
Low rank optimization for efficient deep learning: making a
balance between compact architecture and fast training

OU Xinwei, CHEN Zhangxin*, ZHU Ce, and LIU Yipeng*

School of Information and Communication Engineering, University of Electronic Science and
Technology of China, Chengdu 611731, China

ℓ1

Abstract: Deep neural networks (DNNs) have achieved great
success in many data processing applications. However, high
computational complexity and storage cost make deep learning
difficult to be used on resource-constrained devices, and it is not
environmental-friendly with much power cost. In this paper, we
focus on low-rank optimization for efficient deep learning tech-
niques. In the space domain, DNNs are compressed by low rank
approximation of the network parameters, which directly
reduces the storage requirement with a smaller number of net-
work parameters. In the time domain, the network parameters
can be trained in a few subspaces, which enables efficient train-
ing for fast convergence. The model compression in the spatial
domain is summarized into three categories as pre-train, pre-set,
and compression-aware methods, respectively. With a series of
integrable techniques discussed, such as sparse pruning, quan-
tization, and entropy coding, we can ensemble them in an inte-
gration framework with lower computational complexity and
storage. In addition to summary of recent technical advances,
we have two findings for motivating future works. One is that the
effective rank, derived from the Shannon entropy of the norma-
lized singular values, outperforms other conventional sparse
measures such as the norm for network compression. The
other is a spatial and temporal balance for tensorized neural net-
works. For accelerating the training of tensorized neural net-
works, it is crucial to leverage redundancy for both model com-
pression and subspace training.

Keywords: model compression, subspace training, effective
rank, low rank tensor optimization, efficient deep learning.

DOI: 10.23919/JSEE.2023.000159

 1. Introduction
Deep neural networks (DNNs) have been widely used in
many data processing applications, such as speech recog-

nition, computer vision [1−4], natural language process-
ing [5,6], etc. As a deeper or wider structure can lead to
better performance, DNNs are gradually characterized by
their over-parameterization. Over-parameterization, on
the other hand, suggests too much redundancy in DNNs,
which leads to overfitting [7,8]. There are mainly two
challenges in deep learning: high complexity and slow
convergence. High complexity means that there are mil-
lions of parameters in DNNs, and computation between
massive parameters and inputs is cumbersome, which
underlines the need for efficient algorithms to compress
and accelerate. For example, the number of parameters in
Visual Geometry Group (VGG)-16 [2] is almost seven
million. For an image in ImageNet dataset [1] with a size
of 224×224×3, the feedforward process requires 30.9 bil-
lion float point-operations (FLOPs). The high comple-
xity is unaffordable for resource-limited devices, such as
mobile phones [9] and Internet of Things (IoT) devices
[10]. The slow convergence is caused by the conven-
tional back propagation (BP) algorithm, resulting in time-
consuming training [11]. Also, the convergence speed is
sensitive to the setting of the learning rate and the way to
initialize weights.

There are many works attempting to reduce the high
complexity of DNNs with acceptable performance decay.
The investigation of model compression can be summa-
rized into two folds: one is to reduce the number of
parameters, and the other is to reduce the average bit
width of data representation. The first fold includes but is
not limited to low rank approximation [12−15], pruning
[16,17], weight-sharing [18], sparsity [19], and know-
ledge distillation [20]. Since these techniques have their
own limitations, it is better to combine them to fully
exploit the redundancy in DNNs. Quantization [21,22]
and entropy coding [20] belong to the second category,
which is designed to achieve a lower number of bits per
parameter.

Manuscript received September 21, 2022.
*Corresponding authors.
This work was supported by the National Natural Science Founda-

tion of China (62171088, U19A2052, 62020106011), and the Medico-
Engineering Cooperation Funds from University of Electronic Science
and Technology of China (ZYGX2021YGLH215, ZYGX2022YGRH-
005).

Journal of Systems Engineering and Electronics

Vol. PP, No. 99, November 2023, pp.1 – 23

Low rank approximation has been widely adopted due
to its strong theoretical basis and ease of implementation
on hardware. In this survey, we comprehensively review
this rapidly developing area by dividing low rank opti-
mization for model compression into three main cate-
gories: pre-train method, pre-set method, and compres-
sion-aware method. The biggest distinction among them
is the way to train. The pre-train method directly decom-
poses a pre-trained model to get warm initialization for
the compressed format, followed by retraining the com-
pressed model to recover the performance. Without pre-
training, the pre-set method trains a network that is pre-
set to a compact format from scratch. Totally different
from the above two methods, the compression-aware
method explicitly accounts for compression in the train-
ing process by gradually enforcing the network to enjoy
low-rank structure. Although the discussion about low
rank optimization can also be found in [23], we further
investigated how to integrate it with other compression
techniques to pursue lower complexity and recom-
mended the effective rank as the most efficient measure
used in low rank optimization.

When the redundancy in DNNs is exploited by sub-
space training, DNNs can converge faster without losing
accuracy. In deep learning, it is conventional to train net-
works with first-order optimization methods, e.g. stochas-
tic gradient descent (SGD) [24], which is computation-
ally cheap. But there are some inherent drawbacks to first-
order optimization methods, such as slow theoretical and
empirical convergence. Second-order methods can deal
with such a problem well, but because of the heavy com-
putational burden of Hessian matrices, second-order
methods are not applicable to DNNs. The idea that
projecting parameters onto a tiny subspace represented
by several independent variables is an effective way to
solve this problem. Since only a few variables need
to be optimized, we can apply second-order optimization
methods to achieve the temporal efficiency of deep learn-
ing.

In this survey, we first present a comprehensive
overview of various tensor decomposition methods appli-
cable to model compression. Next, the low rank optimiza-
tion for model compression is summarized in terms of pre-
set, pre-train, and compression-aware methods. For each
method, a detailed discussion on key points about imple-
mentation is given. More meticulously, we make a com-
parison among various sparsity measures used in the
compression-aware method, and dig out the most effi-
cient measure, i.e., effective rank, which is seldom used
as a sparse regularizer before. In addition, while there are
already many works that give a list of joint-way compres-

sion [25,26], little attention has been paid to the integra-
tion between low rank approximation and other compres-
sion techniques. Therefore, we present an overall survey
on this kind of integration here. Then, we introduce low
rank optimization for subspace training. Furthermore, we
are the first to relate these two types of low rank opti-
mization, discovering that redundancy in the temporal
domain and spatial domain are of the same origin. And
there is a discussion on how to apply subspace training on
tensorized neural networks to achieve spatial efficiency
and temporal efficiency simultaneously.

Different from the previous surveys on tensors for effi-
cient deep learning [15,27,28], the main contributions of
this paper can be summarized as follows.

(i) We make a detailed overview of low rank approxi-
mation for model compression, and we find that recur-
rent neural networks (RNNs) can be effectively com-
pressed using hierarchical Tucker (HT) decomposition
and Kronecker product decomposition (KPD), convolu-
tional neural networks (CNNs) can be effectively com-
pressed using tensor train (TT), and generalized Kro-
necker product decomposition (GKPD), while tensor ring
(TR) and block term decomposition (BTD) can suitably
compress both RNNs and CNNs.

(ii) A series of integratable neural network compres-
sion techniques are discussed in details, and an integra-
tion framework is summarized to well take advantage of
various methods.

(iii) We analyse that the redundancy in the space
domain and time domain are of the same origin. In order
to accelerate the training of tensorized neural networks,
we should make the balance between spatial efficiency
and temporal efficiency.

(iv) After discussing and testing various sparse mea-
sures for low rank optimization for DNN compres-
sion, the effective rank outperforms in numerical experi-
ments.

This survey is organized as follows. In Section 2, we
give an overview of low rank optimization for model
compression. Low rank approximation integrated with
other compression techniques is reviewed in Section 3.
Section 4 introduces low rank optimization for subspace
training and analyses the coupling between these two
types of low rank optimization.

 2. Low rank optimization for model com-
pression

We provide an overall mind map of low rank optimiza-
tion in Fig. 1. In this section, we focus on the spatial effi-
ciency. Since DNNs are over-parameterized, there are
opportunities to make deep networks more compact.

2 Journal of Systems Engineering and Electronics Vol. PP, No. 99, November 2023

Compression methods, like quantization, pruning, and
low-rank approximation, can lower complexity of
DNNs without significant accuracy degradation. Among
them, low rank approximation has been widely adopted
because of the solid theoretical basis of tensor decom-
position [29]. In this section, we first introduce various

tensor decomposition methods applicable for network
compression, and then divide optimization methods
for low rank approximation into three categories: pre-
train, pre-set, and compression-aware methods. In
addition, we make a discussion on efficient sparsity mea-
sures.

Spatial efficiency

Low rank approximation

Pre-train method

Pre-set method

Compression-aware method

Integratable techniques

Parallel integration

Pruning

Sparsification

Weight sharing

Knowledge distillation

Orthogonal integration
Quantization

Entropy coding
Temporal efficiency Subspace training

Making a balance

Fig. 1 Overview of low rank optimization for efficient deep learning

 2.1 Tensor decomposition

Low rank approximation can provide an ultra-high com-
pression ratio for RNNs with insignificant accuracy loss.
However, when it comes to CNNs, the compression per-
formance is not as satisfying as RNNs. In early litera-
tures, four-dimensional (4D) convolutional kernels are
reshaped into matrices and singular value decomposition
(SVD) is utilized to decompose matrices into two factors
[30]. However, the reshaping operation leads to distor-
tion of structure information. Hence, more efficient ten-
sor decomposition has attracted interests. Canonical-
Polyadic (CP) decomposition [15] is applied to decom-
pose a convolutional layer into four consecutive convolu-
tional layers, significantly speeding up CNNs [12].
Tucker decomposition [31] can decompose the 4D kernel
into a 4D compact kernel and two matrices by exploiting
the channel-wise redundancy. Based on these three clas-
sic decompositions, many other flexible methods
emerged including HT [32], TT [33], TR [34], BTD [35],
GKPD [36], semi-tensor product (STP) based sem-tensor
train (STT) and semi-tensor ring (STR) [37], which dra-
matically improve the compression performance for
DNNs. Table 1 shows the performance of widely-used
tensor decomposition methods applied to compress
ResNet32 with Cifar10 dataset.

Table 1 Comparison of compression performance of advanced
tensor decomposition methods on ResNet32 with Cifar10 dataset

Method Top-1 Accuracy/% Compression ratio

Tucker [9] 87.70 5 times

TT [38] 88.3 4.8 times

TR [14] 90.6 5 times

BTD [39] 91.1 5 times

GKPD [36] 91.5 5 times

HT [40] 89.9 1.6 times

STT [37] 91.0 9 times

W ∈ RO×I

I O

K ∈ RS×C×H×W

S
C H W

I1× I2× · · ·× Id = I O1×O2× · · ·×Od = O
C1×C2× · · ·×Cd =C S 1×S 2× · · ·×S d = S .

Here, we outline some key notations. For a fully-con-
nected (FC) layer, we let denote the weight
matrix of this layer, where and represent the number
of input neurons and output neurons, respectively. And
for a convolutional (Conv) layer, we let
denote the weight of the convolutional kernel, where ,

 are the number of filters and input channels, and ,
are the height and width of the kernel. In some cases, we
need to reshape a tensor into a higher-order one. We
assume that , ,

, and Some
necessary mathematical operators are listed in
Table 2.

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 3

Table 2 Notations used in this paper

Notation Description

diag(·)
Generation of a diagonal matrix by taking the

input vector as the main diagonal
⊗ Kronecker product

◦ Vector outer product

×n n-mode product

⋉ Semi-tensor product

Im = max
{k∈1,2,··· ,d}

Ik Om = max
{k∈1,2,··· ,d}

Ok d = 2 r
R t

Cm = max
{k∈1,2,··· ,d}

Ck S m = max
{k∈1,2,··· ,d}

S k d = 2
k =max(k1,k2) k1 · k2 = K r R

M N
t

Base on these defined notation, we can make a com-
parison among various state-of-art tensor decompositions
on their ability to compress and accelerate. When aiming
at FC layers, the comparison is shown in Table 3. And
Table 4 is for Conv layers. Note that in Table 3

, , for KPD, is the
maximal rank, is the CP rank of BTD, and is the ratio
between connected dimensionality. Note that in Table 4,

, , for GKPD,
 with , is the maximal rank,

is the CP rank of BTD, and are the height and width
of feature map, and is the ratio between connected
dimensionality.

Table 3 Comparison among FC layer compressed by TT, TR, HT,
BTD, STR, and KPD on computation costs and storage consump-
tion

Method Computation Storage

FC O(IO) O(IO)

TT O(dIm max(I,O)r2) O(dImOmr2)

TR O(d(I+O)r3) O(d(Im +Om)r2)

HT O(d min(I,O)(r3 + Imr2)) O(dImOmr+dr3)

BTD O(dIm max(I,O)rdR) O((dImOmr+ rd)R)

STR O
(

d(I+O)r3

t

)
O

(
d(Im +Om)r2

t2

)
KPD O(IOm +OIm) O(ImOm)

Table 4 Comparison among convolutional layer compressed by
TT, TR, HT, BTD, STR, GKPD on computation costs and storage
consumption.

