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Abstract: In order to extract the richer feature information of
ship targets from sea clutter, and address the high dimensional
data problem, a method termed as multi-scale fusion kernel
sparse preserving projection (MSFKSPP) based on the maxi-
mum margin criterion (MMC) is proposed for recognizing the
class of ship targets utilizing the high-resolution range profile
(HRRP). Multi-scale fusion is introduced to capture the local and
detailed information in small-scale features, and the global and
contour information in large-scale features, offering help to
extract the edge information from sea clutter and further improv-
ing the target recognition accuracy. The proposed method can
maximally preserve the multi-scale fusion sparse of data and
maximize the class separability in the reduced dimensionality by
reproducing kernel Hilbert space. Experimental results on the
measured radar data show that the proposed method can effec-
tively extract the features of ship target from sea clutter, further
reduce the feature dimensionality, and improve target recogni-
tion performance.
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1. Introduction

High-resolution range profile (HRRP) can imply the
detailed physical structure characteristics of the target,
such as the scatterer distribution, the target size, and other
abundant information [1]. Recently, it has been widely
used in the radar automatic target recognition (RATR). At
present, the recognition technology based on HRRP is
mainly used in air targets [2—4]. According to most of the
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research results obtained in the environment of Gaussian
white noise, the HRRPs of air targets are mainly affected
by noise. Different from air targets, the HRRPs of ship
targets are influenced by the superimposed echo reflected
by sea clutter [5]. The sea clutter is related to many fac-
tors, usually showing the obvious non-stationary and non-
Gaussian characteristics. The existence of sea clutter
leads to the changes in the HRRP structure of the ship tar-
get.

Compared with air targets, the dynamic range of ship
target length is larger [6]. For the ship target, in addition
to the position and amplitude information of the scatter-
ing point, the edge information is also very important [7].
The edge points can enhance HRRP samples’ separabi-
lity which consequently lead to the improvement of clas-
sification performance. In this issue, feature extraction of
the ship target from the sea clutter is an essential proce-
dure for robust target recognition. In fact, compared with
sea clutter, the target only occupies a small part of range
units in a wideband data gate, causing the dimension to
increase and difficulties to discover knowledge from
HRRP. Therefore, it is necessary to reduce the dimen-
sionality of samples.

To address the problem of dealing with high dimen-
sional data, most dimensionality reduction methods have
commonly been used as principled ways. Several dimen-
sionality reduction methods were proposed to tackle this
problem and have been used in HRRP RATR, such as
principal component analysis (PCA) [8], linear discrimi-
nant analysis (LDA) [9], neighborhood preserving projec-
tion (NPP) [10], and sparse preserving projection (SPP)
[11]. However, most of the above methods are linear and
may encounter some problems when processing nonlin-
ear data. The kernel trick is a common technique for deal-
ing with nonlinear data [12—14], which extends linear
methods to nonlinear methods. Hence, the kernel trick is
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investigated to map the nonlinear and inseparable data
into a high dimensional feature space, in which data is
easily grouped together and is linearly separable. Inspired
by the fact above, Liu et al. [15] introduced a kernel joint
discriminant analysis (KJDA) method which utilizes
more potential information captured from global and
local criterion of input data in kernel feature space. Zhou
et al. [16] proposed an orthogonal kernel projecting plane
(OKPP) algorithm for radar target recognition. Although
kernel trick may be more conveniently used in practice, it
still suffers from the problem of information loss of ship
target HRRP. For instance, the above feature extraction
methods mainly focus on the position and amplitude
information of the strong scatters. Nevertheless, the
edge information presented by weak scatters is often
neglected.

To extract edge information from HRRP, some
researchers have achieved certain results. In [17], a sparse
recovery via iterative minimization method was pro-
posed to estimate the complex HRRPs of ships. However,
it is assumed that the HRRP of the target is independent
of sea clutter. Liu et al. [18] extended the target range
profile features from single scale to multi-scale. The edge
points of range profiles were extracted and a novel multi-
scale target classification method was proposed. The
multi-scale structure is helpful for recovering informa-
tion loss better. However, independent recognition based
on features at different scales leads to the isolation of
recognition information between different scales and
costly classification complexity. In addition, some classes
of ship targets are relatively similar whether in the main
structure of the targets or the distribution of scattering
points. To solve this problem, the maximum margin crite-
rion (MMC) is an effective method for maximizing the
class separability [19,20].

