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Abstract: Deep  neural  networks  (DNNs)  have  achieved  great
success  in  many  data  processing  applications.  However,  high
computational complexity and storage cost make deep learning
difficult to be used on resource-constrained devices, and it is not
environmental-friendly  with  much power  cost.  In  this  paper,  we
focus  on  low-rank  optimization  for  efficient  deep  learning  tech-
niques. In the space domain, DNNs are compressed by low rank
approximation  of  the  network  parameters,  which  directly
reduces  the  storage  requirement  with  a  smaller  number  of  net-
work  parameters.  In  the  time  domain,  the  network  parameters
can be trained in a few subspaces, which enables efficient train-
ing for  fast  convergence.  The model  compression in the spatial
domain is summarized into three categories as pre-train, pre-set,
and compression-aware methods, respectively.  With a series of
integrable techniques discussed, such as sparse pruning, quan-
tization, and entropy coding, we can ensemble them in an inte-
gration  framework  with  lower  computational  complexity  and
storage.  In  addition  to  summary  of  recent  technical  advances,
we have two findings for motivating future works. One is that the
effective rank, derived from the Shannon entropy of the norma-
lized  singular  values,  outperforms  other  conventional  sparse
measures  such  as  the  norm  for  network  compression.  The
other is a spatial and temporal balance for tensorized neural net-
works.  For  accelerating  the  training  of  tensorized  neural  net-
works, it is crucial to leverage redundancy for both model com-
pression and subspace training.
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 1. Introduction
Deep neural networks (DNNs) have been widely used in
many data processing applications, such as speech recog-

nition,  computer  vision  [1−4],  natural  language  process-
ing [5,6],  etc.  As a deeper or wider structure can lead to
better performance, DNNs are gradually characterized by
their  over-parameterization.  Over-parameterization,  on
the other hand, suggests too much redundancy in DNNs,
which  leads  to  overfitting  [7,8].  There  are  mainly  two
challenges  in  deep  learning:  high  complexity  and  slow
convergence.  High  complexity  means  that  there  are  mil-
lions  of  parameters  in  DNNs,  and  computation  between
massive  parameters  and  inputs  is  cumbersome,  which
underlines  the  need  for  efficient  algorithms  to  compress
and accelerate. For example, the number of parameters in
Visual  Geometry  Group  (VGG)-16  [2]  is  almost  seven
million. For an image in ImageNet dataset [1] with a size
of 224×224×3, the feedforward process requires 30.9 bil-
lion  float  point-operations  (FLOPs).  The  high  comple-
xity is unaffordable for resource-limited devices, such as
mobile  phones  [9]  and  Internet  of  Things  (IoT)  devices
[10].  The  slow  convergence  is  caused  by  the  conven-
tional back propagation (BP) algorithm, resulting in time-
consuming training [11].  Also,  the  convergence speed is
sensitive to the setting of the learning rate and the way to
initialize weights.

There  are  many  works  attempting  to  reduce  the  high
complexity of DNNs with acceptable performance decay.
The  investigation  of  model  compression  can  be  summa-
rized  into  two  folds:  one  is  to  reduce  the  number  of
parameters,  and  the  other  is  to  reduce  the  average  bit
width of data representation. The first fold includes but is
not  limited  to  low  rank  approximation  [12−15],  pruning
[16,17],  weight-sharing  [18],  sparsity  [19],  and  know-
ledge  distillation  [20].  Since  these  techniques  have  their
own  limitations,  it  is  better  to  combine  them  to  fully
exploit  the  redundancy  in  DNNs.  Quantization  [21,22]
and  entropy  coding  [20]  belong  to  the  second  category,
which is  designed to achieve a lower number of bits  per
parameter.

 
Manuscript received September 21, 2022.
*Corresponding authors.
This  work  was  supported  by  the  National  Natural  Science  Founda-

tion  of  China  (62171088,  U19A2052,  62020106011),  and the  Medico-
Engineering  Cooperation  Funds  from University  of  Electronic  Science
and  Technology  of  China  (ZYGX2021YGLH215,  ZYGX2022YGRH-
005). 