Method Computation Storage

Conv O(S CK2 MN) O(S CK2)

TT O(dr max(rCm,K2)max(C,S)MN) O(dCmS mr2 +K2r)

TR O(r3(C+S)+ (r3K2 + r2(C+S))MN) O((dCmS m +K2)r2)

HT O(log2 dCS (r3 + r2)+S CK2 MN) O(dCmS mr+K2r+dr3)

BTD O((K2r2 + (C+S)r)RMN) O((K2r2 + (I+O)r)R)

STR O
(

r3

t3
(C+S)+ (r3K2 +

r2

t
(C+S))MN

)
O

((
dCmS m

t2
+K2

)
r2

)
GKPD O(r(CmS +S mC)k2 MN) O(rCmS mk2)

 2.1.1 SVD

X ∈ RM×NFor a given matrix , its SVD can be written as

X = U diag(s)VT. (1)

R R ⩽min{M,N}
U ∈ RM×N V ∈ RN×R UUT = I

VVT = I s ∈ RR

s1 ⩾ s2 ⩾ · · · ⩾ sR

Let denote the rank of the matrix, .
Note that and satisfy and

, respectively. is referred to as the singu-
lar value vector, where the elements decrease from first to
end, i.e., .

B = diag(
√

s)VT A = Udiag(
√

s)

W S C ·H ·W

S ·H
C ·W

B A

Since the format of weights in FC layers is a natural
matrix, SVD can be directly utilized. By using SVD, the
FC layer can be approximated by two consecutive layers.
The weight of the first and second layer can be repre-
sented by and , respec-
tively. For Conv layers, the 4D kernel should be reshaped
into a two-dimensional (2D) matrix first. By exploiting
different types of redundancy, there are two decomposi-
tion schemes. One reshapes into a -by-
matrix, namely channel-wise decomposition [30]. The
other called spatial-wise decomposition [13] gets a -
by- matrix. Then, compute SVD of the reshaped
matrix. Similar to the process of compressing FC layers,
two Conv layers represented by tensors reshaped from
factors and can be used to replace the original layer.

However, both methods only can exploit one type of
redundancy. Moreover, there is also redundancy between
input channels. Exploiting all kinds of redundancy at the
same time can help us achieve a much higher compres-
sion ratio, which can be achieved by tensor decomposi-
tion.

 2.1.2 CP decomposition

N
X ∈ RI1×I2×···×IN

While SVD factorizes a matrix into a sum of rank-one
matrices, CP decomposition factorizes a tensor into a sum
of rank-one tensors. For an th order tensor,

, the CP decomposition can be formulated
as:

X =
[[
λ; A(1), A(2), · · · , AN

]]
=

R∑
r=1

λr a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r . (2)

a(n)
r r A(n) λ ∈ RR

R
X R

Each represents the th column of and
represents the significance of components. The rank of
the tensor , denoted by , is defined as the smallest
number of rank-one tensors [27, 41].

W 2d
W′ ∈ RO1×O2 ···×Od×I1×I2×···×Id

x ∈ RI d
X ∈ RI1×I2×···×Id

When using CP to compress FC layers, the weight
matrix should be firstly tensorized into a th order
tensor . Meanwhile, the input
vector should be presented as a th order tensor

. For convolutional kernels, by directly per-
forming CP on the 4D kernel tensor, the layer will be
approximated by four consecutive convolutional layers
whose weights are represented by four factor matrices,
respectively.

4 Journal of Systems Engineering and Electronics Vol. PP, No. 99, November 2023

 2.1.3 Tucker decomposition

N N

X ∈ RI1×I2×···×IN

The Tucker decomposition can be considered as a higher-
order generalization of principal component analysis
(PCA). It represents an th order tensor with a th order
core tensor multiplied by a basis matrix along each mode.
Thus, for , we have

X = G×1 A(1)×2 A(2)×3 · · · ×N A(N) (3)

G ∈ RR1×R2×···×RN

×n

where is called core tensor. Elementwise,
“ ” can be formulated as

(G×1 A(1))i1 ,r2 ,··· ,rN
=

R1∑
r1=1

Gr1 ,r2 ,··· ,rN
A(1)

i1 ,r1
. (4)

A(n) ∈ RIn×Rn

n
G

X
X R1,R2, · · · ,RN

Columns of the factor matrix can be con-
sidered as the principal components of the th mode. The
core tensor can be viewed as a compressed version of

 or the coefficient in the low dimensional subspace. In
this case, we can say that is a rank-() ten-
sor [27,41].

2d

H×W

In the case of compressing FC layers, similar to CP,
the same tensorization for weights and input is needed,
followed by directly performing Tucker decomposition
on the th order tensor. For Conv layers, since the spa-
tial size of the kernel is too small, we can just use
Tucker2 [42] to take advantage of redundancy between
filters and between input channels, generating 1×1 convo-
lution, convolution, and 1×1 convolution.

 2.1.4 BTD

N
X ∈ RI1×I2×···×Id

BTD was introduced in [35] as a more powerful tensor
decomposition, which combines the CP decomposition
and Tucker decomposition. Consequently, BTD is more
robust than the original CP and Tucker decomposition.
While CP approximates a tensor with a sum of rank-one
tensors, BTD is a sum of tensors in low rank Tucker for-
mat. Or, by concatenating factor matrices in each mode
and arranging all the core tensors of each subtensor into a
block diagonal core tensor, BTD can be considered as an
instance of Tucker. Hence, consider a th order tensor,

, its BTD can be written as

X =
N∑

n=1

Gn×1 A(1)
n ×2 A(2)

n ×3 · · · ×d A(d)
n . (5)

N
Gn ∈ RR1×R2×···×Rd n

(R1,R2, · · · ,Rd)

In (5), denotes the CP rank, i.e., the number of block
terms, and is the core tensor of the th
block term with multilinear ranks that equals

.

X ∈ RI1×I2×···×Id

When BTD is applied to compress an FC layer, the
yielded compact layer is called block term layer (BTL)
[39]. In the BTL, the input tensor is ten-

x ∈ RI

W
W′ ∈ RO1×I1×O2×I2×···×Od×Id W′

{A(d)
n ∈ ROd×Id×Rd }dn=1

W′

X Y ∈ RO1×O2 ···×Od

W ∈ RS×C·H·W

1×H×1×W×S 1×C1×S 2×C2× · · ·×S d ×Cd

sorized from the original input vector and the orig-
inal weight matrix is reshaped as

. Then, we can factorize by
BTD with factor tensors . By conduct-
ing a tensor contraction operator between BTD() and

, the output tensor comes out, which can
be vectorized as the final output vector. For Conv layers,
it is claimed in [39] that by reshaping the 4D kernel into a
matrix, , the layer can be transformed into
BTL. Specifically speaking, the matrix should be further
reshaped as .

 2.1.5 HT decomposition

X ∈ RI1×I2×···×IN

{1,2, · · · ,N}
T = {t1, t2, · · · , tk}, S = {s1, s2, · · · , sN−k} U12···N ∈
RIt1 It2 ···Itk Is1 Is2 ···IsN−k×1 X

Ut ∈ RIt1 It2 ···Itk×Rt Us ∈ RIs1 Is2 ···IsN−k×Rs

HT decomposition is a hierarchical variant of the Tucker
decomposition, which iteratively represents a high-order
tensor with two lower-order subtensors and a transfer
matrix via taking advantage of the Tucker decomposition
[32,43]. For a tensor , we can simply divide
the index set into two subsets, i.e.,

. Let
 denote the matrix reshaped from , and

truncated matrices , rep-
resent the corresponding column basis matrix of two sub-
spaces. Then, we can have

U12···N = (Ut ⊗Us)B12···N (6)

B12···N ∈ RRtRs×1 ⊗

T
L = {l1, l2, · · · , lq} V = {v1,v2, · · · ,vk−q}

Ut Ul ∈ RIl1 Il2 ···Ilq×Rl Uv ∈ RIv1 Iv2 ···Ivk−q×Rv

Bt ∈ RRlRv×Rt

where is termed as transfer matrix and “ ”
denotes the Kronecker product between two matrices.
Subsequently, divide the set into two subsets

 and . We can repre-
sent with , , and

 as

Ut = (Ul⊗Uv)Bt. (7)

Us

The similar factorization procedure applies simultane-
ously to . By repeating this procedure until the index
set cannot be divided, we can eventually obtain the tree-
like HT format of the target tensor. An illustration of a
simple version of HT can be seen in Fig. 2.

U12···d

Ud/2···dU12···d/2

U1 U2 U3 U4 Ud−1 Ud

···

···

Fig. 2 HT decomposition

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 5

Since the Kronecker product in (7) is computationally
expensive, there are other concise forms of HT, such as
the contracted form introduced in [40]. This form merges
index subsets to the universal set from bottom to top. In
this form, an external input can be contracted with each
transfer matrix and truncated matrix one by one. This
way can avoid the memory and computation-consuming
weight reconstruction procedure and intermediate out-
puts will not be too large to out of memory.

W′ ∈ R(I1 ·O1)×(I2 ·O2)×···×(Id ·Od)

X ∈ RI1×I2×···×Id

W ∈ R(H·W)×(C1 ·S 1)×(C2 ·S 2)×···×(Cd ·S d)

For the realization of compressing FC layers by HT,
the weight matrix should be transformed into

, and the input data is tensorized
into . For reducing computation complex-
ity, the chain computation shown in Fig. 3 is applied.
However, as there is no law associating convolution and
contraction, the kernel of Conv layers must be recovered
from the HT format. By the way, in order to keep ba-
lance, the 4D kernel should be tensorized into

.

B1234

B34B12

U1x U2 U3 U4

Fig. 3 The chain computation for a fourth-order case

 2.1.6 TT decomposition

N X ∈ RI1×I2×···×IN

TT is a special case of HT, which is a degenerate HT for-
mat [33,44]. TT factorizes a high-order tensor into a col-
lection of third-or second-order tensors. These core ten-
sors are connected by the contraction operator. Assume
that we have a th order tensor, , element-
wise, we can factorize it into TT format as

Xi1 ,i2 ,··· ,iN
=

∑
r1 ,r2 ,··· ,rN

G1
i1 ,r1
G2

r1 ,i2 ,r2
· · ·GN

rN−1 ,iN
(8)

{Gn ∈ RRn−1×In×Rn }Nn=1 R0 = 1
RN = 1
{Rn}Nn=0

X

where the collection of with
and is called TT-cores [33]. The collection of
ranks is called TT-ranks. Fig. 4 gives an illustra-
tion of a fourth order tensor represented in TT format.
represents a fourth-order input. These arrows represent
the order of contraction.

I1 I2 I3 I4

R4R3R2R1R0

Fig. 4 A fourth order tensor in TT format

The TT was first applied to compress FC layers in [45],
where the weight matrix is reshaped into a high order ten-

W′ ∈ R(I1 ·O1)×(I2 ·O2)×···×(Id ·Od) W′

{Gn ∈ RRn−1×In×On×Rn }Nn=1

sor, . After representing in
TT format, the resulted TT-cores
can directly be contracted with the tensorized input. It
was suggested in [40] that TT is more efficient for com-
pressing Conv layers than HT, while HT is more suitable
for compressing FC layers whose weight matrix is more
prone to be reshaped into a balanced tensor.

(H ·W)× (C1 ·S 1)× (C2 ·S 2)× · · ·× (Cd ·S d)
X ∈ RH×W×C1×···×Cd

X

Employing TT on Conv layers is introduced in [38],
where the 4D kernel tensor should be reshaped to size of

 and the input
feature maps are reshaped to . In the
feedforward phase, the tensorized input will be con-
tracted with each TT-core one by one. Although TT can
significantly save storage costs, the computational com-
plexity may be higher than the original Conv layer.
Hence, high-oeder decomposed convolution (HODEC)
was proposed in [46] to enable simultaneous reductions
in computational and storage costs, which further decom-
poses each TT-cores into two third-order tensors.

 2.1.7 TR decomposition

X ∈ RI1×I2×···×IN

Due to the disunity of edge TT-cores, there is still an
open issue that how to arrange dimensions of tensors to
find the optimal TT format. To conquer this problem, TR
decomposition was proposed to perform a circular multi-
linear product over cores [34, 47−49]. Consider a given
tensor, , elementwise, we can formulate its
TR representation as

Xi1 ,i2 ,··· ,iN
=

∑
r1 ,r2 ,··· ,rN

G1
r1 ,i1 ,r2
G2

r2 ,i2 ,r3
· · ·GN

rN ,iN ,r1
=

tr

 ∑
r2 ,··· ,rN

G1
:,i1 ,r2
G2

r2 ,i2 ,r3
· · ·GN

rN ,iN ,:

(9)

{Gn ∈ RRn×In×Rn+1 }Nn=1 RN+1 = R1

R1

where all cores with are
called TR-cores. Its tensor diagram for a fourth-order ten-
sor is illustrated in Fig. 5. This form is equivalent to the
sum of TT format. Thanks to the circular multilinear
product gained by employing the trace operation, TR
treats all the cores equivalently and becomes much more
powerful and general than TT.

I1 I2

I3I4

R4 R2

R1

R3

Fig. 5 A fourth-order tensor in TR format

Moreover, due to the circular strategy, TR amends the
variousness of gradients in TT. Hence, TR is also suit-

6 Journal of Systems Engineering and Electronics Vol. PP, No. 99, November 2023

d I1× I2× · · ·× Id ×O1×O2× · · ·×
Od

d
d F1 ∈ RR1×I1×···×Id×Rd+1

F2 ∈ RRd+1×O1×···×Od×R1

X ∈ RI1×I2×···×Id F1

F2

O1×O2× · · ·×Od

able for compressing FC layers. In [14], TR was first
applied to compress DNNs. Specifically speaking, the
weight matrix of FC layers should be reshaped into a
2 th order tensor of size

, followed by representing the tensor into TR format.
For the feedforward process, firstly, merge the first
cores and the last cores to obtain
and , respectively. Then, we can cal-
culate contraction between input and ,
yielding a matrix that can be contracted with . The
final output tensor will be of size . For
Conv layers, if keeping the kernel tensor in 4th order and
maintaining the spatial information, its TR-format can be
formulated as

Ks,c,h,w =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

Ur1 ,s,r2Vr2 ,c,r3Qr3 ,h,w,r1 . (10)

V Q U

U V d

Hence, the original layer can be represented by three
consecutive layers whose weight tensors are , , and
respectively. If a higher compression ratio is needed, we
can further view and as tensors merged from core
tensors respectively, with an extra computation burden of
merging.