To extract effective features of ship target from sea
clutter and to ensure that the feature vector has high dis-
tinguishability, a method termed multi-scale fusion ker-
nel SPP (MSFKSPP) based on the MMC is proposed.
Here, a two-step strategy is taken. First of all, the multi-
scale fusion kernel sparse reconstructive relationship is
established. In the second, an optimal projection direc-
tion is automatically learned based on the MSFKSPP-
MMC. Experiments on measured data show that the pro-
posed method can effectively extract features of ship tar-
gets from sea clutter, reduce the feature dimensionality
and improve the target recognition performance.

The major contributions of this paper can be summa-
rized as follows.

(1) In the proposed method, the multi-scale fusion ker-
nel sparse reconstructive relationship is constructed by
combining the HRRPs under different scales and per-

forming the kernel sparse preserving projection. The
sparse reconstructive relationship can extract richer fea-
ture information of ship targets from sea clutter to avoid
information loss and reduce the dimensionality.

(i1) The proposed method can maximally preserve the
multi-scale fusion sparse reconstruct of data and maxi-
mize the class by separability resorting to the thought of
MMC.

(iii) A novel framework, MSFKSPP-MMC, is mainly
constructed for ship target recognition from the sea clut-
ter. Consequently, the proposed method can make full use
of data information and simultaneously utilize the label
information of the target to improve the accuracy of
HRRP recognition.

The remainder of this paper is organized as follows. In
Section 2, the mechanism analysis of multi-scale features
and dimension reduction is given. In Section 3, the HRRP
RATR procedures via MSFKSPP-MMC are discussed in
detail. The experimental results of HRRP target recogni-
tion are presented in Section 4. Finally, conclusions are
drawn in Section 5.

2. Multi-scale features and dimension
reduction mechanism analysis

2.1 Multi-scale features of HRRP

According to the scale-space theory [21,22], the multi-
scale representation of HRRP is achieved by uniformly
sampling the signal under continuous scale factors. Since
the sampling vector I(«) of HRRP is a one-dimensional
signal, its multi-scale extraction is

L(u,0) = LOG(u,0) ® I(u) )

where ® is the convolution operator, u is the spatial coor-
dinate of HRRP cells, o is the scale factor, and
LOG(u,0) is Laplace of Gaussian (LOG) kernel, which
well preserves the peak and tough features of the domi-
nant scatters. The definition of LOG kernel is

2 2

2
% exp (— %) . ?)

So multi-scale features of an HRRP can be achieved by
adjusting the parameter o.

Fig. 1 shows an HRRP’s multi-scale features of ship
target with LOG kernel. From Fig. 1, it can be found that
the positions and amplitude trends of the strong scatters
do not have the apparent variations with the change of
scale factor. At small-scale, the features of HRRP includ-
ing the complete edge information can be extracted from
the sea clutter. With the rising scale factor, the weak scat-
ter is gradually submerged in the sea clutter, which makes
the edge characteristics of the target change. It can be
seen that small-scale features are prominent in local and

LOG(u,o) =
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detail information, while the global and contour informa-
tion is better in large-scale features. The most apparent
changes among scales reflect on edge features. Since
edges represent high frequency features, it can be seen
that most of the information loss due to scaling factor
rises comes from edge features. Multi-scale features help
to extract the edge points of HRRPs from sea clutter. In
this paper, aiming to extract richer feature information of
ship target from sea clutter, we develop a sparse recon-
struction relation with more discriminant information by
using features at different scales.
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——: Original HRRP; ——: Multi-scale feature of HRRP.

