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Abstract: Current  successes  in  artificial  intelligence  domain
have  revitalized  interest  in  neural  networks  and  demonstrated
their potential in solving spacecraft trajectory optimization prob-
lems.  This  paper  presents  a  data-free  deep  neural  network
(DNN) based trajectory optimization method for intercepting non-
cooperative maneuvering spacecraft,  in a continuous low-thrust
scenario.  Firstly,  the  problem  is  formulated  as  a  standard  con-
strained  optimization  problem  through  differential  game  theory
and minimax principle. Secondly, a new DNN is designed to in-
tegrate interception dynamic model into the network and involve
it  in the process of gradient descent,  which makes the network
endowed  with  the  knowledge  of  physical  constraints  and  re-
duces  the  learning  burden  of  the  network.  Thus,  a  DNN based
method is proposed, which completely eliminates the demand of
training  datasets  and  improves  the  generalization  capacity.  Fi-
nally, numerical results demonstrate the feasibility and efficiency
of our proposed method.

Keywords: non-cooperative  maneuvering  spacecraft,  neural
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1. Introduction
Recently,  the  trajectory  optimization  problem  for  inter-
cepting  non-cooperative  maneuvering  spacecraft  has
drawn  increasing  attention  from  scholars  [1−3].  The
problem can be considered as a two-player zero-sum pur-
suit-evasion game, which is  essentially a two-sided opti-
mization  problem  with  completely  conflicting  goals  [4].
Finding  the  solution  of  such  a  problem generally  results
in  solving  a  high-dimensional  two-point  boundary  value
problem (TPBVP) [5].

The  traditional  methods  for  this  problem  usually  uti-
lize  collocation,  swarm  optimization,  evolutionary  al-
gorithm  or  their  combination.  Tuomas  and  Harri  [6]  di-
vided the problem into two one-sided optimization prob-

lems using the direct collocation method. Due to the sens-
itivity to initial solution guess, it is difficult for this meth-
od to  obtain  global  optimal  solutions  when the solutions
are inappropriate initialized. Stupik et al. [7] proposed an
approach  through  particle  swarm  optimization  (PSO)  to
obtain open-loop optimal trajectories, but computation er-
rors were not well handled in some specific scenarios. Li
et al. [8] presented a dimension-reduction method, where
differential  evolution  (DE)  was  utilized  to  provide  good
initial guess for Newton’s method. Horie and Conway [9]
proposed  a  semi-direct  method,  where  optimal  control
laws  of  two  players  were  obtained  in  different  methods.
One  is  obtained  by  analyzing  necessary  conditions  and
the  other  is  solved  by  nonlinear  programming.  This  me-
thod  is  computationally  extensive  and  it  needs  appropri-
ate  initialization.  Pontani  and  Conway [4]  improved this
semi-direct  method  by  adding  a  genetic  algorithm  pre-
processor  which  was  utilized  to  obtain  the  initial  guess,
solving a  more  sophisticated three-dimensional  case,  but
the  method  of  genetic  algorithm  parameters  selection  is
not  mentioned.  Sun  et  al.  [10]  developed  a  semi-direct
control  parameterization  (SDCP)  method  and  a  hybrid
method combined SDCP method proposed with multiple
shooting method to solve scenarios in low earth orbit.

Due  to  the  deep  reform  brought  to  practical  applica-
tions  by  deep  neural  networks  (DNNs),  a  new  kind  of
methods has emerged. Since the neural network has good
approximation  capacity  [11],  Wu  et  al.  [12]  proposed  a
method  directly  using  networks  learning  optimal  control
law from datasets generated by traditional methods to de-
rive  the  optimal  interception  trajectory.  George  [13]
presented  a  method  in  reinforcement  learning  manner,
combining networks and evolutionary algorithm to solve
optimal trajectories for interception and rendezvous scena-
rios with three different thrust models. However, this type
of method usually has the following three disadvantages:
Firstly,  large datasets are required for training and situa-
tions beyond the training area are difficult  to handle,  es-
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pecially  for  supervised  learning  method.  Secondly,  data
generated  by  orbital  dynamics  is  subject  to  exact  physi-
cal constraints and it is challenging to enforce these con-
straints on neural network models without sacrificing ex-
act  physics.  Thirdly,  learning  burden  of  network  is  too
heavy.  When faced with trajectory optimization problem
with  complex  physical  constraints,  networks  not  only
need  to  search  optimization,  but  also  have  to  learn  phy-
sical constraints.