 2.1.8 Generalized KPD

U ∈ RJ1×J2×···×JN

V ∈ RK1×K2×···×KN

KPD can factorize a matrix into two smaller factor matri-
ces interconnected by Kronecker product, which has
shown to be very effective when applied to compress
RNNs [50]. To further compress Conv layers, it was gen-
erated to generalized KPD (GKPD) [36], which repre-
sents a tensor by the sum of multidimensional Kronecker
product between two factor tensors. Formally, the multi-
dimensional Kronecker product between
and is formulated as

(U⊗V)i1 ,i2 ,··· ,iN
= U j1 , j2 ,··· , jN

Vk1 ,k2 ,··· ,kN
(11)

jn = ⌊in/Kn⌋ kn = in Kn

N χ ∈ RJ1 K1×J2 K2×···×JN KN

where and mod . Based on this, for a
given th order tensor , GKPD can be
denoted as

χ =
R∑

r=1

Ur ⊗Vr (12)

R
R

R
χ

U V

where is referred to as Kronecker rank. For finding the
best approximation in GKPD with a given , we can
transform this optimization problem into finding a best
rank- approximation for a matrix, which can be solved
by SVD conveniently, via carefully rearranging into a
matrix and rearranging and into vectors.

For the realization of using GKPD to decompress Conv
layers, the 4D kernel is represented as

WS ,C,H,W =

R∑
r=1

(Ur)S 1 ,C1 ,H1 ,W1 ⊗ (Vr)S 2 ,C2 ,H2 ,W2 (13)

S 1S 2 = S C1C2 =C H1H2 = H W1W2 =W
Ur ⊗Vr

C2

R
R

S 1 C2

where , , , and .
The 2D convolution between each and input can
be transformed into a three-dimensional (3D) convolu-
tion whose depth equals , followed by multiple 2D
convolutions. Furthermore, the group of Kronecker
products can be viewed as parallel channels that calcu-
late the above two steps separately. And it was analysed
that large and can help to obtain more reduction in
FLOPs.

 2.1.9 STP-based tensor decomposition

X ∈ RM×NP

W ∈ RP×Q

STP [51] is a generation of the conventional matrix pro-
duct, which extends the calculation of two dimensionally
matching matrices to that of two dimensionally arbitrary
matrices. Since tensor contraction is based on the conven-
tional matrix product, we can further substitute STP into
tensor contraction, which will lead to more general and
flexible tensor decomposition methods. In [37], STP-
based tensor decomposition was designed to enhance the
flexibility of Tucker decomposition, TT and TR by
replacing the conventional matrix product in tensor con-
traction by STP, which demonstrates much higher effi-
ciency than original methods. Consider a special case in
which the number of columns in is propor-
tional to that of rows in , the STP can be
denoted as

Y = X⋉W, (14)

or, elementwise, as

Ym,g(n,q) =

P∑
p=1

Xm,g(n,p)Wp,q. (15)

Y ∈ RM×NQ ⋉ g(n,q) =
(q−1)N +n g(n, p) = (p−1)N +n

Note that , " " denotes the STP,
, and are rein-

dexing functions.
Hence, take STP-based Tucker decomposition as an

example, namely semi-tensor Tucker (STTu) decomposi-
tion, which can be formulated as

X = G⋉1 A(1) ⋉2 A(2) ⋉3 · · ·⋉N A(N) (16)

G ∈ RR1×R2×···×RN A(n) ∈ R
In

t ×
Rn
t

 N∏
n=0

Rn+

N∑
n=1

InRn

 N∏
n=0

Rn+

N∑
n=1

InRn

t2

where , . Compared with nor-
mal Tucker, the number of parameters is reduced from

 to .

 2.2 Low rank optimization method

We have already introduced various tensor decomposi-
tion methods, but how to apply these methods to DNNs
without significant accuracy degradation is an optimiza-
tion problem, which remains to be discussed. Since the

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 7

lower the tensor rank is, the higher compression ratio we
will get, we hope that each layer of DNNs can be decom-
posed by very low rank tensor decomposition. However,
as the rank gets lower, the approximation error increases,
leading to a dramatic loss of accuracy. Hence, there is a
tradeoff between accuracy and compression ratio, which

is a widely studied problem. There are mainly three kinds
of low rank optimization methods to achieve a good
tradeoff: pre-train method, pre-set method and compres-
sion-aware method (representative works can be seen in
Table 5). For each method, we give the key points about
the implementation in detail.

Table 5 Three types of low rank optimization method for model compression

Method Description Representative works

Pre-train
Pretrain the target model, apply tensor decomposition to trained

weight tensors, and then fine-tune to recover accuracy
[9, 12, 30, 52]

Pre-set Construct tensorized netwoks, set proper initialization, and then train the whole network [14, 38,39]

Compression-aware Train the original network with normal optimizers but enforce weight tensors to enjoy low rank structure [53−55]

 2.2.1 Pre-train method

The pre-train method is the earliest used method in the
literature of applying tensor compression to model com-
pression, which directly decomposes an already trained
network into a compact format, followed by fine-tuning
to recover the accuracy. There are two critical issues for
implementation: tensor rank selection and instability.

Tensor rank selection means how to select the proper
tensor rank of each layer in a network. Since the extent of
redundancy varies from one layer to another, the rank of
each layer is not supposed to be equal. Hence, unlike time-
consuming trial-and-error, an efficient rank selection
method should allocate the limited computation or stor-
age resources to each layer reasonably via carefully
deciding the rank of each layer, while ensuring the low-
est accuracy degradation.

n n

A simple but effective way is to set the rank of each
layer to be proportional to the number of corresponding
input or output channels, which usually performs better
than roughly setting all ranks equal. A probabilistic
matrix factorization tool called variational Bayesian
matrix factorization (VBMF) [56] was used in [9] to esti-
mate tensor ranks of a tensor in Tucker format. In order
to get the mode- rank, the corresponding mode- matri-
cization of the target tensor was viewed as an observa-
tion with noise. Then, VBMF was employed on the
observation to filter out the noise and then obtain a low
rank matrix. In [30], the rank selection problem was for-
mulated as a combinatorial optimization problem [57]
with computation or memory resource constrained. The
objective function is denoted as the product of PCA
energy (the sum of singular values) of each layer, as the
authors empirically observe that the PCA energy is
roughly related to the classification accuracy. Similarly,
the algorithm in [52] also employed the idea that the
approximation error is linked to the accuracy loss. But
more efficiently and reasonably, it selects the maximum

approximation error of all the layers as a proxy for model
accuracy. By minimizing this proxy, it is guaranteed that
no layer decomposed will significantly reduce the accu-
racy. Together with the resource constraint, the final
problem is a minimax optimization which can be solved
by binary search.

Since the approximation error does not necessarily
reflect the loss of accuracy, the above methods can only
obtain a suboptimal rank configuration scheme. To
address this challenge, reinforcement learning is
employed to automatically select ranks [58,59]. In the
established state-action-reward system, the reward favors
a reduction in resource cost and penalizes loss of accu-
racy. The state (a possible global rank configuration of all
the layers) that renders the maximum reward can be cho-
sen as the next state.

Instability means that if a model is approximated by an
unstable decomposed format such us CP format and TR
format, it will lead to difficulty in fine-tuning, i.e., con-
verge slowly and converge to a false local minima. In
[60−62], it was noted that there is a degeneracy problem
that causes instability in CP decomposition. Specifically
speaking, when CP represents a relatively high-rank ten-
sor in a low-rank format, there are at least two rank-one
components whose Frobenius norm goes to infinity and
cancels each other out. Due to the instability, [12,63] fails
to decompose the whole network by CP decomposition,
as it is difficult to find a suitable fine-tuning learning rate.
To deal with this challenge, [64] proposed to use the ten-
sor power method [65] to calculate CP decomposition
and employ iterative fine-tuning, i.e., decomposed one
layer at a time and then fine-tune the entire network itera-
tivelly. The authors of [66] devise a procedure to mini-
mize the sensitivity (a measure for the degeneracy
degree) of the tensor reconstructed from CP format so
that the decomposed network with low sensitivity can be
fine-tuned faster and obtains a better accuracy. A more

8 Journal of Systems Engineering and Electronics Vol. PP, No. 99, November 2023

direct method proposed in [67] hold that each column of
the factor matrix should be normalized after each update,
as normalization can improve numerical stability in the
outer vector product [68]. A similar instability problem
also happened to TR [69]. Hence, [70] proposed a sensiti-
vity correction procedure to address the problem via mini-
mizing the sensitivity with an approximation error
bounded constraint.

 2.2.2 Pre-set method

The pre-set method has the interpretation that a ten-
sorized neural network that is preset to a low tensor rank
format will be trained from scratch. As the method
requires no pre-training, it can save a great deal of time to
get a compressed model. However, the method is sensi-
tive to initialization and difficult to achieve high accu-
racy due to the limited model capacity. Moreover, simi-
lar to the pre-train method, there are also problems in
configuring ranks. In a nutshell, proper initialization and
tensor rank selection are the main issues with this
method.

N
0,std =

√
2
N

 N

N(0,σ2)
d

Rdσ2d

σ2

(
2
N

) 1
d

R−1

(
2
N

) 1
d

R
1
d −1

Initialization plays an important role in providing a
warm start for training DNNs [71] as well as for the train-
ing of low rank structure networks [14], and can have an
impact on the final accuracy to a large extent. An empiri-
cally determined suitable initialization distribution for

weights in a layer is , where denotes

the total number of parameters in this layer. For a pre-set
model, we should make sure that weights in each layer
approximated by factor tensors also obey this distribu-
tion. For example, when a layer is compressed by TR and
the distribution of each core tensor is , then after
merging these core tensors, elements of the merged ten-
sor will have mean 0 and variance . Hence, we need

to set as to obtain a good initialization. Simi-

larly, for TT, the variance of TT-cores should be

. A more systematic analysis of initialization

for any tensor decomposition method was introduced in
[72]. It is suggested that by extracting the Backbone
structure (i.e., a structure only contains contracted dimen-
sions, since only the contraction operator will change the
variance of weights) from the original tensorized struc-
ture, an adjacency matrix can be obtained from node
edges of the Backbone structure, which can be utilized to
adjust the variance of factor tensors.

Tensor rank selection is seldom studied in the works of
training a tensorized neural network and usually set the
ranks to equal in experiments, as it is difficult to verify
the redundancy in each layer without a pre-training net-

work. At present, there are only a few methods to solve
this problem for specific tensor decompositions. Inspired
by neural architecture search (NAS) [73,74] proposes a
progressive searching TR network (PSTRN), which has
the ability to find an appropriate rank configuration for
TR efficiently. In this algorithm, an evolutionary phase
and a progressive phase are alternatively performed.
While the evolutionary phase is responsible for deriving
good rank choices within the search space via multi-
objective genetic algorithm i.e., non-dominated sorting
genetic algorithm-II (NSGA-II) [75], the progressive
phase is responsible for narrowing the search space in the
vicinity of the optimized rank coming from the previous
evolutionary phase. For rank selection with TT decompo-
sition, [76] proposes a low-rank Bayesian tensorized neu-
ral network. Bayesian methods are always used to infer
tensor ranks in CP format or Tucker format through low-
rank priors in tensor completion tasks [77−79]. This
paper generates this approach to TT format and nonlinear
neural networks.

A more easily implemented method, modified Beam-
search, was proposed in [80] to find the optimal rank set-
ting, costing much lower search time than the full search.
To verify optimality, it adopts the validation accuracy on
a mini-batch validation dataset as its metric. This method
is applicable to all kinds of tensor decompositions.

 2.2.3 Compression-aware method

Compression-aware method is the method that through
standard training and iterative optimization, the weights
of kernels and FC layers can gradually have desired low
tensor rank structures. That is, consider the future com-
pression into the standard training phase. Upon the end of
this one-shot training, the suitable tensor ranks are auto-
matically learned, without efforts to design efficient rank
selection schemes. Moreover, since the training process is
still on the original network structure instead of a deeper
factorized network, it’s easy to converge towards high
accuracy without being prone to gradient vanishing or
explosion. There are mainly two kinds of ways to realize
this idea, namely using low rank regularization and solv-
ing constrained optimization.

Low rank regularization is similar to the sparse regu-
larization which is always used in DNNs to avoid overfit-
ting. The main idea of low rank regularization is to add
low rank regularizer on weights in each layer to the basic
loss function. Hence, with the constraint of such regula-
rizer, weight tensors will gradually have a desired low
rank structure during training. Then, after low rank
approximation, there is no need to retrain for a long time
and no risk of unstable recovery.

For the low rank regularizer, an index to measure the

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 9

low rank degree is essential. Since explicitly minimizing
the rank of a matrix is NP-hard, nuclear norm [81] was
widely used as a continuous convex relaxation form of
rank. In [82], the sum of nuclear norms of weight matri-
ces in each layer was added to cross-entropy loss, yield-
ing a new optimization problem which can be solved by
proximal stochastic gradient descent. Similarly, [83] also
used nuclear norm and the same optimization problem
was solved by stochastic sub-gradient descent [84]. In
addition, this paper embeds the low rank approximation
into the training phase to boost the low rank structure.