Fig.1 Multi-scale range profile features using LOG kernel

2.2 Dimensionality reduction based on SPP

Compared with air targets, the dynamic range of ship tar-
get length is larger. Reflected by the HRRPs, the propor-
tion of the range units occupied by the range profile of
the ship target in the wideband gate varies greatly. In
engineering applications, stable tracking of the target is
required before imaging and identification of the target.
When imaging a target, we usually use the predicted posi-
tion of the target as the center of the wideband gate for
imaging. Due to radar system errors, data processing pre-
diction errors, and other reasons, a larger wideband gate
is required to ensure that the echo contains the complete
range profile of the ship target. In this wideband gate, in
addition to the range profile of the target, there is also a
large amount of sea clutter, and the range profile of the
target occupies only a small part of the wideband gate. A
large amount of sea clutter increases the computational
complexity and burdens the classifier. Therefore, it is
necessary to reduce the dimensionality of HRRP of the
ship target.

SPP [11,23,24] is a dimensionality reduction algo-
rithm aiming to preserve the sparse reconstruction rela-
tionship of the data set. Assuming that C is the number of
training HRRP classes, each class is composed of N,

C
(k=1,2,---,C) training HRRP samples, and N = ZNk

indicates the number of all training HRRP sanklzp;les.
X = [Xe1 X0, s Xpys X, ] € RN is  the training
HRRP samples matrix of the kth class, where x;;, € R" is
a column vector of the /;th HRRP sample in the kth class
and n is the dimension of HRRP. X=[X,,X,, -,
X1 e R™ s all training HRRP samples matrix. Each
Xy, can be sparsely represented by the rest of HRRP by
solving the following optimization problem:

hyy, = argrinn”hk,,k .
kg

Xip, = th,lk 3)
' eTthk =1
— T .
where hk,lk_[hk,lkl,la cee ahk,tkk,zk,. ,0, hk,l,(k,lm sttt ’hk,lkC,N(] 18

the sparse representation coefficient vector, where the
klth element O represents that the sparse representation
problem has nothing to do with x,, itself, and e repre-
sents the column vector where all elements are 1. In the
case of noise, (3) can be represented as

hy, = argn}lin“hk,,k .

s.t. { Xt = w1 < 0 @)

eThk,,k =1

where § is the noise tolerance. Then SPP seeks a trans-
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form matrix VeR™ to project HRRP from a high-
dimensional space into a d-dimensional space, where
n>d [23]. SPP aims to preserve the sparse reconstruc-
tion relationship and minimize the following objective
function:

C N
min > " (Vixy, = V' Xhyy,)
k=1 [=1
stLVIXXTV =1 (5)

where I is an identity matrix. Then, the optimization cri-
teria of SPP method is obtained:

 V'X(I-H-H"+HH)X"V
oo VIXXTV :

(6)

Finally, the projection matrix V of SPP is the eigen-
vectors corresponding to smallest d eigenvalues which is
obtained by

X(I-H-H"+HH")X"V = AXX"V. (7)

The original high-dimensional HRRP can be projected
into low-dimensional space through V to achieve the pur-
pose of HRRP dimension reduction.

3. Ship target recognition base on HRRP via
MSFKSPP-MMC

3.1 Principles of MSFKSPP

SPP is a linear dimensionality reduction algorithm. How-
ever, HRRPs of ship target are a type of highly nonlinear
data set. In this subsection, in order to extract more dis-
tinguishable features of the target from sea clutter, we
establish the kernel sparse reconstructive relationship
under the constraints of multi-scale fusion and kernel
sparsity preserving projection.

For a HRRP training sample x;, € R", we transform it
to different scale spaces and receive

z,;, () = LOG(u,0,) ® x;, (1) € R
where o, is enumerated in the scale factor set:
Z = {0-150—2"” 3O gy sO—S}’ s = 1929“' ,S

where S is the total number of all scale factors. This
paper sets the scale factor range between 0.5 and 10 with
an interval of 0.5.