Thanks  to  the  latest  achievement  in  network  structure
domain,  the  above  difficulties  can  be  effectively  solved.
It has been demonstrated that a large amount of informa-
tion is captured by the structure of network instead of any
learning ability [14] and this  development is  quickly ap-
plied in style transfer in fonts [15] and data upsampling in
medical  imaging [16].  This  idea  is  also  proven to  be  ef-
fective  in  complex  dynamic  system  beyond  natural  im-
ages  domain.  Long et  al.  [17]  designed a  network struc-
ture called PDE-Net. It is used to learn partial differential
equations (PDEs) and predict future state of system. Zhu
et  al.  [18]  emploied  a  convolutional  encoder-decoder
neural  network  approach  as  well  as  a  conditional  flow-
based  generative  model  for  the  solution  of  PDEs,  surro-
gate  model  construction,  and  uncertainty  quantification
tasks.  Hoyer  et  al.  [19]  proposed  a  DNN-based  method
which  greatly  improves  the  optimization  results  for  the
analysis of 116 structural optimization cases.

In this study, a new DNN is designed to help the gene-
ration of  optimal  trajectories  for  intercepting non-coope-
rative maneuvering spacecraft,  where the initial  states of
two  spacecraft  and  interception  trajectories  serve  as  in-
puts  and  outputs,  respectively.  Orbital  dynamics  as  well
as  other  physical  constraints  are  integrated  into  the  net-
work,  expressed  by  a  secondary  structure  composed  of
multiple  layers  of  neurons.  Then  the  predicted  terminal
condition is calculated based on trajectories generated by
DNN,  serving  as  a  new  set  of  outputs.  The  difference
between  predicted  terminal  condition  and  real  terminal
constraints instead of training datasets is utilized to guide
the  training.  The  proposed  DNN-based  method  success-
fully  deepens  network  understanding  of  physical  con-
straints,  reduces  the  learning  burden  of  network,  im-
proves  the  generalization  capacity  of  method,  and  com-
pletely eliminates the demand for training data.

The rest of the paper is organized as follows: Section 2
describes  the  derivation  of  the  dynamics  of  intercepting
non-cooperative  maneuvering  target  as  well  as  the  pro-
cess of formulating a standard optimization problem. Sec-
tion 3 presents our proposed data-free DNN based trajec-
tory  optimization  method,  followed  by  Section  4,  where
simulations are conducted to evaluate the effectiveness of

the  proposed  method  by  comparing  with  previous  me-
thods.  Finally,  conclusions are summarized in Section 5. 

2. Problem formulation
The  relative  states  of  two  spacecraft  are  modeled  using
Hill-Clohessy-Wiltshire  (HCW)  equations  and  the  prob-
lem  is  written  as  a  TPBVP  based  on  time-free  differen-
tial game theory at first. Then, according to minimax prin-
ciple, the relationships between co-states and control laws
are  derived  to  transform  TPBVP  into  a  standard  cons-
trained optimization problem. 

2.1    Relative dynamics

x,y, z

Here, the interception scenario is set as two spacecraft or-
biting near a circular reference orbit, as shown in Fig. 1.
Target  denotes  the  target  spacecraft  and  pursuer  denotes
the interception spacecraft. Since two spacecraft both can
maneuver, it is convenient to describe the relative transla-
tional  motion  in  the  Hill  orbit  frame whose  origin  is  re-
ferred  to  a  virtual  spacecraft  orbiting  on  reference  orbit
with no maneuvers. As illustrated in Fig. 1, the Cartesian
coordinates  of  and  are aligned with the directions
of  the  orbital  radial,  orbital  velocity  vector  and  normal
vector with respect to the orbital plane, respectively.
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Fig. 1    Illustration of Hill frame
 