However, for the above, SVD will be performed on
every training step, which is inefficient, especially for
larger models. Hence, [85] proposed SVD training which
performs training directly on the decomposed factors. By
employing sparsity regularization on singular values, it
can achieve the goal of boosting low rank. In order to
maintain the valid SVD form, orthogonality regulariza-
tion on the left and right singular matrices is necessary.
Moreover, Orthogonality also can efficiently prevent the
gradient to explode or vanish, therefore achieving higher
accuracy.

Solving constrained optimization is a method that
through solving an optimization problem with explicit or
implicit constraints on tensor ranks of weights, we can
get an optimal network not only with low loss but also
with low rank structures. Classically, [53] formed the low
rank constrained problem as minimizing the sum of the
loss and a memory/computation cost function but con-
straining each rank not to exceed a maximum rank. It can
be solved by a learning-compression algorithm [86].
More conveniently, [55] directly used budget (e.g., me-
mory/computation cost) as constraints, with low rank reg-
ularizer added on the loss function. However, since it rep-
resents tensor ranks by the sum of nuclear norms of
unfolding matrices in each mode, it cannot be genera-
lized to certain decomposition methods such as CP and
BTD. And when dealing with high-order tensors, there
will be too many auxiliary variables used in the aug-
mented Lagrangian algorithm, which will affect conver-
gence. Without using nuclear norm, [54] just set the
upper bound of ranks, therefore it is applicable to various
tensor decompositions.

The above methods have an unsatisfactory tradeoff
between accuracy and compression. To address this
drawback, the Frank Wolfe algorithm was utilized in [87]
to optimize network weights with the low-rank constraint.
This improvement benefits from the highly structured
update directions of Frank Wolfe.

For compression-aware methods, using different spar-
sity measures as low rank regularizers will greatly impact
compression performance. For an instance, it was noted

ℓ1in [85] that the measure (e.g., nuclear norm) is more
suitable for an extremely high compression ratio while
Hoyer measure performs better when aiming for a rela-
tively low compression ratio. Hence, it’s essential to dig
out an efficient sparsity measure that is attractive for any
compression ratio. This is exactly the point we want to
make below.

 2.3 Sparsity measure

ℓ1

Recently, researches on compression-aware method
emerge in large numbers and plenty of experiments show
that with the premise of using the same tensor decompo-
sition method, compression-aware method can outper-
form the other two methods [54,55, 85]. Hence, we
should pay more attention to it. One thing that has not
been fully studied is the sparsity measure used. As the
most classical convex relaxation form of rank, nuclear
norm (measure) is widely used. However, there is no
evidence that the nuclear norm is a perfect choice. Conse-
quently, a comparison between common sparsity mea-
sures should be made. Finding a more efficient measure
may greatly improve the compression capability of exist-
ing compression-aware algorithms.

 2.3.1 Common sparsity measure

ℓ0

ℓ0
ℓp

0 < p ⩽ 1
x ∈ RN ℓp

For sparse representation problems, the norm defined
as the number of non-zeros is the traditional measure of
sparseness. However, since the norm is sensitive to
noise and its derivative contains no information, the
norm with is introduced to less consider the
small elements [88]. For a vector , its norm can
be formulated as

ℓp(x) =

 N∑
i=1

|xi|p

1
p

. (17)

ℓ1 ℓp p = 1

x ∈ RN ℓ1

The norm, norm with , is the most widely
used sparsity measure. Formally, consider a vector

, its norm can be denoted as

ℓ1(x) =
N∑

i=1

|xi|. (18)

ℓ1
ℓ0

ℓ1
ℓ1 ℓ1 ℓ1

The norm was introduced in [89] as a more practi-
cal substitute for the norm. In addition, in order to bet-
ter measure sparsity in noisy data, more flexible forms
based on norm were proposed in [90,91], namely
sorted norm and two-level norm. The sorted
norm is formulated as

ℓsort1 (x) =
N∑

i=1

λi|xi| (19)

λ1 ⩾ λ2 ⩾ · · · ⩾ λN ⩾ 0where . In this way, the higher the

10 Journal of Systems Engineering and Electronics Vol. PP, No. 99, November 2023

ℓ1

magnitude of the element, the larger the penalty on it.
More concisely, the two-level norm only considers two
levels of penalty, which can be formulated as

ℓ2level1 (x) = ρ
∑
i∈I1

|xi|+
∑
j∈I2

|x j| (20)

|xi| ⩾ |x j|,∀i ∈ I1,∀ j ∈ I2 x
I1 I2

where . The index of is indi-
vied into the two sets and and they contains the
index of larger elements, while the rest is in I2.

x ∈ RN

x1 ⩽ x2 ⩽ · · · ⩽ xN

The Gini Index was initially proposed as a measure of
the inequity of wealth [92,93]. Afterward, the utility of
Gini Index as a measure of sparsity has been demon-
strated in [94,95]. Given a sorted vector whose
elements increases by degrees, i.e., , its
Gini Index is given by

G(x) = 1−2
N∑

i=1

xi

||x||1

N − i+

1
2

N

 . (21)

xN

1− 1
N

x = a y = b 100×a
100×b

Note that if all elements are equal, i.e., no sparsity, the
Gini Index reaches its minimal 0. For the most sparse
case, i.e., only is non-zero, the Gini Index goes to a

maximum of . Graphically, the Gini Index can be
represented as twice the area between the Lorenz curve
[93] and the 45° line. Each point on the Lorenz curve
(,) has the interpretation that top per-
cent of the sorted elements expresses percent of
the total power. The degree line represents the least
sparse case with Gini Index equal to 0. Fig. 6 illustrates
the Lorenz curve for a vector. The dot line (45° line) rep-
resents the case in which all elements are equal, and the
full line is the Lorenz curve of the vector. Twice the area
between them is equal to the Gini Index of such a vector.

0
0

0.2

0.4

Pe
rc

en
ta

ge
 o

f c
um

ul
at

iv
e

va
lu

e

0.6

0.8

1.0

0.2 0.4
Percentile

0.6 0.8 1.0

Fig. 6 A graphical illustration of Gini Index for a vector [1,2,3,4,10]

ℓ2/ℓ1
x ∈ RN

The Hoyer measure was devised in [96] as a new spar-
sity measure, which is a normalized version of . For
a given vector , its Hoyer measure can be formu-
lated as

H(x) =

√
N − ||x||1||x||2√

N −1
. (22)

xThis function goes to unity if and only if contains
only a single non-zero component, and takes a value of
zero if and only if all components are equal, changing
smoothly between the two extremes.

X
M×N σ ∈ RK

K =min{M,N}

The above-mentioned sparsity measure can be applied
to the singular value vector as a low rank measure of the
corresponding matrix. There are other non-strict mea-
sures for the rank of a matrix. Here, we concentrate on
effective rank [97]. Let us consider a matrix of size

 whose singular value vector is denoted by
with , then its effective rank can be given
by

E(X) = exp

− K∑
i=1

σ̄i ln σ̄i

 (23)

σi σ σ̄i =
σi

||σ||1
ln0 = 0

where is the ith element of , , and the con-
vention that is adopted. This measure is maxi-
mized when all the singular values are equal, and mini-
mized when the maximum singular value is much larger
than other values.

 2.3.2 Comparison

In the compression-aware method, it is common to
employ sparsity regularizer on singular value vectors to
encourage weight matrices to lie in a low rank subspace.
The nuclear norm is the most frequently used. However,
it simply makes everything closer to zero, which is
unfriendly to keeping the energy of weight matrices.
Hence, we prefer other measures that encourage the
insignificant singular values (with small magnitude) to go
to zero but keep the significant values (with large magni-
tude) or make them larger to maintain the energy. Hence,
we choose Gini Index, Hoyer, and effective rank as
potential objects, and make a comparison among them
together with the nuclear norm.

λ

We execute the comparison experiment on ResNet32
trained on the Cifar10 dataset. We utilize the most sim-
ple SVD to compress the network, and in the compres-
sion-aware training phase, we employ various sparsity
measures on singular vector values of each weight matrix,
with a hyperparameter to make the balance between
accuracy and low rank. After this training, there are many
singular values close to zero that can be set to zero with-
out degrading performance. An appropriate indicator for
identifying singular values retained was introduced in
[98], namely spectral norm based indicator. This indica-
tor is defined as the ratio of the largest discarded singular
value to the maximal singular value. It is more efficient
than the normal Frobenius norm based indicator [99], as

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 11

it can get rid of the interference caused by small and
noisy singular values.

λ

Fig. 7 shows the effect of the four sparsity measures.
The most frequently used nuclear norm shows the worst
performance. With the increase in the compression rate,
the accuracy drops sharply. The reason behind this can be
that at the time of pursuing a high compression ratio, the
value of is increased, with more singular values
imposed to zero. It dramatically destroys the expressive
ability of the model. This figure also suggests that effec-
tive rank surpasses the rest measures for any compres-
sion regime. To be specific, when the accuracy is close to
85%, effective rank can achieve a compression ratio
almost four times greater than the nuclear norm. And in
the case of 90%, it can achieve two times greater than
Hoyer. For a low compression regime, effective rank also
has the greatest potential to achieve accuracy close to the
original.

70

75

80

85

90

95

0 1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y/
%

CR
: Effective rank; : Hoyer; : Gini; : Nuclear norm.

Fig. 7 Accuracy on Cifar10 v.s. compression ratio of the number
of parameters in ResNet32

For the spectral norm based indicator, if we are in the
need of discarding most of singular values to gain a high
compression ratio, there are two choices: increase the

value of maximum singular value or decrease the value of
tiny singular values. However, increasing the value of the
maximum singular value 10 times is much more difficult
than decreasing the value of tiny singular values 10 times.
Hence, we prefer a measure that can strongly encourage
tiny singular values to reach 0. This is also the reason
why effective rank can demonstrate great efficiency.

 3. Integratable techniques
Apart from low rank approximation, there are other com-
pression schemes that can result in a significant reduc-
tion of parameters at the expense of only a small drop in
output accuracies, such as pruning [100], weight-sharing
[101], sparsification [102] and knowledge distillation
[20]. Undoubtedly, the integration of these parameter
reduction techniques, namely parallel integration, can fur-
ther enhance the efficiency of compression. While plenty
of surveys suggest integrating various compression tech-
niques, a detailed discussion on the combination between
low rank approximation and other schemes is still lack-
ing. In addition, not only the reduction of parameters but
also the reduction of bits for representing parameters can
significantly cut down the high complexity, which can be
realized by quantization and entropy coding. Quantiza-
tion can represent each parameter with lower bit-width,
and entropy coding can use codewords to encode source
symbols. Both techniques are orthogonal to the above
parameter reduction methods. Hence, we can directly
employ them on a compact model to gain a more com-
pact representation, namely orthogonal integration.
Table 6 lists representative works of different types of
integration, and Table 7 lists whether these techniques
can compress or accelerate models.

Table 6 Integratable techniques

Type of integration Technique Description Representative integration works

Parallel integration

Pruning Discard insignificant connections [82, 98, 103]

Sparsification Zero out insignificant weights [104−106]

Weight sharing Share weights across different connections [107−109]

Knowledge distillation Transfer knowledge learned from teacher to student [110−112]

Orthogonal integration
Quantization Reduce precision [113−115]

Entropy coding Encode weights into binary codewords [116−118]

Table 7 Ability to compress and accelerate for various techniques

Technique Acceleration Compression
Pruning √ √

Sparsification √ √
Weight sharing × √

Knowledge distillation √ √
Quantization √ √

Entropy coding × √

 3.1 Parallel integration

In this subsection, we give an all-round survey on how to
integrate low rank approximation with other parallel
compression techniques, including pruning, weight shar-
ing, sparsification, and knowledge distillation. Through
joint-way use, we can pursue a higher compression
capacity.

12 Journal of Systems Engineering and Electronics Vol. PP, No. 99, November 2023

 3.1.1 Integration with pruning

Pruning is used to find unimportant connections in a full
structure network and then abandon them, resulting in a
compact structure without significant loss of accuracy.
Pruning can be classified according to various levels of
granularity, including weight-level, filter-level, and layer-
level. Weight-level is the most flexible approach [102]
and can gain the lowest memory costs by storing in
sparse matrix format such as compressed sparse co-
lumn (CSC) [20]. However, it leads to difficulty in infe-
rence due to the need for identifying each weight kept or
abandoned. That is, this approach cannot speed up infe-
rence or save the memory footprint unless supported by
hardware [119]. Layer-level aims at abandoning trivial
layers, which is unsuitable for shallow networks [120].
To overcome these drawbacks, a more flexible and appli-
cable approach, namely filter-level, is proposed [121].
Filter-level considers each filter as a unit and discards
insignificant filters to obtain a compact model but with
regular structures. Note that for two successive Conv la-
yers, the removal of a filter in the first kernel leads to the
removal of the input channel in the next kernel.

Filter pruning does not deal with the redundancy
within a filter, while low rank approximation can over-
come this by representing each filter in low rank format.
Hence, it is promising to combine them to explore a
higher compression ratio. Reference [122] proposed to
perform filter pruning first and then employ Tucker
decomposition on the pruned kernels. Experiments in
[122] showed that the joint-way approach can achieve up
to 57% higher compression ratio than either of them. Re-
ference [98] exchanged the order of filter pruning and
low-rank approximation since the smaller filters obtained
by low rank approximation can reduce the probability of
discarding essential filters. In addition, previous works
pointed out that filter pruning is likely to prune more fil-
ters in deeper layers, resulting in still high computation
costs of the whole network [123]. But with the help of
low rank approximation, the shallow layers also can be
compressed. Then, both high-level compression of mem-
ory and computation costs can be achieved.