Z= (20,20, L0 I LD I
Zp,- L2222, ZE] is multi-scale transform
matrix of HRRP training samples of all S scales, where
Zp =122 2 » Loy ] € R™M s the scale train-

ing samples matrix of the kth class at o, scale. In view of
the nonlinear characteristics hidden in HRRP, z;; can be

projected to a higher dimensional feature space H by a
mapping function:

o zj:,;A eR"— ¢(zj:’;‘) eH

H denotes a certain high dimensional feature space,
where the inner product can be expressed as

K= K@, 250) = (9=7).6(z70)).- ®)

For any sample #(z;,), it can be analytically repre-
sented by all training samples except itself. Referring to
SPP method, we can obtain the sparse vector §;’; by solv-
ing the following optimization problem:

AR - 1 S
8, = argmin|[s;|,
ki

o {¢<zz;k>=Bs;f,- o

Tos —
es; =1

where B =[¢(z])),(z]5), ¢z ), Pz ),
G(z5)s sz ) B2 (25, Pzl )] i the
matrix composed of all scale training samples in the high-
dimensional feature space, s, =[S, 115" s Spiop1s "
Sticaihot? 0 Skio iits " s Siosctn ’S;:,};(rs,c,NC]T is a vec-
tor of multi-scale fusion kernel sparsity representation
coefficients. Due to the presence of noise and the error of
sample observations, ¢(z/;) = Bs;; may not be sure to
be always completely established [25], then (9) can be
represented as

§¢ = argI{gn||s2i||l
s.t.{liBs;,- -0 < (19

TS —
es;; =1

where ¢ is the noise tolerance. If € in (10) is set to be 0,
the optimization problem in (9) is equivalent to the opti-
mization problem in (10). Therefore, the optimization
problem in (9) can be regarded as a special case of opti-
mization problem in (10), then only optimization prob-
lem in (10) need be considered. Since the exact expres-
sion of the nonlinear mapping ¢ is unknown, B and
¢(z;,) are also unknown, optimization problem in (10)
cannot be solved directly. The optimization problem in
(10) can be transformed into the following constrained
optimization problem:

S
sk,i

as _ .
§; = argmin 1
Pk

T ss _ pT N
. {HB Bs;,—B"o(z],)| <5. an

NeTos =
es; =1

Using the kernel function to calculate inner product of
high dimensional feature space data, we can obtain



YANG Xueling et al.: Ship recognition based on HRRP via multi-scale sparse preserving method 5

K(zl 1°21, i) K(zl et 2 K(zl 1’ZZVNL) K(Z(lr,ll’zli}k)
K(Z(IrIZ’le) K(Z(lrlzvzlz K(ZIZ’ZCN K(lef.lz’z@k)
B'B= =K, B'¢(z];,) =
K(ZCN(’ZII) K(ZCNC’Z(IJ—IZ K(ZCN(’ZCNF) K(ZZYN ,Z“)
The multi-scale fusion kernel sparsity representation  mization problem'
coefficients §;’, can be obtained by solving (11). In addi- I
‘ . : : min Z > Z (VT(z7 )~ VB3 ) =
tion, the multi-scale fusion kernel sparse reconstructive ol ki
s=1 k=1 L=

weight matrix S € R¥™S¥ can be defined as follows:

ASy

AS ASy ASy ASy ASy ASs
S [sl 1’s12’ ’s],Nl’ ’sk,N,(’ ’sCAVI’ ’SC,N(, ]

S8Sene

Note that the relationship between samples of different
scale spaces is achieved, which can improve the accu-
racy of target recognition. Then we can seek the projec-
tions of multi-scale fusion kernel sparsity preserves pro-
jection by solving the following function:

C N
manZZ(VT¢(Zk1) VTB§;”) (12)
s=1 k=1 L=
with
s ¢ N i
ZZ Vo) VBT -
s=1 i=
c N
VTB(ZZ Z(ekt _slsl)(e/\t _sk,) )BTV =
s=1 k=1 i=1
VIBI-S-S"+SSHB'V=V'BLB'V  (13)

where L=1-S-5"+8S", and ¢}, is an SN-dimensional
column vector in which the skith element is equal to 1
and the rest of elements are all equal to 0. We can obtain
the following optimization problem:

c N
min ZZZ(V%(zk,) VIBS;) =
s=1 k=1 l=
min V'BLB"V = min YLY" (14)
where Y=V'B and L=1-S-S"+SS"=L". So YLY"

is a quadratic matrix, then we can obtain the following
optimization problem:
s C N
min ZZZ(VTWM) V'BS;,) =
s=1 k=1 =

min trf[V'BLB"V]. (15)

To avoid the divergence of the solution, a constraint
VI'BB"V = I is imposed on (15).