The  linearized  HCW  equations  of  relative  motion  are
used.  The  dynamics  of  spacecraft  can  be  given  as  fol-
lows:

ẋi = Axi+Bui, i = T,P (1)

i
ui = [uix,uiy,uiz]T

xi = [xi,yi,zi, ẋi, ẏi, żi]T ω =
√
µ/γ3

ref

µ

γref

where  subscript  denotes  the  identity  tag; T  represents
the  target; P  represents  the  pursuer;  is
the acceleration vector; the spacecraft state is denoted by

;  is  average  angular
velocity of the reference orbit,  is the geocentric gravita-
tional  constant  and  is  the  radius  of  reference  orbit,
matrix A and B can be expressed as
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A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2 0 0 0 2ω 0
0 0 0 −2ω 0 0
0 0 −ω2 0 0 0



B =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


α β Fi

Define a low, continuous, and constant thrust in Fig. 2,
where  and  denote the thrust pointing angles, and 
denotes the constant thrust acceleration.
  

z

Fi

O
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y

Fig. 2    Illustration of acceleration vector
 

The acceleration can be expressed as

ui =

 uix

uiy

uiz

 = Fi

 cos βi cos αi

cos βi sin αi

sin βi

 , i = T,P (2)

FT < FP

αi ∈ [0,2π] βi ∈ [−π/2,
π/2]

where  needs  to  be  satisfied  [20].  The  in-plane
angel  and  the  out-of-plane  angel 

. 

2.2    Two-player zero-sum time-free differential game

Generally, the dynamics of the two players in a zero-sum
differential game [21,22] is described by

ẋ = f (x,u,v, t), x(t0) = x0. (3)

where x denotes state vector, μ and v control sequences of
the two players, respectively.

Terminal constraint function G is described by

G[x(t f ), t f ] = 0 (4)

t fwhere , indicating terminal time, is unknown.
(u∗(t),v∗(t))Find  for  objective functional,  which com-

bines  terminal  performance  index Φ  and  integral  per-

formance index L.

J =Φ
[
x(t f ), t f

]
+

w t f

t0

L[x(τ),u,v, τ]dτ (5)

satisfying [23]

J(u∗,v) ⩽ J(u∗,v∗) ⩽ J(u,v∗). (6)

It is equivalent to solving the following problem：

min
u

max
v

J

s.t.

 ẋ = f (x,u,v, t), x(t0) = x0

G[x(t f ), t f ] = 0
.

(7)
To solve the constrained functional extremum problem

(7)，augmented functional (8) is introduced through Lag-
range multiplier method.

Ja =Φ
[
x(t f ), t f

]
+κTG[x(t f ), t f ]+w t f

t0

[
L[x(τ),u,v, τ]+

λT[ f (x,u,v, t)− ẋ]
]
dτ (8)

κwhere  and λ are two sets of Lagrange multipliers.
The constrained problem is transformed into an uncon-

strained functional extremum problem:

min
u

max
v

Ja. (9)

Hamiltonian function is defined as

H(x,u,v,λ, t) = L[x(τ),u,v, τ]+

λT f (x,u,v, t). (10)

t f

According  to  minimax  principle,  the  following  equa-
tions are obtained, faced with the condition that  is un-
known： 

ẋ =
∂H
∂λ

λ̇ = −∂H
∂x

, (11)

H(x∗,u∗,v∗,λ, t) =min
u

max
v

H(x∗,u,v,λ, t) =

max
v

min
u

H(x∗,u,v,λ, t),
(12)

λ(t f ) =
∂Φ

∂x(t f )
+

(
∂G
∂x(t f )

)T

κ

H(t f ) = −
∂Φ

∂t f
−

(
∂G
∂t f

)T

κ

, (13)

 x(t0) = x0

G[x(t f ), t f ] = 0
(14)

where (11) is also called the canonical equation. 
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2.3    Trajectory optimization model

x =
[
xT

T , xT
P

]TIn  this  work,  it  can  be  determined  that ,
v=uT,  and u=uP  by  combining  dynamics  and  differential
game theory.  The  following  state  equation  is  defined  by
combining dynamics and differential game theory：

f (x,uT ,uP, t) = Āx+BT uT +BPuP (15)

where

x = [xT ,xP]T,

Ā =
[

A 06×6

06×6 A

]
,

BT =

[
B

06×3

]
,

BP =

[
06×3

B

]
.