One branch of works can achieve low rank approxima-
tion and filter pruning simultaneously via regularizers. In
[82], the nuclear norm regularizer and the sparse group
Lasso regularizer [124] were combined to make weight
matrices not only low rank but also group sparse. Then
the original layer can be represented by two smaller la-
yers, followed by discarding insignificant input channels
of the first layer and output channels of the second layer.
Different from this method, [103] used one type of regu-
larizer to achieve both two motivations. It represents a

ℓ2,1

weight matrix by a basis matrix and a coefficient matrix.
By imposing regularization both on the coefficient
matrix and its transpose, the basis matrix can turn to be
low rank and insignificant output channels are identified.
Or, there are also some works that employ the two tech-
niques on different modules of a network. For instance,
aiming for Transformer architecture, [125] compressed
the attention blocks by low rank approximation and
applied to prune to feedforward blocks, which gains great
enhancement.

 3.1.2 Integration with sparsification

Sparsification in DNNs focuses on making weight matri-
ces sparser so that sparse matrix computation can be
employed to reduce high computation costs. Meanwhile,
it can provide storage efficiency, as non-zeros and their
locations can be recorded in compressed sparse row
(CSR) [20] or ellpack sparse block (ESB) [126] format.
There are two types of sparsification, namely irregular
sparsity and structural sparsity. When the non-zeros are
located randomly in the matrix, we call it irregular spar-
sity, which is flexible but may result in poor acceleration
due to its irregular data access pattern. On the contrary,
structural sparsity can achieve regular data access pat-
terns. To be more specific, structural sparsity normally
zeros out a series of continuous elements in the matrix.

Low rank approximation factors a matrix into smaller
components, but these components still contain tiny ele-
ments which can be zeroed out without leading to a sig-
nificant increase in approximation error. Hence, it is
promising to combine low rank approximation and sparsi-
fication to achieve better compression. Sparse PCA
(SPCA) [127] was a well-known instance to integrate fac-
torization with sparsity. The main idea of SPCA is to
make each principal component only contain a few fea-
tures of data, so that SPCA is more explainable than
PCA. There were also sparse HOSVD and sparse CP pro-
posed in [65].

ℓ1 ℓ2,1

In [105], it has shown that surprisingly high sparsity
can be achieved after two-stage decomposition. It was
claimed that more than 90% of parameters can be zeroed
out with less than 1% accuracy degradation on ImageNet
Large Scale Visual Recognition Challenge 2012
(ILSVRC2012) dataset. In this algorithm, sparsity and
low rank are achieved by employing norm and
norm respectively on a coefficient matrix. Finally, it con-
verts the convolution operation in Conv layers into spare
matrix multiplication, which dramatically reduces com-
putation costs. Sparse SVD, i.e., factor matrices in SVD
are sparsed, was proposed in [104], which outperforms
truncated SVD. According to the view that a portion of
the input and output neurons in a layer may be insignifi-

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 13

cant, the corresponding rows of the left and right singular
matrix can be zeroed out. And considering the impor-
tance of entries in a row of left or right singular matrix
decreases from left to right, the sparse SVD prefers to
abandon entries nearing the right. The resulting structural
sparsity allows basic linear algebra subprogram (BLAS)
[128] libraries to be used for higher speed-up.

ℓ1

Aiming for RNNs, [106] proposed low-rank structured
sparsity. Considering dimensional invariance in time, this
method employs regularization on the left and right
singular matrix derived from SVD, resulting in a column-
wise and row-wise sparse matrix without dimension dis-
tortion.

 3.1.3 Integration with weight sharing

Weight sharing is defined as an operation that shares
parameters across different connections in DNNs by
exploiting redundancy. In order to design a more com-
plex network with a better capacity for feature extraction,
it is common to copy or reform some well-designed mo-
dules in a shallow network, and then add new modules to
the end, yielding a deeper network. One typical network
is the well-known ResNet [129]. Due to this similarity, it
is promising to explore a more compact representation by
sharing parameters across these similar subnetworks. For
low rank approximation, similarly, the idea of sharing
factor tensors across tensor decompositions of similar
weight tensors can also be adopted.

A simple illustration of integration with weight shar-
ing can be found in [108], where a set of 3D filter bases is
shared across several or all convolutional layers. The
search for bases is equivalent to low rank approximation
of all the matrix-shaped kernels with a shared basis
matrix.

x ∈ RN w ∈ RP

y ∈ R
N
P

N
P

x
W

Some tensor decomposition methods naturally com-
bine weight sharing. For example, in the previously men-
tioned semi-tensor product-based tensor decomposition,
STP can calculate a multiplication between a vector

 and a weight vector , resulting an output

vector . The entries in each block of share
one weight parameter of .

Alternatively, one branch of works shares factor ten-
sors across tensor decompositions of weight tensors in
different layers. Reference [107] proposed T-Basis,
which constructs a set of third-order tensors. For an arbi-
trary-shaped tensor, each of its TR-cores can be repre-
sented as a linear combination of T-Basis. Hence, a com-
pact representation of DNNs can be derived. Reference
[109] proposed coupled TT, which contains a common
component and an independent component. The common
component is represented by shared TT-cores for similar
network blocks, while the independent components in TT

format are various from different layers to maintain the
characteristics of each layer.

 3.1.4 Integration with knowledge distillation

qs qt

qs qt qt

qs qt

Knowledge distillation [130] is a promising solution,
which aims to feed some extra knowledge learned from
teacher networks (one or more complex networks) into a
student network (much simpler network). With the help
of a teacher, the student can achieve comparable accu-
racy but with much lower memory and computation costs
compared with the teacher. Let and denote the soft-
max outputs of the student network and teacher network,
respectively. The student network will be trained via
aligning and . But in the case that is close to the
one-hot code of true labels, the information contained in
small values cannot be transferred to the student. Hence,
a trick named temperature [130] is utilized to soften the
distribution of both and .

Networks compressed by low rank approximation is
also a simpler network that can learn knowledge from the
uncompressed version. In general, the decomposed net-
works are recovered by simply fine-tuning to minimize
the cross-entropy function. However, the fine-tuning pro-
cess always converges slowly and cannot recover the
original accuracy well. Hence, this underlines the need
for training the compressed network with information
from the corresponding pre-training network.

However, it was demonstrated in [71] that it is diffi-
cult to train a student network deeper than the teacher
network with knowledge distillation due to the undesir-
able phenomenon of vanishing gradient. Hence, a novel
knowledge transfer (KT) was proposed in [111], which
aligns both outputs and intermediate responses from a
teacher (original) network to its student (compressed) net-
work. Experiments show that it surpasses the common
fine-tuning and knowledge distillation, particularly with a
high compression ratio.

However, the KT method is still time-consuming and
has a demand for a fully annotated large-scale training
set, which may be infeasible in practice. Li et al. [110]
proposed a revised knowledge distillation that only
requires a few label-free samples. It adds a 1×1 Conv
layer at the end of each block of the student network, and
aligns block-level outputs of teacher and student by esti-
mating the 1×1 Conv layer’s parameters using least-
squared regression. Since the number of parameters in
1×1 Conv layers is relatively small, only a few samples
are necessary. It also enables fast model convergence,
thereby saving much time for recovery of accuracy. After
learning, the 1×1 Conv layer will be merged into the pre-
vious layer, without an increase in the number of parame-
ters.

14 Journal of Systems Engineering and Electronics Vol. PP, No. 99, November 2023

 3.2 Orthogonal integration

 3.2.1 Quantization

The operation that maps data from full precision to
reduced precision is referred to as quantization. In the
training and inference phase of DNNs, it is common to
represent weights and activations in 32-bit. However,
transferring data in 32-bit is a burden, and multiply-accu-
mulate (MAC) will be operated between 32-bit floating-
point values. In addition, energy consumed scales lin-
early to quadratically with the number of bits used.
Hence, lowering the precision is necessary for the reduc-
tion of memory size, acceleration and energy saving.

There are some special advantages of applying quanti-
zation on neural networks. First, compared with continu-
ous form, the discrete representations are more robust to
noise [131,132] and are more similar to the way of stor-
ing information in human brains [133,134]. Second, both
high generalization power [135,136] and high efficiency
under limited resources [137] of discrete forms are actu-
ally what deep learning needs. Third, common compres-
sion methods, like low rank approximation, weight-shar-
ing, and pruning, focus on either memory compression or
acceleration so that it is deficient to achieve significant
acceleration and compression simultaneously for a whole
network, while quantization can conquer this challenge.
In addition, it was shown in [138] that most of the
weights and activations in DNNs are close to zero, which
can greatly promote the compression ability of quantiza-
tion. A more detailed survey about implementing quanti-
zation on DNNs could be found in [139,140].

A straight-forward way to combine low rank approxi-
mation and quantization is to consider the network com-
pressed by tensor decomposition as a new network, which
can be normally further compressed by various quantiza-
tion methods. However, since there is already an approxi-
mation error derived from decomposition, the subsequent
quantization will suffer from serious accuracy degrada-
tion. Hence, a novel integration method that considers
low rank decomposition and quantization simultaneously
instead of successively has the potential to address the
challenge.

This idea can be found in [141], where both factors of
Tucker format and activations are quantized, and with the
help of knowledge distillation, the approximation error is
minimized. In [114], quantization was introduced in
PCA, where the component matrix and the coefficient
matrix are quantized with different bit-widths. Together
with a sparsity constraint on the coefficient matrix, the
approximation error on the data manifold derived from
low rank decomposition, sparsity and quantization will be
minimized by an iterative projected gradient descent
method.

Also, there are some approaches that directly extend

basic tensor decomposition algorithms to tensor decom-
positions with quantized factors. For instance, quantized
CP-alternating least squares (ALS) was proposed in
[115], where each optimization iteration factors are quan-
tized, and it is shown that the reconstruction error under
ALS and quantized ALS are almost the same.

The above-mentioned methods are all aiming at
approximating a tensor with quantized factors, which is
not suitable for pre-set method. In [113], a quantized TT
(QTT) was utilized for compressing three-dimensional
convolutional neural networks. TT-cores in tensorizied
neural networks are first quantized, and then the quantiza-
tion of feedforward process is also made, achieving a
three times faster inference than using only TT.

 3.2.2 Entropy coding

Entropy coding is a lossless compression scheme, which
encodes source symbols with a lower number of bits per
symbol by exploiting the probability distribution of
source [142]. Entropy coding originally adopted for data
compression is introduced to further reduce the memory
size of quantized DNNs by representing quantized
weights with binary codewords [20]. It uses Huffman
coding to further save 20% to 30% of network storage
with no loss of accuracy.

Huffman coding is a theoretically optimal method to
encode multivariate independence source symbols, but
with the precondition that statistical characteristics of
source symbols are already known. There is a problem
with DNNs that statistical characteristics of weights cal-
culated by histogram is a time-consuming preparation and
are different for each network, even for a network fine-
tuned. Hence, an encoding method without the need for
exact statistics is more efficient for compressing DNNs.

One branch of works called universal coding, such as
the variants of Lempel-ZivWelch [143−145] and the Bur-
rows –Wheeler transform [146], can be applied to deal
with this problem. The “universal” means that this cod-
ing method has a general probability model which can be
slightly adapted to a broad class of input sources. In
application, deep context-based adaptive binary arith-
metic coder (DeepCABAC) [117], as a type of universal
coding, is utilized to encode weights in DNNs. It is the
first attempt to apply state-of-the-art video coding me-
thods (e.g., CABAC) to DNNs. Compared with Huffman
coding, DeepCABAC also has the advantage of higher
efficiency in throughput.

However, both Huffman coding and DeepCABAC are
fixed-to-variable (F2V) schemes in which the number of
bits for each symbol is variable. Due to the variable
length in codewords, it is inefficient for memory usage
when decoding, and hence leads to high latency for infe-
rence. Instead, Tunstall coding [118], a variable-to-fixed

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 15

(V2F) method, is designed to fix the length of each code-
word so that we can process multiple bits simultaneously
and decode multiple encoded strings in parallel. It is
reported that Tunstall coding can achieve around six
times faster decoding than Huffman coding.

 4. Low rank optimization for subspace
training

 4.1 Low rank function

For a differentiable real-valued function, if its gradient
always lies in a fixed low-dimensional subspace, it can be
called a low rank function [147]. The dimensionality of
such subspaces is much lower than the number of inde-
pendent variables, and it is referred to as the rank of the
function. Ridge functions are the most common low rank
function, which are defined as functions that can be con-
verted into a univariate function by applying an affine
transformation to the argument [148]. Hence, the gradi-
ent of such a function can also be projected into a line.
For example, the least-square regression function which
is a classic ridge function can be considered a rank-one
function. The low rank property of ridge functions makes
them widely used in classic statistics. They are utilized as
regression functions in projection pursuit regression to
deal with the curse of dimensionality and the noise in
data [149]. In scientific computing, since the variables of
functions for uncertainty quantification are always corre-
lated, the concept of active subspaces can be utilized to
reveal a set of independent variables whose fluctuation
can lead to the most significant change [150,151].

Low rank property has also been found in the training
phase of DNNs. In DNNs, the number of trainable parame-
ters is always far more than that of training samples.
Thus, for this type of over-parameterized model, it is pos-
sible to guess that there is a large part of the parameters
that will remain unchanged during the whole training
phase. More generally, there is a hypothesis that the train-
ing trajectory of parameters lies in a subspace con-
structed by a few irrelevant variables. That is to say, the
optimization of millions of parameters can be equivalent
to optimization in a tiny subspace. There is also evidence
that the gradient of various DNNs will gradually remain
in a tiny subspace spanned by a few top eigenvectors of
the Hessian [152].