Journal of Systems Engineering and Electronics

Vol. PP, No. 99, November 2023, pp.1 – 23



Low rank approximation has been widely adopted due
to its strong theoretical basis and ease of implementation
on hardware. In this survey, we comprehensively review
this  rapidly  developing  area  by  dividing  low  rank  opti-
mization  for  model  compression  into  three  main  cate-
gories:  pre-train  method,  pre-set  method,  and  compres-
sion-aware  method.  The  biggest  distinction  among  them
is the way to train. The pre-train method directly decom-
poses  a  pre-trained  model  to  get  warm  initialization  for
the  compressed  format,  followed  by  retraining  the  com-
pressed  model  to  recover  the  performance.  Without  pre-
training,  the  pre-set  method trains  a  network  that  is  pre-
set  to  a  compact  format  from  scratch.  Totally  different
from  the  above  two  methods,  the  compression-aware
method  explicitly  accounts  for  compression  in  the  train-
ing  process  by  gradually  enforcing  the  network  to  enjoy
low-rank  structure.  Although  the  discussion  about  low
rank  optimization  can  also  be  found  in  [23],  we  further
investigated  how  to  integrate  it  with  other  compression
techniques  to  pursue  lower  complexity  and  recom-
mended  the  effective  rank  as  the  most  efficient  measure
used in low rank optimization.

When  the  redundancy  in  DNNs  is  exploited  by  sub-
space training, DNNs can converge faster without losing
accuracy. In deep learning, it is conventional to train net-
works with first-order optimization methods, e.g. stochas-
tic  gradient  descent  (SGD)  [24],  which  is  computation-
ally cheap. But there are some inherent drawbacks to first-
order optimization methods, such as slow theoretical and
empirical  convergence.  Second-order  methods  can  deal
with such a problem well, but because of the heavy com-
putational  burden  of  Hessian  matrices,  second-order
methods  are  not  applicable  to  DNNs.  The  idea  that
projecting  parameters  onto  a  tiny  subspace  represented
by  several  independent  variables  is  an  effective  way  to
solve  this  problem.  Since  only  a  few  variables  need
to be optimized, we can apply second-order optimization
methods to achieve the temporal efficiency of deep learn-
ing.

In  this  survey,  we  first  present  a  comprehensive
overview of various tensor decomposition methods appli-
cable to model compression. Next, the low rank optimiza-
tion for model compression is summarized in terms of pre-
set,  pre-train,  and compression-aware  methods.  For  each
method, a detailed discussion on key points about imple-
mentation is given. More meticulously, we make a com-
parison  among  various  sparsity  measures  used  in  the
compression-aware  method,  and  dig  out  the  most  effi-
cient  measure,  i.e.,  effective  rank,  which  is  seldom used
as a sparse regularizer before. In addition, while there are
already many works that give a list of joint-way compres-

sion [25,26],  little attention has been paid to the integra-
tion between low rank approximation and other compres-
sion techniques.  Therefore,  we present  an overall  survey
on this  kind of  integration here.  Then,  we introduce low
rank optimization for subspace training. Furthermore, we
are  the  first  to  relate  these  two  types  of  low  rank  opti-
mization,  discovering  that  redundancy  in  the  temporal
domain  and  spatial  domain  are  of  the  same  origin.  And
there is a discussion on how to apply subspace training on
tensorized  neural  networks  to  achieve  spatial  efficiency
and temporal efficiency simultaneously.

Different from the previous surveys on tensors for effi-
cient  deep learning [15,27,28],  the main contributions of
this paper can be summarized as follows.

(i) We make a detailed overview of low rank approxi-
mation  for  model  compression,  and  we  find  that  recur-
rent  neural  networks  (RNNs)  can  be  effectively  com-
pressed  using  hierarchical  Tucker  (HT)  decomposition
and  Kronecker  product  decomposition  (KPD),  convolu-
tional  neural  networks  (CNNs)  can  be  effectively  com-
pressed  using  tensor  train  (TT),  and  generalized  Kro-
necker product decomposition (GKPD), while tensor ring
(TR)  and  block  term  decomposition  (BTD)  can  suitably
compress both RNNs and CNNs.

