is . Otherwise, when the next action is right,
if the next state is not treasure state ( ,0), the immedi-
ate  reward  is ;  if  yes  ,  the  immediate  reward  is

and the state will return to (0,0) immediately.
The value of the reward is defined as

Rt,A=0 = Rmin/ |Rmin| = −1
Rt,A=1 = Rzero/ |Rmin| = 0
RT M = Rmax/ |Rmin| = Rmax

. (36)

According to (1), in this model, the gain function in the
process of training is

Gt = Rt+1+γGt+1. (37)

t = 0
If  the  agent  chooses  the  right  actions  consecutively  to

obtain the treasures from , then
Rk = −1, k < {n+1,2(n+1),3(n+1), · · ·}
Rk = Rmax, k ∈ {n+1,2(n+1),3(n+1), · · ·}
Ak−1 = 0, k ⩾ 1

(38)

Substituting (38) into (39), we get

Gt=0 = −1+γGt=1

Gt=1 = −1+γGt=2

...

Gt=n = Rmax+γGt=n+1

Gt=n+1 =Gt=0

. (39)

Then, we get

Gt=0(Ak−1 = 0, k ⩾ 1) =
− (1+γ+γ2+ · · ·+γn−1)+γnRmax+γ

n+1G0 =(
γnRmax−

1−γn

1−γ

)
.

(
1

1−γn+1

)
. (40)

t = 0 t = T 0 ⩽ T ⩽ n
If  the  agent  chooses  other  paths,  namely  it  moves  to

right continuously from  until ( ) turns
downward, there are conditions

Ak−1 = 0, 1 ⩽ k ⩽ T

Rk = −1, 0 ⩽ k ⩽ T

Ak = 1, k = T

Rk+1 = 0, k = T

. (41)

0 ⩽ t ⩽ TThe gain function during  is

Gt=0(Ak−1=0, AT = 1，1 ⩽ k ⩽ T ) =
− (1+γ+γ2+ · · ·+γT−1)+γT+1G0 =

−
(

1−γT

1−γ

)
.

(
1

1−γT+1

)
. (42)

0 < γ < 1 1
/ (

1−γT+1) > 0 1/ (1−
γ) > 0

As , the inequalities ，

 hold.
T = 0 G0And  only  when  the  parameter ,  can  get  the

maximum value

Gt=0(Ak−1 = 1, k ⩾ 1) = 0. (43)

Similarly  to  the  finite  process  in Fig.  2,  in  an  infinite
process,  if  the  agent  can  continuously  obtain  treasure
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reward, (12) and the following equation should also be sa-
tisfied:

Gt=0(Ak−1 = 0, k ⩾ 1) >Gt=0(Ak−1 = 1, k ⩾ 1). (44)

From  (44),  (13)  can  be  deduced.  And  in  the  end,  the
same conclusions can be obtained between the finite pro-
cess and the infinite process. It means that the theories as
well  as  the  method,  which  is  conducted  and  verified
above  and  is  appropriate  for  the  finite  process,  are  also
appropriate for the infinite process. 

6.2    Choice of discount rate in infinite process

In  a  finite  MDP,  the  convergence  speed  of  the  action
value  function  is  generally  accelerated  with  the  increase
of  the  discount  rate,  because  the  length  of  the  learning
process is determined in each episode.

T →∞
In an infinite process,  because the length of the learn-

ing is , the gain function approaches infinity. It is
easy  to  make  each  state  influence  each  other  greatly  in
the learning process at the same time. These make the con-
vergence  speed  of  the  action  value  function  slowdown,
and  even  make  the  value  function  converge  to  a  wrong
value.

For  the  above  theory,  the  experiments  are  designed

comparing with the ones in Section 5.

n = 4
· · · Rmax = 20

γ

γ1 = n/ (n+1) = 0.8

γ γ2 = 0.9

γ3 = 0.99
γ

γ

Choose  the  model  in Fig.  4 as  an  example.  For  this
model, , and there are six state spaces, namely (0,0),
(1,0),  (2,0)  , ,(5,0).  Fix  the  parameter .  The
value  of  discount  rate  is  the  only  variable.  According
to the conclusion in  Section 4,  is  set
as the experimental group. In general researchers’ experi-
ments,  the  discount  rate  is  usually  chosen  as 
by default [25,26], so it is set as a control group. In order
to  enhance  the  credibility  of  the  theory  and  the  persuas-
iveness of the comparative experiment, the extreme con-
trol  group  is  specially  added.  Substitute  the
three different values of  into (39) respectively, and the
true values of Q-Tables in different  conditions are cal-
culated.