 4.2 Subspace training

In deep learning, the challenge that the process of train-
ing converges very slowly is a thorny obstacle. The slow
convergence is caused by the dominating first-order
method, i.e., gradient descent-based methods. This prob-
lem can be relieved by second-order methods which uti-
lize the information derived from Hessian matrices.

Moreover, the second-order method is not sensitive to the
learning rate, so no specific learning rate schedule needs
to be designed. However, due to the massive parameters
in DNNs, it is a computational burden to calculate Hes-
sian matrices. Some approaches such as Adam [153],
RMSprop [154], and AdaGrad [155] utilize part of sec-
ond-order information, like momentum and accumula-
tion information, have already surpassed the perfor-
mance of conventional gradient-based methods.

In order to apply second-order methods such as quasi-
Newton method [156] to network training, the straightfor-
ward way is to reduce the number of parameters that need
to be optimized. In view of the low rank structure disco-
vered in DNNs, it is promising to optimize the whole net-
work in a subspace using quasi-Newton method, without
the loss of accuracy. DLDR-based Quasi-Newton method
[157] is introduced to save 35% of training time versus
SGD [24]. To be specific, in this algorithm, dynamic li-
near dimensionality reduction (DLDR) is devised to iden-
tify the low-dimensional subspace constructed in some
important directions which can contribute significantly to
the variance of the loss function. It achieves this by sam-
pling the training trajectory and then performing PCA to
analyse the dominating directions. Then, second-order
optimization can be directly executed in this tiny sub-
space, resulting in fast convergence.

 4.3 Spatial redundancy and temporal redundancy

While model compression exploits the redundancy in net-
works to reduce memory and computation complexity,
subspace training exploits the redundancy to reduce train-
ing time. In other words, the objective of model compres-
sion and subspace training is spatial efficiency and tem-
poral efficiency, respectively. Since they both exploit
redundancy, we are wondering whether the redundancy
they deal with is of the same origin or not.

We analyse this by performing subspace training on
low rank approximated networks to determine if sub-
space training has a poor performance on compressed
networks. If so, it is evidence that the redundancy
decreased by model compression is insufficient for sub-
space training, i.e., the low rank property in time domain
disappears.

Here, we perform a simple experiment on LetNet-300-
100 with Mixed National Institute of Standards and Tech-
nology (MNIST) dataset. LeNet-300-100 contains two
hidden fully connected layers with output dimensions 300
and 100, and an output layer with dimension 10. We
apply SVD on the first two layers and then fine-tune. We
record the training trajectory and establish a 5D subspace
by performing PCA. To see if such a tiny subspace is suf-

16 Journal of Systems Engineering and Electronics Vol. PP, No. 99, November 2023

ℓ2

ℓ2

ficient, we project weights onto this subspace and calcu-
late the normalized approximate error. Fig. 8 shows that
as the rank decreases, the normalized error increases
almost linearly. It suggests that the higher the compres-
sion ratio, the less suitable the subspace with such low
fixed dimensionality is. In other words, model compres-
sion decreases the redundancy subspace training can
exploit. The normalized error is the ratio of norm of
error between original parameters and projected parame-
ters and norm of the original parameters. The rank is in
respect to SVD. “Base” is the uncompressed network.

0
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018
0.020

20 30 40 50 60 Base

N
or

m
ol

iz
ed

 e
rr

or

Rank

Fig. 8 Normalized error v.s. rank when projecting SVD-com-
pressed LeNet-300-100 on a 5D subspace

Also, we can figure that after low rank decomposition,
a higher-dimensional subspace is in need. As shown in
Fig. 9, increasing the dimensionality of subspace has a
greater effect on the highly compressed network. the
dimensionality of subspace ranges from 5 to 15. Under all
the rank settings, normalized error goes to zero when the
dimensionality is equal to 12. But there is a sharp descent
when the dimensionality is increased from 11 to 12 for
rank=20. That is to say, a slight drop in dimensionality is
serious for a highly compressed network. When a net-
work is compressed extremely, there is little redundancy
in time domain.

6
0

0.002 5

0.005 0

0.007 5

0.010 0

0.012 5

0.015 0

0.017 5

0.020 0

8 10
Dimensionality

N
or

m
al

iz
ed

 e
rr

or

12

: Rank=20; : Rank=40; : Rank=60.

14

Fig. 9 Normalized error v.s. dimensionality of subspace under dif-
ferent ranks (different compression extents)

 4.4 Making a balance

Since redundancy exploited by model compression and
subspace training are of the same origin, there is a ba-
lance between spatial efficiency and temporal efficiency.
If we assign most of the redundancy to model compres-
sion, we can obtain a compact network and hence achieve
spatial efficiency, but little redundancy is left for sub-
space training. Conversely, if we are in need to train a
network quickly, we should promise to assign most of the
redundancy to subspace training.

For model compression, the training of a tensorized
neural network (TNN) is much time-consuming than that
of the original network. Hence, there is a need for utiliz-
ing subspace training to accelerate the training of TNN.
Intuitively, for a highly compressed TNN, since there is
little redundancy, it is inefficient to train such a TNN in a
tiny subspace. Fig. 10 shows the performance of sub-
space training when applied to TT-based TNNs with vari-
ous compression regimes. The base network is ResNet32
trained on Cifar10 dataset. All the experiments run 15
epochs (saving 35% time of SGD method) with Quasi-
Newton method and the subspace is fixed to 40D. In this
figure, the orange line (the case in which TT-Net is
trained in normal way) is almost a horizontal line, but the
green line (trained in subspace) descends sharply at the
time of high compression ratio. It suggests that subspace
training can be combined with model compression to
achieve spatio-temporal efficiency under a moderate
compression regime, but such a tiny space is not suitable
for an extremely compressed network.

21

: TT without subspace training; : TT with subspace training.

78

80

82

84

86

88

90

92

94

3 4
CR

A
cc

ur
ac

y/
%

5 6 7

Fig. 10 Comparison of the accuracy degradation when applying
subspace training to TT-Nets

Hence, under an extreme compression regime, it is
essential to increase the dimensionality of subspace to
relieve the accuracy degradation. But it is infeasible to
increase dimensionality blindly, as the number of sam-
pling epochs will also increase, i.e., lessen temporal effi-
ciency. Fig. 11 shows the effect of increasing the dimen-

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 17

sionality of subspace for a highly compressed TT-Net. In
Fig. 11, the dashed line represents the accuracy of teain-
ing TT-Nets in an normal way. It demonstrates that as the
dimensionality of subspace increases, the accuracy degra-
dation of subspace training decreases. When the dimen-
sionality is increased to 55, we can achieve a good accu-
racy close to the original, but it is worth noting that the
total time (time for subspace training and for sampling) is
near the normal training time. However, in the case that
we want to train a compact TNN quickly and a small drop
in accuracy can be tolerated, it is a good choice to train
such a network in a moderate subspace.

35

80

82

84

86

A
cc

ur
ac

y

88

90

92

78
40 45

Dimensionality
50 55 60

Fig. 11 Effect of increasing the dimensionality of subspace on
training TT-Nets in subspace

 5. Conclusions and future directions
In this paper, two types of low rank tensor optimization
for efficient deep learning are discussed, namely low rank
approximation for model compression and subspace
training for fast convergence. For low rank approxima-
tion, we list various efficient tensor decomposition me-
thods and introduce three types of optimization methods.
Since sparsity measure is applied frequently in low rank
approximation, we make a comparison among common
measures, and experiments show that effective rank can
achieve the best accuracy-compression tradeoff. In addi-
tion, we investigate how to integrate low rank approxima-
tion with other compression techniques. Then, we give a
brief introduction to subspace training and analyze that
redundancy exploited by subspace training and low rank
approximation is of the same origin. Further, we make a
discussion on how to combine the two to accelerate the
training of tensorized neural networks.

However, up to now, few works focus on integrating
more than three types of parameter reduction compres-
sion techniques, which is more promising to take maxi-
mum advantage of redundancy in networks. Further, it is
possible to devise a flexible framework to integrate all
kinds of compression techniques.

In practice, low computation complexity is not equiva-
lent to low latency [158], and the energy consumed by
computation is only a small part of the total energy for
inference [159,160]. But most works take FLOPs and
memory size as benchmarks. That is to say, an advanced
algorithm with very low complexity may not be applied
to battery-powered mobile devices. Hence, more efforts
are needed in decreasing the energy consumption of
DNNs.

For subspace training, the temporal efficiency is still
limited, as the quasi-Newton method is still based on the
gradient of the original millions of parameters. Direct
optimization on several independent variables is still to
be studied. In addition, since the sampling procedure
occupies most of the training time, there is a need to
introduce new techniques to construct subspace with
fewer sample epochs. One potential way is to represent
all the parameters in tensor format and apply tensor
decomposition to better analyze principal components,
i.e., higher-order PCA [68].

References

 KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Ima-
geNet classification with deep convolutional neural net-
works. Advances in Neural Information Processing Sys-
tems, 2017, 60(6): 84–90.

[1]

 SIMONYAN K, ZISSERMAN A. Very deep convolutional
networks for large-scale image recognition. https://arxiv.org/
abs/1409.1556.

[2]

 JIANG Y G, WU Z X, WANG J, et al. Exploiting feature
and class relationships in video categorization with regular-
ized deep neural networks. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 2017, 40(2): 352–364.

[3]

 ZHANG Z H, LIU Y P, CAO X Y, et al. Scalable deep
compressive sensing. https://arxiv.org/abs/2101.08024.

[4]

 VASWANI A, SHAZEER N, PARMAR N, et al. Attention
is all you need. https://arxiv.org/abs/1706.03762.

[5]

 GRAVES A, MOHAMED A R, HINTON G. Speech recog-
nition with deep recurrent neural networks. Proc. of the
IEEE International Conference on Acoustics, Speech and
Signal Processing, 2013: 6645−6649.

[6]

 HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al.
Improving neural networks by preventing coadaptation of
feature detectors. https://arxiv.org/abs/1207.0580.

[7]

 DENIL M, SHAKIBI B, DINH L, et al. Predicting parame-
ters in deep learning. Proc. of the 26th International Confe-
rence on Neural Information Processing Systems, 2023,
12(2): 2148–2156.

[8]

 KIM Y D, PARK E, YOO S, et al. Compression of deep
convolutional neural networks for fast and low power
mobile applications. https://arxiv.org/abs/1511.06530.

[9]

 LANE N D, BHATTACHARYA S, GEORGIEV P, et al.
An early resource characterization of deep learning on wear-
ables, smartphones and internet-of-things devices. Proc. of
the International Workshop on Internet of Things Towards
Applications, 2015: 7−12.

[10]

 ABDUL HAMID N, MOHD NAWI N, GHAZALI R, et al.
Accelerating learning performance of back propagation

[11]

18 Journal of Systems Engineering and Electronics Vol. PP, No. 99, November 2023

algorithm by using adaptive gain together with adaptive
momentum and adaptive learning rate on classification
problems. Proc. of the International Conference on Ubiqui-
tous Computing and Multimedia Applications, 2011:
559−570.
 LEBEDEV V, GANIN Y, RAKHUBA M, et al. Speeding-
up convolutional neural networks using finetuned CP-
decomposition. https://arxiv.org/abs/1412.6553v2

[12]

 JADERBERG M, VEDALDI A, ZISSERMAN A. Speed-
ing up convolutional neural networks with low rank expan-
sions. https://arxiv.org/abs/1405.3866.

[13]

 WANG W Q, SUN Y F, ERIKSSON B, et al. Wide com-
pression: tensor ring nets. Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018:
9329−9338.

[14]

 LIU Y P, LIU J N, LONG Z, et al. Tensor decomposition in
deep networks. Tensor Computation for Data Analysis.
Cham: Springer, 2022.

[15]

 LUO J H, WU J X, LIN W Y. Thinet: a filter level pruning
method for deep neural network compression. Proc. of the
IEEE International Conference on Computer Vision, 2017:
5058−5066.

[16]

 ZHANG T Y, YE S K, ZHANG K Q, et al. A systematic
dnn weight pruning framework using alternating direction
method of multipliers. Proc. of the European Conference on
Computer Vision, 2018: 184−199.

[17]

 ULLRICH K, MEEDS E, WELLING M. Soft weight shar-
ing for neural network compression. https://arxiv.org/abs/
1702.04008.

[18]

 HUANG J Z, ZHANG T, METAXAS D. Learning with
structured sparsity. Journal of Machine Learning Research,
2011, 12(103): 3371–3412.

[19]

 HAN S, MAO H Z, DALLY W J. Deep compression: com-
pressing deep neural networks with pruning, trained quanti-
zation and huffman coding. https://arxiv.org/abs/1510.
00149v4.

[20]

 GONG Y C, LIU L, YANG M, et al. Compressing deep
convolutional networks using vector quantization. https://
arxiv.org/abs/1412.6115.

[21]

 WU J X, LENG C, WANG Y H, et al. Quantized convolu-
tional neural networks for mobile devices. Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition,
2016: 4820−4828.

[22]

 WANG M L, PAN Y, YANG X L, et al. Tensor networks
meet neural networks: a survey. https://arxiv.org/abs/
2302.09019.

[23]

 RUDER S. An overview of gradient descent optimization
algorithms. https://arxiv.org/abs/1609.04747.

[24]

 DENG L, LI G Q, HAN S, et al. Model compression and
hardware acceleration for neural networks: a comprehen-
sive survey. Proceedings of the IEEE, 2020, 108(4):
485–532.

[25]

 CHOUDHARY T, MISHRA V, GOSWAMI A, et al. A
comprehensive survey on model compression and accelera-
tion. Artificial Intelligence Review, 2020, 53(7):
5113–5155.

[26]

 LIU J N, ZHU C, LONG Z, et al. Tensor regression.
https://arxiv.org/abs/2308.11419.