According to the regenerative nucleus theory, in (15),
V can be written as V = Ba, where a =[a]},af}, ",
aly @y, ey 1" is to be determined. Substitut-

ing V = Ba into (15), we can obtain the following opti-

min trla” KLKa]

st.a'Ka=1 (16)

MSFKSPP can maximally preserve the sparse recon-
structive of data without discrimination. On the other
hand, between certain classes of ship targets, there is lit-
tle difference in target shape, structure, or size. MMC can
reduce the within-class dispersion, increase the between-
class dispersion and improve the recognition ability.

3.2 Ship target recognition method based on
MSFKSPP-MMC

To maximally preserve the structure of the data in the
dimension-reduced space and improve the classification
performance simultaneously, the merits of MSFKSPP and
MMC are fused. In this subsection, we learn an optimal
projection direction automatically based on the MSFK-
SPP-MMC. The optimal projection direction makes full
use of data information and labels information.

Similar to MSFKSPP method, kernel MMC aims to
find the optimal projection direction V to maximize the
margin between interclass samples. The objective func-
tion can be expressed as follows [19,26]:

max tr[V'(S) —S)V] =
max tr[a’ B*B(S, — 1S,)B"Ba] =

max trla"K(S; — uS,)Ka] (17)

where S;f and S? are the between-class scatter matrix and
within-class scatter matrix, respectively.

1< T
S¢ = W;NkS(mf—m"’)(mf—m"’) :

and



6 Journal of Systems Engineering and Electronics Vol. PP, No. 99, December 2023

S =5-9,,
where y is positive constant, e is an NS-dimensional unit
vector, e; is an NS-dimensional vector with e (k) =1
and e, ()=0@G=12,---,NS wheni#k).
By combining (16) and (17), we can get the following
optimization problem:
min trf{a" KLKa)
{max trla" K(S, — uS,)Ka]
st.a'K*a=1 (18)
The solution to the multi-objective constrained opti-
mization problem in (18) is to find a subspace which pre-
serves the sparsity property and maximizes the margin
between different classes simultaneously. Therefore we
can change (18) into the following constrained problem:
max tr[V' (S, —S?)V]-nu[V'BLB"V] =
trla" B"B(S, — S, —nL)B"Ba] =
trla” K(S, — uS, —nL)Ka]
st. a'Kra=1 (19)
where K is the basic kernel, and 7 is a positive constant
to adjust the effects of MSFKSPP structure information.
(19) can be solved by Lagrange multiplier method:

%tr[aTK(Sl —uS, —nL)Kal-A(a"K*a—-TI)=0

where A is the Lagrange multiplier. The maximization

criterion in (19) can be transformed into solving the fol-
lowing generalized eigenequation:

K(S, —uS,-nL)Ka = 1K*a. (20)

Finally, the projection matrix of the proposed method

is the largest d eigenvalues of «;(i=1,2,---,d) which is

obtained by (20). After the mapping matrix is obtained,

both the training samples and the testing samples can be
mapped into a low-dimensional feature space:

Vi, = VT¢(xk,tk) = aTBT¢(xk,1k) =
K(Z(lr,lpxk,l‘) 1

K(z(lr,lz’xk,h)
a’ . ,

K (Z?NC X))

y:[,lk = VT¢(x/‘1JL) = aTBT(p(xlq,lk) =
K(Z(lr,ll’x,qylx) ]

K(z75,x41)
a’ _ ,

K(z((;ch s x/q,h )_

where x’,, denotes a testing sample (¢ = 1,2,---,p). p is
the number of testing classes. After feature extraction, the
testing samples and training samples are recorded as
Y ={y' VoY o ’y,p,Nl,} and Y ={yi1,¥20," ",
Yiuoo »Yene ) respectively. In this paper, the support vec-
tor machine (SVM) classifier is adopted in the testing
stage.