It  is  considered  that  when  the  interception  mission
ends, both spacecraft will be in the same position. There-
fore, the terminal constraints are set as

G[x(t f ), t f ] = Cx(t f ) =


xT (t f )− xP(t f )

yT (t f )− yP(t f )

zT (t f )− zP(t f )

 = 03×1 (16)

where

C =
 I3×3 03×3 −I3×3 03×3

09×12

 .
t fTerminal  time ,also  known  as  interception  time  can

be considered as primary indicator of evaluation task [8].
The target will delay the rendezvous time as long as pos-
sible,  when  the  pursuer  wants  to  complete  the  rendez-
vous  as  quickly  as  possible  because  of  the  characteristic
of  non-cooperative  maneuvering  target.  Therefore,  ob-
jective generalized functional is given as

Φ
[
x(t f ), t f

]
= 0

L[x(t),uT ,uP, t] = 1

J = 0+
w t f

t0

dτ = t f − t0

. (17)

Substituting (15)−(17) into (10)−(14), a TPBVP is ob-
tained：

H(x,uT ,uP,λ, t) = 1+

λT(Āx+BT uT +BPuP) (18)

 ẋ = Āx+BT uT +BPuP

λ̇ = −ĀTλ
(19)


∂H(x∗,uP,uT

∗,λ, t)
∂uP

∣∣∣∣∣∣
uP
∗

= 0

∂2H(x∗,uP,uT
∗,λ, t)

∂uP

∣∣∣∣∣∣
uP
∗

⩾ 0

(20)


∂H(x∗,uP

∗,uT ,λ, t)
∂uT

∣∣∣∣∣∣
uT
∗

= 0

∂2H(x∗,uP
∗,uT ,λ, t)

∂uT

∣∣∣∣∣∣
uT
∗

⩽ 0

(21)

λ(t f ) = CTκ =

[κ1, κ2, κ3,0,0,0,−κ1,−κ2,−κ3,0,0,0]T
(22)

H(t f ) = 0 (23)

Cx(t f ) = 0. (24)

According to (2),  (18),  (20),  and (21),  the relationship
between control vector and co-state is given

cos α∗P =
−λ10

cos β∗P
√
λ10

2+λ11
2+λ12

2

sin α∗P =
−λ11

cos β∗P
√
λ10

2+λ11
2+λ12

2

sin β∗P =
−λ12√

λ10
2+λ11

2+λ12
2

, (25)



cos α∗T =
λ4

cos β∗T
√
λ4

2+λ5
2+λ6

2

sin α∗T =
λ5

cos β∗T
√
λ4

2+λ5
2+λ6

2

sin β∗T =
λ6√

λ4
2+λ5

2+λ6
2

. (26)

As a convenience, (25) and (26) is written asuP = uP(λ)

uT = uT (λ)
. (27)

Substitute (27) into (18)−(24), then
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

λ̇ = − ĀTλ

λ(t f ) = [κ1, κ2, κ3,0,0,0,−κ1,−κ2,−κ3,0,0,0]T

ẋ = Āx+BT uT (λ)+BPuP(λ)

x(t0) = x0

Cx(t f ) = 0

H(x,u,v,λ, t)|t f
= H(λ(t f ), t f ) = 0

. (28)

t f , κ1, κ2, κ3

Considering  (28)  only  determined  by  four  unknown
parameters ,  a  standard  optimization  problem
with constraints is derived as

min
t f ,κ1 ,κ2 ,κ3

g(t f , κ1, κ2, κ3)

s.t.