[27]

 LIU Y P. Tensors for data processing: theory methods and
applications. San Diego: Elsevier Science & Technology,
2021.

[28]

 FENG L L, ZHU C, LONG Z, et al. Multiplex transformed
tensor decomposition for multidimensional image recovery.

[29]

IEEE Trans. on Image Processing, 2023, 32: 3397−3412.
 ZHANG X Y, ZOU J H, HE K M, et al. Accelerating very
deep convolutional networks for classification and detec-
tion. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 2015, 38(10): 1943–1955.

[30]

 TUCKER L R. Implications of factor analysis of three-way
matrices for measurement of change. Problems in Measur-
ing Change, 1963, 15: 122–137.

[31]

 GRASEDYCK L. Hierarchical singular value decomposi-
tion of tensors. Society for Industrial and Applied Mathe-
matics, 2010, 31(4): 2029–2054.

[32]

 OSELEDETS I V. Tensor-train decomposition. Siam Jour-
nal on Scientific Computing, 2011, 33(5): 2295–2317.

[33]

 ZHAO Q B, ZHOU G X, XIE S L, et al. Tensor ring
decomposition. https://arxiv.org/abs/1606.05535.

[34]

 DE LATHAUWER L. Decompositions of a higher-order
tensor in block terms—part II: definitions and uniqueness.
SIAM Journal on Matrix Analysis and Applications, 2008,
30(3). DOI: 10.1137/070690729.

[35]

 HAMEED M G A, TAHAEI M S, MOSLEH A, et al. Con-
volutional neural network compression through generalized
kronecker product decomposition. Proc. of the AAAI Con-
ference on Artificial Intelligence, 2022: 771−779.

[36]

 ZHAO H L, LIU Y P, HUANG X L, et al. Semi-tensor
product-based tensor decomposition for neural network
compression. https://arxiv.org/abs/2109.15200.

[37]

 GARIPOV T, PODOPRIKHIN D, NOVIKOV A, et al.
Ultimate tensorization: compressing convolutional and fc
layers alike. https://arxiv.org/abs/1611.03214.

[38]

 YE J M, LI G X, CHEN D, et al. Block-term tensor neural
networks. Neural Networks, 2020, 130: 11–21.

[39]

 WU B J, WANG D H, ZHAO G S, et al. Hybrid tensor
decomposition in neural network compression. Neural Net-
works, 2020, 132: 309–320.

[40]

 LIU Y P, LONG Z, HUANG H Y, et al. Low CP rank and
tucker rank tensor completion for estimating missing com-
ponents in image data. IEEE Trans. on Circuits and Sys-
tems for Video Technology, 2019, 30(4): 944–954.

[41]

 TUCKER L R. Some mathematical notes on three-mode
factor analysis. Psychometrika, 1966, 31(3): 279–311.

[42]

 LIU Y P, LONG Z, ZHU C. Image completion using low
tensor tree rank and total variation minimization. IEEE
Trans. on Multimedia, 2018, 21(2): 338–350.

[43]

 LIU Y P, LIU J N, ZHU C. Low-rank tensor train coeffi-
cient array estimation for tensor-on-tensor regression. IEEE
Trans. on Neural Networks and Learning Systems, 2020,
31(12): 5402–5411.

[44]

 NOVIKOV A, PODOPRIKHIN D, OSOKIN A, et al. Ten-
sorizing neural networks. https://arxiv.org/abs/1509.06569.

[45]

 YIN M, SUI Y, YANG W Z, et al. HODEC: towards effi-
cient high-order decomposed convolutional neural net-
works. Proc. of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022: 12299−12308.

[46]

 HUANG H Y, LIU Y P, LONG Z, et al. Robust low rank
tensor ring completion. IEEE Trans. on Computational
Imaging, 2020, 6: 1117–1126.

[47]

 LIU J N, ZHU C, LIU Y P. Smooth compact tensor ring
regression. IEEE Trans. on Knowledge and Data Engineer-
ing, 2020, 34(9): 4439–4452.

[48]

 LONG Z, ZHU C, LIU J N, et al. Bayesian low rank tensor
ring for image recovery. IEEE Trans. on Image Processing,
2021, 30: 3568–3580.

[49]

 THAKKER U, BEU J, GOPE D, et al. Compressing RNNs[50]

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 19

for IoT devices by 15−38x using Kronecker products.
https://arxiv.org/abs/1906.02876.
 CHENG D Z, QI H S, XUE A C. A survey on semi-tensor
product of matrices. Journal of Systems Science and Com-
plexity, 2007, 20(2): 304–322.

[51]

 LIEBENWEIN L, MAALOUF A, FELDMAN D, et al.
Compressing neural networks: towards determining the
optimal layer-wise decomposition. Advances in Neural
Information Processing Systems, 2021, 34: 5328–5344.

[52]

 IDELBAYEV Y, CARREIRA-PERPINÁN M A. Low-rank
compression of neural nets: learning the rank of each layer.
Proc. of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020: 8049−8059.

[53]

 YIN M, SUI Y, LIAO S Y, et al. Towards efficient tensor
decomposition-based dnn model compression with opti-
mization framework. Proc. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021:
10674−10683.

[54]

 YIN M, PHAN H, ZANG X, et al. BATUDE: budget-aware
neural network compression based on tucker decomposition.
Proc. of the AAAI Conference on Artificial Intelligence,
36(8): 8874−8882.

[55]

 NAKAJIMA S, SUGIYAMA M, BABACAN S D, et al.
Global analytic solution of fully-observed variational
bayesian matrix factorization. The Journal of Machine
Learning Research, 2013, 14(1): 1–37.

[56]

 REEVES C R. Modern heuristic techniques for combinato-
rial problems. New York: John Wiley & Sons, 1993.

[57]

 CHENG Z Y, LI B P, FAN Y W, et al. A novel rank selec-
tion scheme in tensor ring decomposition based on rein-
forcement learning for deep neural networks. Proc. of the
ICASSP IEEE International Conference on Acoustics, 2020:
3292−3296.

[58]

 SAMRAGH M, JAVAHERIPI M, KOUSHANFAR F.
AutoRank: automated rank selection for effffective neural
network customization. Proc. of the ML-for Systems Work-
shop at the 46th International Symposium on Computer
Architecture, 2019. DOI: 10.1109/JETCAS.2021.3127433.

[59]

 MITCHELL B C, BURDICK D S. Slowly converging
parafac sequences: swamps and two-factor degeneracies.
Journal of Chemometrics, 1994, 8(2): 155–168.

[60]

 HARSHMAN R A. The problem and nature of degenerate
solutions or decompositions of 3-way arrays. https://
www.psychology.uwo.ca/faculty/harshman/aim2004.pdf.

[61]

 KRIJNEN W P, DIJKSTRA T K, STEGEMAN A. On the
non-existence of optimal solutions and the occur rence of
degeneracy in the candecomp/parafac model. Psychome-
trika, 2008, 73(3): 431–439.

[62]

 DENTON E L, ZAREMBA W, BRUNA J, et al. Exploiting
linear structure within convolutional networks for efficient
evaluation. https://arxiv.org/abs/1404.0736.

[63]

 ASTRID M, LEE S I. CP-decomposition with tensor power
method for convolutional neural networks compression.
Proc. of the IEEE International Conference on Big Data and
Smart Computing, 2017: 115−118.

[64]

 ALLEN G. Sparse higher-order principal components ana-
lysis. Proc. of the Artifificial Intelligence and Statistics,
2012: 27−36.

[65]

 PHAN A H, SOBOLEV K, SOZYKIN K, et al. Stable low-
rank tensor decomposition for compression of con volu-
tional neural network. Proc. of the European Conference on
Computer Vision, 2020: 522−539.

[66]

 VEERAMACHENENI L, WOLTER M, KLEIN R, et al.[67]

Canonical convolutional neural networks. https://arxiv.
org/abs/2206.01509v1.
 KOLDA T G, BADER B W. Tensor decompositions and
applications. SIAM Review, 2009, 51(3): 455–500.

[68]

 ESPIG M, HACKBUSCH W, HANDSCHUH S, et al. Opti-
mization problems in contracted tensor networks. Comput-
ing and Visualization in Science, 2011, 14(6): 271–285.

[69]

 PHAN A H, SOBOLEV K, ERMILOV D, et al. How to
train unstable looped tensor network. https://arxiv.org/
abs/2203.02617.

[70]

 GLOROT X, BENGIO Y. Understanding the difficulty of
training deep feed forward neural networks. Journal of
Machine Learning Research, 2010: 249−256.

[71]

 PAN Y, SU Z Y, LIU A, et al. A unified weight initializa-
tion paradigm for tensorial convolutional neural networks.
Proc. of the International Conference on Machine Learning,
2022: 17238−17257.

[72]

 ZOPH B, LE Q V. Neural architecture search with rein-
forcement learning. https://arxiv.org/abs/1611.01578.

[73]

 LI N N, PAN Y, CHEN Y R, et al. Heuristic rank selection
with progressively searching tensor ring network. Complex
& Intelligent Systems, 2022, 8(2): 771–785.

[74]

 DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist
multi-objective genetic algorithm: NSGA-II. IEEE Trans.
on Evolutionary Computation, 2002, 6(2): 182–197.

[75]

 HAWKINS C, ZHANG Z. Bayesian tensorized neural net-
works with automatic rank selection. Neurocomputing,
2021, 453: 172–180.

[76]

 RAI P, WANG Y J, GUO S B, et al. Scalable bayesian low-
rank decomposition of incomplete multiway tensors. Proc.
of the International Conference on Machine Learning, 2014:
1800−1808.

[77]

 GUHANIYOGI R, QAMAR S, DUNSON D B. Bayesian
tensor regression. The Journal of Machine Learning
Research, 2017, 18(1): 2733–2763.

[78]

 BAZERQUE J A, MATEOS G, GIANNAKIS G B. Rank
regularization and bayesian inference for tensor completion
and extrapolation. IEEE Trans. on Signal Processing, 2013,
61(22): 5689–5703.

[79]

 EO M, KANG S, RHEE W. An effective low-rank com-
pression with a joint rank selection followed by a compres-
sion-friendly training. Neural Networks, 2023, 161:
165–177.

[80]

 CAI J F, CANDÈS E J, SHEN Z W. A singular value
thresholding algorithm for matrix completion. https://arxiv.
org/abs/0810.3286.

[81]

 ALVAREZ J M, SALZMANN M. Compression-aware
training of deep networks. https://arxiv.org/abs/1711.02638.

[82]

 XU Y H, LI Y X, ZHANG S, et al. Trained rank pruning for
efficient deep neural networks. Proc. of the 5th Workshop
on Energy Efficient Machine Learning and Cognitive Com-
puting-NeurIPS Edition, 2019: 14−17.

[83]

 AVRON H, KALE S, KASIVISWANATHAN S, et al. Effi-
cient and practical stochastic subgradient descent for
nuclear norm regularization. https://arxiv.org/abs/1206.
6384.

[84]

 YANG H R, TANG M X, WEN W, et al. Learning low-
rank deep neural networks via singular vector orthogonality
regularization and singular value sparsification. Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2020: 678−679.

[85]

 CARREIRA-PERPINÁN M A, IDELBAYEV Y. Learning-
compression algorithms for neural net pruning. Proc. of the

[86]

20 Journal of Systems Engineering and Electronics Vol. PP, No. 99, November 2023

IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2018: 8532−8541.
 ZIMMER M, SPIEGEL C, POKUTTA S. Compression
aware training of neural networks using Frank-Wolfe.
https://arxiv.org/abs/2205.11921.

[87]

 SHI L, HUANG X L, FENG Y L, et al. Sparse kernel
regression with coefficient-based ℓq-regularization. Journal
of Machine Learning Research, 2019, 20(161): 1–44.

[88]

 XU P, TIAN Y, CHEN H F, et al. ℓp norm iterative sparse
solution for EEG source localization. IEEE Trans. on
Biomedical Engineering, 2007, 54(3): 400–409.

[89]

 BOGDAN M, BERG E V D, SU W, et al. Statistical estima-
tion and testing via the sorted ℓ1 norm. https://arxiv.
org/abs/1310.1969.

[90]

 HUANG X L, LIU Y P, SHI L, et al. Two-level ℓ1 mini-
mization for compressed sensing. Signal Processing, 2015,
108: 459–475.

[91]

 DALTON H. The measurement of the inequality of
incomes. The Economic Journal, 1920, 30(119): 348–361.

[92]

 LORENZ M O. Methods of measuring the concentration of
wealth. Publications of the American statistical association,
1905, 9(70): 209–219.

[93]

 RICKARD S. Sparse sources are separated sources. Proc. of
the 14th European signal processing conference, 2006: 1−5.

[94]

 HURLEY N, RICKARD S, CURRAN P. Parameterized
lifting for sparse signal representations using the gini index.
Proc. of the Signal Processing with Adaptative Sparse
Structured Representations Conference, 2005. http://
spars05.irisoa.fr/ACTES/TS4-4.pdf.

[95]

 HOYER P O. Non-negative matrix factorization with
sparseness constraints. Journal of Machine Learning
Research, 2004, 5(9): 1457–1469.

[96]

 ROY O, VETTERLI M. The effective rank: a measure of
effective dimensionality. Proc. of the 15th European signal
processing conference, 2007: 606−610.

[97]

 CHEN Z, CHEN Z B, LIN J X, et al. Deep neural network
acceleration based on low-rank approximated channel prun-
ing. IEEE Trans. on Circuits and Systems I: Regular Papers,
2020, 67(4): 1232–1244.