The whole procedure of performing classification by
MSFKSPP-MMC can be formally summarized as fol-
lows.

Input Train data matrix X = [X|,X,, -+, X¢] and the
corresponding labels C; testing data X’.

Step 1 Transform the training sample matrix X into
the multi-scale transform matrix Z by multi-scale extrac-
tion.

Step 2 Obtain the optimizer §; to problem in (11)
and calculate the multi-scale fusion kernel sparse recon-
structive weight matrix S.

Step 3  Obtain the optimizer a to problem (19) and
compute the optimization projection matrix V.

Step 4 Calculate the low-dimensional embedding ¥
for training data and Y’ for testing data.

Step 5 Classify the testing data according to the
SVM.

4. Experimental results and analyses

In this section, we present several experimental results
demonstrating the effectiveness of the proposed method
for classification tasks on measured datasets. We com-
pare the results of our method with those of SPP [11],
kernel SPP (KSPP) [27], multi-scale fusion SPP (MSPP)
[28], and kernel PCA (KPCA) [29].

4.1 HRRP data set of ship targets

To verify the effectiveness and robustness of the pro-
posed method, some vital experiments are carried out
based on the measured data. The dataset is balanced and
composed of four classes. The dataset is composed of real
HRRPs generated by numerous homogeneous coastal
surveillance radars, which is an S-band radar with the
radar bandwidth of 300 MHz. Specially, each raw HRRP
is a 2 048-dimensinal long vector. The labels of the data
samples are derived from intelligence support and the
labels are confirmed by the operator.

Generally, the antenna erection height of coastal
surveillance radar ranges from tens of meters to more
than one thousand meters above sea level, and the maxi-
mum detection distance is tens of kilometers. Ignoring the
inclination of the ship caused by the waves, it can be cal-
culated that the range of the radar grazing angle is
approximately 0.5° to 5°. Relative to the azimuth angle
that can be changed in the range of 0° to 360°, the influ-
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ence of the change of the grazing angle is negligible.
Therefore, this paper only considers the azimuth sensiti-
vity. Here we define attitude angle, which is the included
angle between radar line of sight and target heading, and
its value ranges from 0° to 180°. When the attitude is
greater than 70° or less than 110°, the sea surface ship
target is in tangential or approximate a tangential motion
state. At this time, HRRPs cannot completely represent
the inherent structural characteristics of the target.

Therefore, HRRPs with the attitude range of 0°—70°
and 110°-180° are selected for experimental analysis.
The dataset is balanced and composed of four classes of
range profiles. A characteristic example HRRP of each
class can be seen in Fig. 2. A total of 1200 HRRPs are
available for each class. In order to reduce the impact of
amplitude sensitivity on the recognition results, the
HRRPs are normalized.

/

Normalized magnitude by 2-norm

59.8
£, 1000 > 940.351'9
7 A 97
o 500 1122187 4
4 004 PA\\\“

Fig. 2 Characteristic example HRRPs of ship target

In the following experiments, we will use Gaussian
kernel

(x—y)
KG(x7y) = exp (_ c
where ¢ is a constant parameter and is set to 5. The va-
lues of 1 and 7 are jointly searched from [1e-4,1e-3,1e-2,
le-1,1,1el,1e2,1e3,1e4]. The number of HRRPs for train-
ing and testing is tabulated in Table 1.

Table 1
classes targets

Number of HRRP for training and testing about the four

Target Training sample Testing sample
Class 1 700 500
Class 2 700 500
Class 3 700 500
Class 4 700 500

4.2 Influences of different number of scale factors

To verify the performance of the proposed method, the
effects of different number of scale factors are discussed.