(ii)  A  series  of  integratable  neural  network  compres-
sion  techniques  are  discussed  in  details,  and  an  integra-
tion framework is summarized to well  take advantage of
various methods.

(iii)  We  analyse  that  the  redundancy  in  the  space
domain and time domain are of the same origin. In order
to  accelerate  the  training  of  tensorized  neural  networks,
we  should  make  the  balance  between  spatial  efficiency
and temporal efficiency.

(iv)  After  discussing  and  testing  various  sparse  mea-
sures  for  low  rank  optimization  for  DNN  compres-
sion, the effective rank outperforms in numerical experi-
ments.

This  survey  is  organized  as  follows.  In  Section  2,  we
give  an  overview  of  low  rank  optimization  for  model
compression.  Low  rank  approximation  integrated  with
other  compression  techniques  is  reviewed  in  Section  3.
Section 4  introduces  low rank optimization for  subspace
training  and  analyses  the  coupling  between  these  two
types of low rank optimization.

 2. Low  rank  optimization  for  model  com-
pression

We provide  an  overall  mind  map  of  low  rank  optimiza-
tion in Fig. 1. In this section, we focus on the spatial effi-
ciency.  Since  DNNs  are  over-parameterized,  there  are
opportunities  to  make  deep  networks  more  compact.
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Compression  methods,  like  quantization,  pruning,  and
low-rank  approximation,  can  lower  complexity  of
DNNs  without  significant  accuracy  degradation.  Among
them,  low  rank  approximation  has  been  widely  adopted
because  of  the  solid  theoretical  basis  of  tensor  decom-
position  [29].  In  this  section,  we  first  introduce  various

tensor  decomposition  methods  applicable  for  network
compression,  and  then  divide  optimization  methods
for  low  rank  approximation  into  three  categories:  pre-
train,  pre-set,  and  compression-aware  methods.  In
addition, we make a discussion on efficient sparsity mea-
sures.

 
 

Spatial efficiency

Low rank approximation

Pre-train method

Pre-set method

Compression-aware method

Integratable techniques

Parallel integration

Pruning

Sparsification

Weight sharing

Knowledge distillation

Orthogonal integration
Quantization

Entropy coding
Temporal efficiency Subspace training

Making a balance

Fig. 1    Overview of low rank optimization for efficient deep learning
 
 2.1    Tensor decomposition

Low rank approximation can provide an ultra-high com-
pression ratio for RNNs with insignificant accuracy loss.
However, when it comes to CNNs, the compression per-
formance  is  not  as  satisfying  as  RNNs.  In  early  litera-
tures,  four-dimensional  (4D)  convolutional  kernels  are
reshaped into matrices and singular value decomposition
(SVD) is utilized to decompose matrices into two factors
[30].  However,  the  reshaping  operation  leads  to  distor-
tion  of  structure  information.  Hence,  more  efficient  ten-
sor  decomposition  has  attracted  interests.  Canonical-
Polyadic  (CP)  decomposition  [15]  is  applied  to  decom-
pose a convolutional layer into four consecutive convolu-
tional  layers,  significantly  speeding  up  CNNs  [12].
Tucker decomposition [31] can decompose the 4D kernel
into a 4D compact kernel and two matrices by exploiting
the channel-wise  redundancy.  Based on these three clas-
sic  decompositions,  many  other  flexible  methods
emerged including HT [32], TT [33], TR [34], BTD [35],
GKPD [36], semi-tensor product (STP) based sem-tensor
train (STT) and semi-tensor  ring (STR) [37],  which dra-
matically  improve  the  compression  performance  for
DNNs. Table  1 shows  the  performance  of  widely-used
tensor  decomposition  methods  applied  to  compress
ResNet32 with Cifar10 dataset.

  

Table  1      Comparison  of  compression  performance  of  advanced
tensor decomposition methods on ResNet32 with Cifar10 dataset

Method Top-1 Accuracy/% Compression ratio

Tucker [9] 87.70 5 times

TT [38] 88.3 4.8 times

TR [14] 90.6 5 times

BTD [39] 91.1 5 times

GKPD [36] 91.5 5 times

HT [40] 89.9 1.6 times

STT [37] 91.0 9 times

 

W ∈ RO×I

I O

K ∈ RS×C×H×W

S
C H W

I1× I2× · · ·× Id = I O1×O2× · · ·×Od = O
C1×C2× · · ·×Cd =C S 1×S 2× · · ·×S d = S .