γ T
ε−greedy

ε

α

Then,  the agent  is  trained with Q-learning in  different
 conditions.  The length of  training  is  set  as 500 000.

The action policy during training is the  policy.
The  value  of  is  set  as  0.5.  The  value  of  learning  step
length  is set as 0.01.

γ

After  the  training  process,  the  errors  between  the  true
values and experimental values of Q-Tables in different 
conditions  are  obtained.  Their  variation  trends  with  the
training process are shown in Fig. 5.
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A = 0
Comparing Fig. 5(a)–Fig. 5(e), it can be concluded that

when the agent chooses action , the variations of the
errors  between  the  true  action  values  and  experimental
action values are roughly in three stages. Firstly, there is
a  short  stage  of  large  error.  After  about  the  10th  to  the
20th thousand steps, the variation enters a stage of expo-
nential convergence. Finally error converges into a small
and stable value in the last stage.

γ1 = 0.8
γ2 = 0.9

In  each  subfigure,  it  can  be  observed  that  the  blue
curve  corresponds  with ,  compared  with  the  red
curve  corresponding  with ,  has  three  common
characteristics:

(i)  The  blue  curve  enters  the  error  convergence  stage
earlier than the latter;

(ii) The blue curve has a faster convergence speed than
the latter;

(iii) The blue curve converges into a smaller error than
the latter.

γ3 = 0.99
It  can  be  observed  that  the  black  curve  corresponding

with  always  maintains  large  errors  and  cannot
converge. In fact, it is found in subsequent experiments that
the error function does not converge until the 3 000 000th
step,  and  the  minimum  error  is  many  orders  of  mag-
nitude higher than the other two.

γ

A = 1

γ1 = 0.8
γ2 = 0.9

γ3 = 0.99

In Fig.  5(f),  the  variation trends of  the errors  between
the  true  and  experimental  action  values  in  different 
conditions when the agent chooses action  is shown.
It can be observed that three groups of errors all increase
exponentially  at  first  and  finally  enter  the  stable  stage.
The difference is that the value of blue curve correspon-
ded  with  is  much  smaller  than  the  value  of  the
red curve corresponding with  in the stable stage.
The  black  curve  corresponding  with  has  the
fastest increasing speed and the highest error value com-
pared with the others.

γ

According to the above experimental results,  it  can be
concluded  that  for  the  infinite  long-delay  rewards  RL
model,  a  large value of  will  not  only lead to  too slow

γ

γ

γ

convergence  rate  of  the  value  function,  which  will  slow
down  the  learning  speed.  In  addition,  the  error  between
the  final  convergence  value  and  the  true  value  is  too
large,  which  makes  it  difficult  for  the  agent  to  learn  ef-
fectively,  or  even  makes  it  learn  wrongly.  Therefore,  in
order  to  improve  the  learning  efficiency  and  reduce  the
learning bias, it is most appropriate to choose the smaller
value  of  as  far  as  possible  within  the  feasible  region,
rather  than  to  choose  the  larger  value  of  blindly.  The
choosing  method in  Section  3  and  Section  4  can  ensure
the optimal value of . 

7. Conclusions
Starting  from  practical  problems,  the  discount  rate  in  a
long-delay  rewards  RL  model  is  researched.  First,
through mathematical analysis of delay steps number, fi-
nal reward and discount rate in the model, the feasible re-
gion  of  the  discount  rate  is  derived,  which  enables  the
agent  to  be  “farsighted ”  enough  to  get  the  final  reward
under  specific  parameter  conditions.  Besides,  a  simple
method of solving a feasible solution of the discount rate
under  general  conditions  is  explored  by  theoretical  deri-
vation  and  proved  by  mathematical  experiments.  Then,
the validation and practicability of the theory are verified
by  a  series  of  training  experiments  of  RL,  including  the
supplementary experiments. Finally, the long-delay RL mo-
del is extended from the finite process to the infinite pro-
cess. Through theoretical derivation, it  is proved that the
method  of  choosing  discount  rate  researched  above  has
the  same applicability  in  these  two kinds  of  process.  By
designing  a  series  of  contrast  test,  the  advantages  of  the
method of the choosing discount rate are shown. The dis-
count rate chosen makes the gain function converge more
accurate and more rapid, and improves the effect of RL

Through  the  in-depth  research  of  the  relationship
between  the  discount  rate  and  the  other  parameters  in
model,  the  significance  of  the  discount  rate  is  revealed.
That  not  only  can  be  applied  to  many  RL  models  with
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long-delay  rewards,  but  has  some  guiding  meanings  to
some  problems  in  reality.  The  derivation  of  the  feasible
region  of  the  discount  rate  provides  a  theoretical  refer-
ence for the choosing of the discount rate in RL with long-
delay rewards. The new method of feasible resolution ma-
kes  the  choosing  more  easily.  The  experiments,  especi-
ally the supplementary experiments in this paper, provide
a solid foundation for the theory, prove the practicability
of the method, and have certain reference significance to
the practical experiment implementation in the future.