λ̇ = −ĀTλ

λ(t f ) = [κ1, κ2, κ3,0,0,0,−κ1,−κ2,−κ3,0,0,0]T

ẋ = Āx+BT uT (λ)+BPuP(λ)
x(t0) = x0

(29)

where

g(t f , κ1, κ2, κ3) =[ ∣∣∣Cx(t f )
∣∣∣∣∣∣H(x,u,v,λ, t)|t f

∣∣∣
]
. (30)

 

3. Algorithm
In the above sections, the problem is transformed into an
optimization problem with strong physical constraints. In
order  to  make  the  neural  network  better  handle  physical
constraints  in  the  problem,  a  new  DNN  structure  is  de-
signed  to  help  generate  optimal  interception  trajectories,
where  physics  model  is  represented  by  secondary  struc-
ture in network.

x0

x(t)(t ∈ [t0, t f ])
h x(t)(t ∈ [t0, t f ])

h

Fig.  3 gives  an  overview  of  the  whole  structure  and
data flow in forward propagation and gradient  backward
pass. The inputs are the initial states of two spacecraft .
Both  interception  trajectories  and  predic-
tive  value  serve  as  outputs,  where  is
the  solution  of  the  problem  and  is  used  for  network
training.

 
 

Parameterization

section

Physics model

section

Constraints

section

Network structure

Gradient Predictive value: h

Inputs: x0

Outputs: x(t) (tϵ[t0, tf])

λ(tf), x(tf)

Cx(tf)
h=

H[x(tf), λ(tf), tf]

L
ay

er
 (

1
)

tf, κ1, κ2, κ3=fθ (σ)

tf, κ1, κ2, κ3

λ=−AT λ
.

L
ay

er
 (

2
)

L
ay

er
 (

3
)

L
ay

er
 (
n
)

L
ay

er
 (
n
+

1
)

σ

−

x=Ax+BTuT(λ)+BPuP(λ)
. −
λ(tf)=[κ1, κ2, κ3, 0, 0, 0, −κ1, −κ2, −κ3, 0, 0, 0]T

x(t0)=x0

Fig. 3    Proposed network structure
 

fθ(σ)
θ

σ

There are three sections in this  network,  namely para-
meterization  section,  physical  model  section  and  con-
straints  section.  Parameterization  section  is  a  se-
condary structure formed by several layers of neurons. 
and  represent  all  trainable  parameters  in  this  secon-

t f , κ1, κ2, κ3

x0

dary  structure.  The  role  of  this  section  is  to  generate
 for  physical  model  section,  autonomously.

Physical model section enforces dynamics on neural net-
works,  playing the  same role  as  canonical  equation con-
straints.  Given inputs,  initial  state ,  this  section  calcu-
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x(t) λ(t)
t f , κ1, κ2, κ3 x(t)

(t ∈ [t0, t f ]) λ(t f ) x(t f )
λ(t f )

x(t f )
h

lates  state  and  co-state  with  the  assistance  of
generated .  While  outputting  trajectory 

, terminal value  and  are transferred
into  constraints  section.  In  constraints  section,  and

 are  substituted  into  (23)  and  (24)  to  compute  pre-
dictive value ,  which is another output of our network,
guiding the training process.

h =
[

Cx(t f )
H[x(t f ),λ(t f ), t f ]

]
. (31)

Orbital dynamics and other physical constraints are in-
tegrated into the network, expressed by a secondary struc-
ture composed of multiple layers of neurons, so that this
network is endowed with the knowledge of physical con-
straints.  The  task  of  the  network  is  simplified.  Since  all
trajectories  generated  by  it  perfectly  accord  with  dyna-
mics  without  training,  network  only  needs  to  focus  on
searching the optimal trajectories, which also leads to the
substantial reduction in training data.

After  the  new DNNs are  determined,  the  optimization
method can be proposed. The whole process of method is
summarized as the following six steps and an overview of
data flow is illustrated in Fig. 4.
 
 

Inputs: x0

Network
Outputs: x(t) (tϵ[t0, tf])

Outputs: x(t) (tϵ[t0, tf])

Predictive value: h

Loss function

No

Yes

Loss≤ε?