In the comparison experiments, the number of scale fac-
torsissetas 1,2,3,4,5,6, 7,8, and 9, respectively. The
value u and n are equal to 1. The average recognition
accuracy of four classes with different numbers of scale
factors is shown in Fig. 3, which shows that the results
obtained by different numbers of scale factors are signifi-
cantly different. It means that multi-scale fusion kernel
functions can effectively characterize the data in the
reproducing kernel Hilbert space. We can see that the
model has the different recognition ability under diffe-
rent numbers of scale factors, which indicates that the
number of scale factors has a certain influence on the
recognition accuracy.

0.90

O e e v
Q& N 9N » ®
S & S o S &
T T T T T T
|
|
|

Average recognition accuracy

o

n

<
T

0.50

1 2 3 4 5 6 7 8 9

Scale factor
Fig. 3 Average recognition accuracy of four classes with different
number of scale factors

The scale factor selection is an important issue in multi-
scale technologies. The proper scale factors could greatly
enhance the performance of multi-scale classification.
This paper takes Kullback-Leibler divergence (KL-diver-
gence) method to achieve the scale factor selection [30].
This paper sets the scale factor range between 0.5 and 10
with an interval of 0.5. The KL-divergence value with a
different number of scale factors is shown in Fig. 4. Com-
bining Fig. 3 and Fig. 4, it can be seen that the optimum
number of scale factor is 6. In later experiments, we use
the scale factor of 6 for analysis.
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Fig. 4
scale factors

KL-divergence difference value with different number of
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4.3 Average recognition accuracy with different
feature dimensions

In this
dimension of the corresponding algorithms. Fig. 5

subsection, we show the reduced feature
shows the average recognition accuracy of four
with  different
the analysis, the average recognition accuracy of all
with
sions. However, after a certain feature dimension, the

classes feature dimensions. From

methods improves increasing feature dimen-

average recognition accuracy performance remains
almost unchanged. Compared with the correspon-
ding algorithms, the feature dimension of projection vec-
tors in the proposed method is the highest. This is
because the proposed method deeply extracts feature
information from the training sample. The best average
recognition accuracy shows that the proposed method can
effectively extract local and global information from sea

clutter.
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Fig. 5 Average recognition accuracy with different feature dimen-

sions

4.4 Average recognition accuracy comparison
versus different training sample sizes

To wverify the proposed method can solve sample
problems, we compare the performance of the pro-
posed method with KSPP, MSPP, SPP, and KPCA
under small training sample size. The training sample
size which is tabulated in Table 1 is set as 20%,
40%, 60%, 80%, and 100% of the original training
sample size, respectively, and then we use all of
the testing sample size as testing sample size to eva-
luate performances. Experimental results are shown in
Fig. 6.
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Fig. 6 Average recognition accuracy with different training sam-
ple sizes

As shown in Fig. 6, we can see that the recognition
accuracies of all the methods declined with the number of
training samples decreasing which conforms to the gen-
eral law of model learning. For insufficient training sam-
ple sizes which lead to the small sample problem, the pro-
posed method still achieves the best recognition perfor-
mance. On the other hand, we find that some methods
have better recognition accuracies with a small training
sample size (40% for KSPP, and 40% for SPP) than those
with a large training sample size (60% for KSPP, and
60% for SPP). This may be because the training sample is
small, so the redundant information is removed and the
effective information of the target is retained. When the
training sample size increases to more than 60%, the
recognition accuracies of all methods are increased.
Among all the approaches, the proposed method has the
ability to preserve the multi-scale fusion kernel sparsity
preserves projection of the data, and maximize the dis-
tances between different classes, which achieved the
highest recognition rate.

5. Conclusions

In this paper, the method via MSFKSPP-MMC is pro-
posed for radar HRRP target recognition which is an effi-
cient approach for dimensionality reduction and feature
extraction. The kernel sparse reconstructive relationship
of multi-scale fusion is constructed. The proposed
method can extract richer feature information of ship tar-
gets from sea clutter, simultaneously preserve the multi-
scale fusion kernel sparsity preserves projection of the
data and maximize the class separability in the dimen-
sionality reduced reproducing kernel Hilbert space.
Extensive studies on the measured data demonstrate that
the proposed method exhibits a good classification per-
formance. Moreover, compared with other methods in
HRRP target recognition, it shows the superiority of the
proposed method.
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