Here,  we outline  some key notations.  For  a  fully-con-
nected  (FC)  layer,  we  let  denote  the  weight
matrix of this layer, where  and  represent the number
of  input  neurons  and  output  neurons,  respectively.  And
for  a  convolutional  (Conv)  layer,  we  let 
denote  the  weight  of  the  convolutional  kernel,  where ,

 are the number of filters and input channels, and , 
are the height and width of the kernel. In some cases, we
need  to  reshape  a  tensor  into  a  higher-order  one.  We
assume  that , ,

,  and  Some
necessary  mathematical  operators  are  listed  in
Table 2. 
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Table 2    Notations used in this paper

Notation Description

diag(·)
Generation of a diagonal matrix by taking the

input vector as the main diagonal
⊗ Kronecker product

◦ Vector outer product

×n n-mode product

⋉ Semi-tensor product

Im = max
{k∈1,2,··· ,d}

Ik Om = max
{k∈1,2,··· ,d}

Ok d = 2 r
R t

Cm = max
{k∈1,2,··· ,d}

Ck S m = max
{k∈1,2,··· ,d}

S k d = 2
k =max(k1,k2) k1 · k2 = K r R

M N
t

Base  on  these  defined  notation,  we  can  make  a  com-
parison among various state-of-art tensor decompositions
on their ability to compress and accelerate. When aiming
at  FC  layers,  the  comparison  is  shown  in Table  3.  And
Table  4 is  for  Conv  layers.  Note  that  in Table  3

, ,  for  KPD,  is  the
maximal rank,  is the CP rank of BTD, and  is the ratio
between connected dimensionality.  Note that  in Table 4,

, ,  for  GKPD,
 with ,  is the maximal rank, 

is the CP rank of BTD,  and  are the height and width
of  feature  map,  and  is  the  ratio  between  connected
dimensionality.
  
Table 3    Comparison among FC layer compressed by TT, TR, HT,
BTD,  STR,  and  KPD on  computation  costs  and  storage  consump-
tion

Method Computation Storage

FC O(IO) O(IO)

TT O(dIm max(I,O)r2) O(dImOmr2)

TR O(d(I+O)r3) O(d(Im +Om)r2)

HT O(d min(I,O)(r3 + Imr2)) O(dImOmr+dr3)

BTD O(dIm max(I,O)rdR) O((dImOmr+ rd)R)

STR O
(

d(I+O)r3

t

)
O

(
d(Im +Om)r2

t2

)
KPD O(IOm +OIm) O(ImOm)

  

Table  4      Comparison  among  convolutional  layer  compressed  by
TT, TR,  HT,  BTD, STR, GKPD on computation costs  and storage
consumption.

Method Computation Storage

Conv O(S CK2 MN) O(S CK2)

TT O(dr max(rCm,K2)max(C,S )MN) O(dCmS mr2 +K2r)

TR O(r3(C+S )+ (r3K2 + r2(C+S ))MN) O((dCmS m +K2)r2)

HT O(log2 dCS (r3 + r2)+S CK2 MN) O(dCmS mr+K2r+dr3)

BTD O((K2r2 + (C+S )r)RMN) O((K2r2 + (I+O)r)R)

STR O
(

r3

t3
(C+S )+ (r3K2 +

r2

t
(C+S ))MN

)
O

((
dCmS m

t2
+K2

)
r2

)
GKPD O(r(CmS +S mC)k2 MN) O(rCmS mk2)

 

 2.1.1    SVD

X ∈ RM×NFor a given matrix , its SVD can be written as

X = U diag(s)VT. (1)

R R ⩽min{M,N}
U ∈ RM×N V ∈ RN×R UUT = I

VVT = I s ∈ RR

s1 ⩾ s2 ⩾ · · · ⩾ sR

Let  denote  the  rank  of  the  matrix, .
Note  that  and  satisfy  and

, respectively.  is referred to as the singu-
lar value vector, where the elements decrease from first to
end, i.e., .