Loss

Loss=(h−h)T W(h−h) ∂(Loss)/∂h

The value: ĥ

^ ^

Fig. 4    Schema of proposed approach
 

ε

ĥ
Step 1　 Initialization.  Threshold  is  determined  and

true  value  is  given,  according  to  terminal  constraints
(23) and (24)

⌢

h = 0. (32)
θ σAll  trainable  parameter  in  our  network,  and  ,  are

initialized.
x0Step  2　Forward  propagation.  Input  is  transferred

h x(t)(t ∈
[t0, t f ])
into  our  network.  Predictive  value  and  output 

 are obtained.

h
⌢

h
Step  3　 Loss  computation.  Difference  between  pre-

dicted  value  and true  value  is  defined as  loss  func-
tion

Loss =
(h−

⌢

h)TW(h−
⌢

h)
dim(h)

(33)

Wwhere  is weight matrix.
Loss

ε Loss > ε Loss ⩽ ε
Step  4　 Judgment.  Result  is  compared  with

threshold .  If ，go to Step 5.  If ，go
to Step 6.

∂(Loss)
/
∂h

θ σ
h x(t)(t ∈

[t0, t f ])

Step 5　Gradient backward pass. Gradient 
is  calculated  and  transferred  into  network  for  modifying
parameters  and  .  After  parameters  update,  network
regenerates  predictive  value  and  outputs 

. Go to Step 3.
x∗(t)(t ∈

[t0, t f ])
Step  6　 Output.  The  optimal  trajectory 

 is obtained and outputted.
In  the  proposed  method,  terminal  constraints  serve  as

labeled data  for  network training,  so that  all  information
required  for  training  comes  from  interception  trajectory
optimization  problem  itself.  By  changing  the  training
mechanism from using training datasets to using terminal
constraints,  this  method  completely  eliminates  the  de-
mand  of  training  data,  which  helps  improve  generaliza-
tion capacity of method. A stationary mapping is created
between  scenarios  and  optimal  trajectories  instead  of
building a time-varying mapping between states and con-
trol  strategies,  which  reduces  the  training  data  demand
and  makes  training  process  easier  for  network.  Physical
model is embedded in the network structure as part of the
network so that the network is bound to the physical pro-
cess,  which also reduces the training difficulty.  Since no
training  data  is  needed,  it  will  not  happen that  the  train-
ing is incomplete due to insufficient data. 

4. Numerical simulation
To verify the DNN in the proposed method endowed with
the  knowledge  of  dynamics,  a  simulation  scenario  is  gi-
ven in the absence of training data to compare the results
of  our  method  with  the  results  of  a  previous  traditional
method. Besides, ten cases are utilized for comparing the
generalization  capacity  of  our  proposed  method  with  a
previous  DNN  based  method.  The  threshold  and  weight
matrix in the method are

ε = 10−5, (34)

W =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 10

 . (35)
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ηLearning rate  is  self-adaptive  and its  initial  value  is
given:

η0 = 10−3. (36)
 

4.1    Feasibility verification

Reference  orbit  is  geostationary  orbit.  The  initial  states
are listed in Table 1.

The thrust magnitudes of initial states can be given asFT = 0.000 4g

FP = 0.000 6g
(37)

g = 9.78 m/s2where  denotes the magnitude of the gravit-
ational acceleration at sea level.

 
 

Table 1    Scenario parameter setting

ID x/km y/km z/km ẋ/(m/s) ẏ/(m/s) ż/(m/s)

Target −33.8 −50.4 6.7 2.0 4.9 0.0

Pursuer 0.0 0.0 0.0 0.0 0.0 0.0

 
This  interception  scenario  is  solved  independently  in

our  proposed  method  and  method  in  [8].  Our  method  is
based on network. After inputting the initial state, the net-
work outputs the optimal trajectories directly after learn-
ing,  while  method  in  [8]  is  a  traditional  method,  where
the  Newton’s iteration  method is  used to  find  the  accur-
ate costate vector solution after obtaining an initial guess
searched  by  differential  evolution  algorithm  and  the  op-
timal  trajectories  are  generated  by  using  accurate  solu-
tion.  In  our  method,  network  generates  the  optimal  tra-
jectories after 58 epochs of learning and the pursuer inter-
cepts the target successfully in 5 913.15 s, while the inter-
ception time is 5 912.24 s by the method in [8]. The com-
parison of the results is illustrated in Fig. 5−Fig. 9.
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The  result  curves  generated  by  two methods  basically
coincide, indicating that our method is effective. Integrat-
ing  dynamics  into  network  is  a  feasible  method  to  en-
force physical constraints on neural network models while
maintaining  accuracy.  The  idea  of  using  terminal  con-
straints as labeled data to guide network training works in
the absence of training datasets. 