References
 BELLMAN R. A problem in the sequential design of experi-
ments.  The  Indian  Journal  of  Statistics,  1956,  16(34):
221–229.

[1]

 SILVER D,  HUANG A,  MADDISON C J,  et  al.  Mastering
the  game  of  Go  with  deep  neural  networks  and  tree  search.
Nature, 2016, 529(7587): 484–489.

[2]

 LIN C J, JHANG J Y, LEE C L, et al. Using a reinforcement
Q-learning-based  deep  neural  network  for  playing  video
games. Electronics, 2019, 8(10): 1128.

[3]

 TAMASSIA M, ZAMBETTA F, RAFFE W L, et al.  Learn-
ing options from demonstrations: a pac-man case study. IEEE
Trans. on Computational Intelligence and AI in Games, 2018,
10(1): 91–96.

[4]

 WYDMUCH M, KEMPKA M, JASKOWSKI W. ViZDoom
competitions:  playing  doom  from  pixels.  IEEE  Trans.  on
Computational  Intelligence  and  AI  in  Games,  2019,  11(3):
248–259.

[5]

 JADERBERG  M,  CZARNECKI  W  M,  DUNNING  I,  et  al.
Human-level  performance  in  3D  multiplayer  games  with
population-based  reinforcement  learning. Science ,  2019,
364(6443): 859–865.

[6]

 LIANG L, CHEN Y C, LIAO L C, et al. A novel impedance
control  method  of  rubber  unstacking  robot  dealing  with  un-
predictable  and  time-variable  adhesion  force. Robotics  and
Computer-Integrated Manufacturing, 2021, 67: 102038.

[7]

 GAO J L, YE W J, GUO J, et al. Deep reinforcement learn-
ing  for  indoor  mobile  robot  path  planning. Sensors ,  2020,
20(19): 5493.

[8]

 XIE J  Y,  PENG X D,  WANG H J,  et  al.  UAV autonomous
tracking  and  landing  based  on  deep  reinforcement  learning
strategy. Sensors, 2020, 20(19): 5630.

[9]

 XU  X,  ZUO  L,  LI  X,  et  al.  A  reinforcement  learning  ap-
proach to autonomous decision making of intelligent vehicles
on highways. IEEE Trans. on Systems, Man and Cybernetics
Systems, 2018, 50(10): 3884–3897.

[10]

 HE Y, YU F R,  ZHAO N, et  al.  Software-defined networks
with  mobile  edge  computing  and  caching  for  smart  cities:  a
big  data  deep  reinforcement  learning  approach. IEEE  Com-
munications Magazine, 2017, 55(12): 31–37.

[11]

 BRANDI  S,  PISCITELLI  M  S,  MARTELLACCI  M,  et  al.
Deep  reinforcement  learning  to  optimise  indoor  temperature
control and heating energy consumption in buildings. Energy
and Buildings, 2020, 224(1): 110225.

[12]

 KHAN A, LAPKIN A, Searching for optimal process routes:
a reinforcement learning approach. Computers and Chemical
Engineering, 2020, 141(4): 107027.

[13]

 MA R, VANSTRUM E B, LEE R, et al. Machine learning in
the  optimization  of  robotics  in  the  operative  field. Current

[14]

Opinion in Urology, 2020, 30(6): 808–816.
 PARK  H,  SIM  M  K,  CHOI  D  G.  An  intelligent  financial
portfolio trading strategy using deep Q-learning. Expert Sys-
tems with Applications, 2020, 158(15): 113573

[15]

 HU  Y,  YAO  Y,  LEE  W  S.  A  reinforcement  learning  ap-
proach  for  optimizing  multiple  traveling  salesman  problems
over  graphs.  Knowledge-Based  Systems,  2020,  204(27):
106244.