[98]

 OSAWA K, YOKOTA R. Evaluating the compression effi-
ciency of the filters in convolutional neural networks. Proc.
of the International Conference on Artificial Neural Net-
works, 2017: 459−466.

[99]

 BLALOCK D, GONZALEZ ORTIZ J J, FRANKLE J, et al.
What is the state of neural network pruning? https://arxiv.org/
abs/2003.03033.

[100]

 CHEN W L, WILSON J, TYREE S, et al. Compressing
neural networks with the hashing trick. Proc. of the Interna-
tional Conference on Machine Learning, 2015: 2285−2294.

[101]

 HAN S, POOL J, TRAN J, et al. Learning both weights and
connections for efficient neural network. Proc. of the 28th
International Conference on Neural Information Processing
Systems, 2015, 1: 1135–1143.

[102]

 RUAN X F, LIU Y F, YUAN C F, et al. EDP: an efficient
decomposition and pruning scheme for convolutional neu-
ral network compression. IEEE Trans. on Neural Networks
and Learning Systems, 2020, 32(10): 4499–4513.

[103]

 SWAMINATHAN S, GARG D, KANNAN R, et al. Sparse
low rank factorization for deep neural network compression.
Neurocomputing, 2020, 398: 185–196.

[104]

 LIU B Y, WANG M, FOROOSH H, et al. Sparse convolu-
tional neural networks. Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition. 2015: 806−814.

[105]

 WEN W J, YANG F, SU Y F, et al. Learning low-rank
structured sparsity in recurrent neural networks. Proc. of the
IEEE International Symposium on Circuits and Systems,
2020. DOI: 10.1109/ISCAS45731.2020.9181239.

[106]

 OBUKHOV A, RAKHUBA M, GEORGOULIS S, et al.
T-basis: a compact representation for neural networks. Proc.
of the International Conference on Machine Learning, 2020:
7392−7404.

[107]

 LI Y W, GU S H, GOOL L V, et al. Learning filter basis for
convolutional neural network compression. Proc. of the
IEEE/CVF International Conference on Computer Vision,
2019: 5623−5632.

[108]

 SUN W Z, CHEN S W, HUANG L, et al. Deep convolu-
tional neural network compression via coupled tensor
decomposition. IEEE Journal of Selected Topics in Signal
Processing, 2020, 15(3): 603–616.

[109]

 LI T H, LI J G, LIU Z, et al. Few sample knowledge distil-
lation for efficient network compression. Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020: 14639−14647.

[110]

 LIN S H, JI R R, CHEN C, et al. Holistic CNN compres-
sion via low-rank decomposition with knowledge transfer.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
2018, 41(12): 2889–2905.

[111]

 SADHUKHAN R, SAHA A, MUKHOPADHYAY J, et al.
Knowledge distillation inspired fine-tuning of tucker
decomposed cnns and adversarial robustness analysis. Proc.
of the IEEE International Conference on Image Processing,
2020: 1876−1880.

[112]

 LEE D, WANG D H, YANG Y K, et al. QTTNET: quan-
tized tensor train neural networks for 3D object and video
recognition. Neural Networks, 2021, 141: 420–432.

[113]

 KUZMIN A, VAN BAALEN M, NAGEL M, et al. Quan-
tized sparse weight decomposition for neural network com-
pression. https://arxiv.org/abs/2207.11048v1.

[114]

 NEKOOEI A, SAFARI S. Compression of deep neural net-
works based on quantized tensor decomposition to imple-
ment on reconfigurable hardware platforms. Neural Net-
works, 2022, 150: 350–363.

[115]

 CHOI Y, EL-KHAMY M, LEE J. Universal deep neural
network compression. IEEE Journal of Selected Topics in
Signal Processing, 2020, 14(4): 715–726.

[116]

 WIEDEMANN S, KIRCHHOFFER H, MATLAGE S, et al.
Deepcabac: a universal compression algorithm for deep
neural networks. IEEE Journal of Selected Topics in Signal
Processing, 2020, 14(4): 700–714.

[117]

 CHEN C Y, WANG Z, CHEN X W, et al. Efficient tunstall
decoder for deep neural network compression. Proc. of the
58th ACM/IEEE Design Automation Conference, 2021:
1021−1026.

[118]

 HAN S, LIU X Y, MAO H Z, et al. EIE: efficient inference
engine on compressed deep neural network. Proc. of the
ACM/IEEE 43rd Annual International Symposium on Com-
puter Architecture. DOI: 10.1109/ISCA.2016.30.

[119]

 CHEN S, ZHAO Q. Shallowing deep networks: Layerwise
pruning based on feature representations. IEEE Trans. on
pattern analysis and machine intelligence, 2018, 41(12):
3048–3056.

[120]

 HUANG Q G, ZHOU K, YOU S, et al. Learning to prune
filters in convolutional neural networks. Proc. of the IEEE
Winter Conference on Applications of Computer Vision,
2018: 709−718.

[121]

 GOYAL S, CHOUDHURY A R, SHARMA V. Compres-[122]

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 21

sion of deep neural networks by combining pruning and low
rank decomposition. Proc. of the IEEE International Paral-
lel and Distributed Processing Symposium Workshops,
2019: 952−958.
 MOLCHANOV P, TYREE S, KARRAS T, et al. Pruning
convolutional neural networks for resource efficient infer-
ence. https://arxiv.org/abs/1611.06440.

[123]

 ALVAREZ J M, SALZMANN M. Learning the number of
neurons in deep networks. https://arxiv.org/abs/1611.
06321v1.

[124]

 KUMAR A. Vision transformer compression with struc-
tured pruning and low rank approximation. https://
arxiv.org/abs/2203.13444.

[125]

 LIU X, SMELYANSKIY M, CHOW E, et al. Efficient
sparse matrix-vector multiplication on x86-based manycore
processors. Proc. of the 27th International ACM Confer-
ence on on Supercomputing, 2013: 273−282.

[126]

 ZOU H, HASTIE T, TIBSHIRANI R. Sparse principal
component analysis. Journal of computational and graphi-
cal statistics, 2006, 15(2): 265–286.

[127]

 LEBEDEV V, LEMPITSKY V. Fast convnets using group-
wise brain damage. Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2016: 2554−2564.

[128]

 LECUN Y, BENGIO Y, HINTON G. Deep learning.
Nature, 2015, 521(7553): 436–444.

[129]

 HINTON G, VINYALS O, DEAN J, et al. Distilling the
knowledge in a neural network. https://arxiv.org/abs/
1503.02531.

[130]

 CHAUDHURI R, FIETE I. Computational principles of
memory. Nature Neuroscience, 2016, 19(3): 394–403.

[131]

 FAISAL A A, SELEN L P, WOLPERT D M. Noise in the
nervous system. Nature Reviews Neuroscience, 2008, 9(4):
292–303.

[132]

 VANRULLEN R, KOCH C. Is perception discrete or con-
tinuous? Trends in Cognitive Sciences, 2003, 7(5):
207−213.

[133]

 TEE J, TAYLOR D P. Is information in the brain repre-
sented in continuous or discrete form? IEEE Trans. on
Molecular, Biological and Multi-Scale Communications,
2020, 6(3): 199–209.

[134]

 KHAW M W, STEVENS L, WOODFORD M. Discrete
adjustment to a changing environment: experimental evi-
dence. Journal of Monetary Economics, 2017, 91: 88–103.

[135]

 LATIMER K W, YATES J L, MEISTER M L, et al. Single-
trial spike trains in parietal cortex reveal discrete steps dur-
ing decision-making. Science, 2015, 349(6244): 184–187.

[136]

 VARSHNEY L R, SJÖSTRÖM P J, CHKLOVSKII D B.
Optimal information storage in noisy synapses under
resource constraints. Neuron, 2006, 52(3): 409–423.

[137]

 LIN D, TALATHI S, ANNAPUREDDY S. Fixed point
quantization of deep convolutional networks. Proc. of the
International Conference on Machine Learning, 2016:
2849−2858.

[138]

 GHOLAMI A, KIM S, DONG Z, et al. A survey of quanti-
zation methods for efficient neural network inference.
https://arxiv.org/abs/2103.13630.

[139]

 NAGEL M, FOURNARAKIS M, AMJAD R A, et al. A
white paper on neural network quantization. https://arxiv.org/
abs/2106.08295.

[140]

 KOZYRSKIY N, PHAN A H. CNN acceleration by
lowrank approximation with quantized factors. https://
arxiv.org/abs/2006.08878.

[141]

 RECANATESI S, FARRELL M, ADVANI M, et al.[142]

Dimensionality compression and expansion in deep neural
networks. https://arxiv.org/abs/1906.00443v1.
 ZIV J, LEMPEL A. A universal algorithm for sequential
data compression. IEEE Trans. on information theory, 1977,
23(3): 337–343.

[143]

 ZIV J, LEMPEL A. Compression of individual sequences
via variable-rate coding. IEEE Trans. on Information The-
ory, 1978, 24(5): 530–536.

[144]

 WELCH T A. A technique for high-performance data com-
pression. Computer, 1984, 17(6): 8–19.

[145]

 EFFROS M, VISWESWARIAH K, KULKARNI S R, et al.
Universal lossless source coding with the burrows wheeler
transform. IEEE Trans. on Information Theory, 2002, 48(5):
1061–1081.

[146]

 COSSON R, JADBABAIE A, MAKUR A, et al. Gradient
descent for low-rank functions. https://arxiv.org/abs/2206.
08257.

[147]

 LOGAN B F, SHEPP L A. Optimal reconstruction of a
function from its projections. Duke Mathematical Journal,
1975, 42(4): 645–659.

[148]

 DONOHO D L, JOHNSTONE I M. Projection-based
approximation and a duality with kernel methods. The
Annals of Statistics, 1989: 58−106.

[149]

 CONSTANTINE P G, EMORY M, LARSSON J, et al.
Exploiting active subspaces to quantify uncertainty in the
numerical simulation of the HyShot II scramjet. Journal of
Computational Physics, 2015, 302: 1–20.

[150]

 LIU Y P, DE VOS M, GLIGORIJEVIC I, et al. Multistruc-
tural signal recovery for biomedical compressive sensing.
IEEE Trans. on Biomedical Engineering, 2013, 60(10):
2794–2805.

[151]

 GUR-ARI G, ROBERTS D A, DYER E. Gradient descent
happens in a tiny subspace. https://arxiv.org/abs/1812.
04754.

[152]

 KINGMA D P, BA J. Adam: a method for stochastic opti-
mization. https://arxiv.org/abs/1412.6980.

[153]

 DAUPHIN Y, DE VRIES H, BENGIO Y. Equilibrated
adaptive learning rates for non-convex optimization. Proc.
of the 28th International Conference on Neural Information
Processing Systems, 2015, 1: 1504–1512.

[154]

 DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 2011, 12(7):
2121–2159.

[155]

 BYRD R H, NOCEDAL J, SCHNABEL R B. Representa-
tions of quasi-Newton matrices and their use in limited
memory methods. Mathematical Programming, 1994, 63(1):
129–156.

[156]

 LI T, TAN L, HUANG Z H, et al. Low dimensional trajec-
tory hypothesis is true: DNNs can be trained in tiny sub-
spaces. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, 2022, 45(3): 3411−3420.

[157]

 SZE V, CHEN Y H, YANG T J, et al. How to evaluate deep
neural network processors: TOPS/W (alone) considered
harmful. IEEE Solid-State Circuits Magazine, 2020, 12(3):
28–41.

[158]

 HOROWITZ M. 1.1 computing’s energy problem (and what
we can do about it). Proc. of the IEEE International Solid-
State Circuits Conference Digest of Technical Papers, 2014:
10−14.

[159]

 SZE V, CHEN Y H, YANG T J, et al. Efficient processing
of deep neural networks: a tutorial and survey. Proceedings
of the IEEE, 2017, 105(12): 2295–2329.

[160]

22 Journal of Systems Engineering and Electronics Vol. PP, No. 99, November 2023

 Biographies
OU Xinwei was born in 2000. She received her
B.S. degree in electronic information engineering
from Xidian University, Xi ’an, China, in 2022.
She is working towards her M.S. degree with Uni-
versity of Electronic Science and Technology of
China, Chengdu, China. Her research interests
include tensors for efficient deep learning.
E-mail: xinweiou@std.uestc.edu.cn

CHEN Zhangxin was born in 1978. He received
his M.S. degrees and Ph.D. degrees from Univer-
sity of Electronic Science and Technology of
China, both in communication and information
system, in 2003 and 2009, respectively. From
2012, he has been an associate professor at the
Department of Electronic Engineering, Univer-
sity of Electronic Science and Technology of

China. His research interests focus on signal processing in distributed
radar system and airborne radar system.
E-mail: zhangxinchen@uestc.edu.cn

ZHU Ce was born in 1961. He received his B.S.
degree in communication engineering from
Sichuan University, Chengdu, China, in 1989, and
M.E. and Ph.D. degrees from Southeast Univer-
sity, Nanjing, China, in 1992 and 1994, respec-
tively, all in electronic and information engineer-
ing. He has been with the University of Elec-
tronic Science and Technology of China,

Chengdu, China, as a professor since 2012. His research interests
include video coding and communications, video analysis and process-
ing, three-dimensional video, and visual perception and applications.
E-mail: eczhu@uestc.edu.cn

LIU Yipeng was born in 1983. He received his
B.S. degree in biomedical engineering and Ph.D.
degree in information and communication engi-
neering from the University of Electronic Science
and Technology of China (UESTC), Chengdu,
China, in 2006 and 2011, respectively. Since
2014, he has been an associate professor with
UESTC, Chengdu, China. His research interest is

tensor for data processing.
E-mail: yipengliu@uestc.edu.cn

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 23