4.2    Performance comparison

D

D D

To show the efficiency and generalization capacity of the
proposed method, it is further compared with the method
proposed  in  [12].  The  method  in  [12]  is  a  supervised
learning  method,  establishing  a  network  utilizing  states
and control strategies as inputs and outputs, respectively.
Data generated by traditional methods is used to train the
network.  This  method  attempts  to  establish  the  time  se-
quence correspondence between states and control strate-
gies,  which  is  a  time-vary  relationship,  while  our  me-
thod  is  an  unsupervised  learning  method,  generating  the
entire  trajectory  based  on  initial  state  without  training
data  and  establishing  a  stationary  relationship  between
scenarios and optimal trajectories. Here, the method in [12]
is  denoted  by  Method  1,  while  our  proposed  method  is
denoted  by  Method  2,  for  simplicity.  Reference  orbit  is
still set as geostationary orbit and thrust magnitudes keep
the same as the previous section. Then, 500 cases are se-
lected  to  generate  training  dataset  for  Method  1.  The
selection range is shown in Table 2. After the networks in
Method 1 are trained, another ten cases are further selec-
ted for comparison. In the ten cases, Case 1−Case 7 are in

, but Case 8−Case 10 are not in .
 

Table 2    Parameter selection range

ID Relative distance/km Relative velocity/(m/s)

Target
√

x2 + y2 + z2 ⩽ 100
√

v2
x + v2

y + v2
z ⩽ 10

Pursuer
√

x2 + y2 + z2 ⩽ 100
√

v2
x + v2

y + v2
z ⩽ 10

 

ns

rs

For  different  methods,  the  success  rate  is  compared.
Success  number  of  times  is  denoted  by ,  and  success
rate is denoted by . All the performance is summarized
in Table 3.
 

Table 3    Performance of different methods

Method
name Dataset

ns in
Case 1−Case 7

ns in
Case 8−Case 10

rs/%

Method 1 500 3 0 30

Method 2 – 7 3 100

 
The  performance  of  Method  1  is  unsatisfactory.  The

poor  performance  handling  cases  in  training  area  indi-
cates that the network neither fully understands dynamic
characteristics  nor  learns  how  to  optimize  trajectories
well. On the one hand, it can be explained that 500 train-
ing cases are obviously not enough for network training,
on the other hand, it can be considered that learning bur-
den  for  dual  tasks  is  excessive.  The  failure  in  cases  be-
yond training area demonstrates that Method 1 lacks gene-
ralization  capacity.  Method  2  successfully  solves  all  ten
cases with no training data, which indicates that integrat-
ing  the  physical  constraints  into  the  network  and  using
terminal constraints as labeled data improve the generali-
zation capacity of method. 

5. Conclusions
Concentrating  on  trajectory  optimization  problem  of  in-
tercepting  non-cooperative  maneuvering  spacecraft,  the
paper  presents  a  new  designed  DNN  and  a  data-free
method base on it. Some useful conclusions are drawn as
follows:

(i)  Integrating  dynamics  into  neural  network  structure
is  an  efficient  method  to  reduce  the  learning  burden  of
networks;

(ii)  Results  generated  by  our  method  successfully  en-
forces orbital dynamics and other physical constraints on
neural network models without sacrificing exact physics;

(iii)  The  proposed  DNN based  trajectory  optimization
method  completely  eliminates  the  demand  of  training
data,  which  helps  improve  generalization  capacity  of
method.

In  addition,  there  are  still  some  points  worth  further
study:

(i)  The  performance  of  the  proposed  method  will  be
evaluated,  when  the  problem  possesses  a  more  complex
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physical model;
(ii) It is worthy analyzing how to extend the one-to-one

scenarios to the many-to-many scenarios;
(iii) How to modify the proposed method so that it can

be utilized to solve scenarios that spacecraft  process dif-
ferent thrust configurations.
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