[16]

 AINSLIE  G  W.  Impulse  control  in  pigeons. Journal  of  the
Experimental Analysis of Behavior, 1974, 21(3): 485–489.

[17]

 TAKAHASHI T. Loss of self-control in intertemporal choice
may  be  attributable  to  logarithmic  time-perception. Medical
Hypotheses, 2005, 65(4): 691–693.

[18]

 NAKAHARA  H,  KAVERI  S.  Internal-time  temporal  diffe-
rence model for neural value-based decision making. Neural
Computation, 2010, 22(12): 3062–3106.

[19]

 JARMOLOWICZ  D  P,  HUDNALL  J  L,  HALE  L,  et  al.
Delay discounting as impaired valuation: delayed rewards in
an animal obesity model. Journal of the Experimental Analy-
sis of Behavior, 2017, 108(2): 171–183.

[20]

 FOSCUE  E  P,  WOOD  K  N,  SCHRAMM-SAPYTA  N  L.
Characterization  of  a  semi-rapid  method  for  assessing  delay
discounting in rodents.  Pharmacology Biochemistry and Be-
havior, 2012, 101(2): 187–192

[21]

 PAPALE A E, STOTT J J, POWELL N J, et al. Interactions
between  deliberation  and  delay-discounting  in  rats.  Cogni-
tive,  Affective,  &  Behavioral  Neuroscience,  2012,  12(3):
513–526.

[22]

 YAMAGUCHI  Y,  SAKAI  Y,  Reinforcement  learning  for
discounted  values  often  loses  the  goal  in  the  application  to
animal learning. Neural Networks, 2012, 35(1): 88–91

[23]

 KNOX  W  B,  STONE  P.  Framing  reinforcement  learning
from human reward: reward positivity, temporal discounting,
episodicity,  and  performance.  Artificial  Intelligence,  2015,
225(1): 24–50

[24]

 WANG  J  P,  WANG  G,  MAO  X  B,  et  al.  Motion  control
method  of  two-link  manipulator  based  on  deep  reinforce-
ment  learning.  Journal  of  Computer  Applications,  2021,
41(6): 1799–1804. (in Chinese)

[25]

 WEI H B,  HE S C.  Multi-objective  optimal  control  strategy
for plug-in diesel electric hybrid vehicles based on deep rein-
forcement  learning.  Journal  of  Chongqing  Jiaotong  Uni-
versity (Natural Science), 2021, 40(1): 44–52. (in Chinese)

[26]

 LI C, HUANG Y Y, ZHANG Y L, et al. Multi-agent decision-
making method based on Actor-Critic framework and its ap-
plication  in  wargame.  Systems  Engineering  and  Electronics,
2020, 43(3): 755–762. (in Chinese)

[27]

 ZHANG Q H, AO B Q, ZHANG Q X. Reinforcement learn-
ing  guidance  law  of  Q-learning.  Journal  of  Systems  Engi-
neering and Electronics, 2019, 42(2): 414–419. (in Chinese)

[28]

 SUTTON R S, BARTO A G. Reinforcement learning: an in-
troduction. 2nd ed. Cadge: MIT Press, 2018.

[29]

 Biographies
LIN  Xiangyang was  born  in  1994.  He  received
his B.S. and M.S. degrees from Air Force Engin-
eering  University,  Xi ’an,  in  2017  and  2019,  re-
spectively, where he is currently a Ph.D. student.
His research interests include reinforcement learn-
ing and intelligent decision.
E-mail: 95014052@qq.com

LIN Xiangyang et al.: Choice of discount rate in reinforcement learning with long-delay rewards 391



XING Qinghua was  born  in  1966.  She  received
her  B.S.  degree  from  Shanxi  University,  Shanxi,
China, in 1989, and M.S. and Ph.D. degrees from
Air Force Engineering University, Xi’an, in 1992
and  2003,  respectively,  where  she  is  currently  a
professor.  Her  research  interests  include  system
simulation  modeling,  combat  decision  analysis
computer vision, and military system decision.

E-mail: qh_xing@126.com

LIU  Fuxian was  born  in  1962.  He  received  his
B.S.  degree  from  Lanzhou  University,  Lanzhou,
China, in 1994, and M.S. and Ph.D. degrees from
Air Force Engineering University, Xi’an, in 1998
and  2001,  respectively,  where  he  is  currently  a
professor.  His  research  interests  include  deep
learning and military system decision.
E-mail: liuxqh@126.com

392 Journal of Systems Engineering and Electronics Vol. 33, No. 2, April 2022