B = diag(
√

s)VT A = Udiag(
√

s)

W S C ·H ·W

S ·H
C ·W

B A

Since  the  format  of  weights  in  FC  layers  is  a  natural
matrix, SVD can be directly utilized. By using SVD, the
FC layer can be approximated by two consecutive layers.
The  weight  of  the  first  and  second  layer  can  be  repre-
sented  by  and ,  respec-
tively. For Conv layers, the 4D kernel should be reshaped
into  a  two-dimensional  (2D)  matrix  first.  By  exploiting
different  types  of  redundancy,  there  are  two  decomposi-
tion  schemes.  One  reshapes  into  a -by-
matrix,  namely  channel-wise  decomposition  [30].  The
other called spatial-wise decomposition [13] gets a -
by-  matrix.  Then,  compute  SVD  of  the  reshaped
matrix.  Similar to the process of compressing FC layers,
two  Conv  layers  represented  by  tensors  reshaped  from
factors  and  can be used to replace the original layer.

However,  both  methods  only  can  exploit  one  type  of
redundancy. Moreover, there is also redundancy between
input channels. Exploiting all kinds of redundancy at the
same  time  can  help  us  achieve  a  much  higher  compres-
sion  ratio,  which  can  be  achieved  by  tensor  decomposi-
tion.

 2.1.2    CP decomposition

N
X ∈ RI1×I2×···×IN

While  SVD  factorizes  a  matrix  into  a  sum  of  rank-one
matrices, CP decomposition factorizes a tensor into a sum
of  rank-one  tensors.  For  an th  order  tensor,

,  the  CP  decomposition  can  be  formulated
as:

X =
[[
λ; A(1), A(2), · · · , AN

]]
=

R∑
r=1

λr a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r . (2)

a(n)
r r A(n) λ ∈ RR

R
X R

Each  represents the th column of  and 
represents the significance of  components. The rank of
the  tensor ,  denoted  by ,  is  defined  as  the  smallest
number of rank-one tensors [27, 41].

W 2d
W′ ∈ RO1×O2 ···×Od×I1×I2×···×Id

x ∈ RI d
X ∈ RI1×I2×···×Id

When  using  CP  to  compress  FC  layers,  the  weight
matrix  should  be  firstly  tensorized  into  a th  order
tensor .  Meanwhile,  the  input
vector  should  be  presented  as  a th  order  tensor

. For convolutional kernels, by directly per-
forming  CP  on  the  4D  kernel  tensor,  the  layer  will  be
approximated  by  four  consecutive  convolutional  layers
whose  weights  are  represented  by  four  factor  matrices,
respectively.
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 2.1.3    Tucker decomposition

N N

X ∈ RI1×I2×···×IN

The Tucker decomposition can be considered as a higher-
order  generalization  of  principal  component  analysis
(PCA). It represents an th order tensor with a th order
core tensor multiplied by a basis matrix along each mode.
Thus, for , we have

X = G×1 A(1)×2 A(2)×3 · · · ×N A(N) (3)

G ∈ RR1×R2×···×RN

×n

where  is called core tensor. Elementwise,
“ ” can be formulated as

(G×1 A(1))i1 ,r2 ,··· ,rN
=

R1∑
r1=1

Gr1 ,r2 ,··· ,rN
A(1)

i1 ,r1
. (4)

A(n) ∈ RIn×Rn

n
G

X
X R1,R2, · · · ,RN

Columns of the factor matrix  can be con-
sidered as the principal components of the th mode. The
core tensor  can be viewed as a compressed version of

 or the coefficient in the low dimensional subspace. In
this case, we can say that  is a rank-( ) ten-
sor [27,41].

2d

H×W

In  the  case  of  compressing  FC  layers,  similar  to  CP,
the  same  tensorization  for  weights  and  input  is  needed,
followed  by  directly  performing  Tucker  decomposition
on the th order tensor. For Conv layers, since the spa-
tial  size  of  the  kernel  is  too  small,  we  can  just  use
Tucker2  [42]  to  take  advantage  of  redundancy  between
filters and between input channels, generating 1×1 convo-
lution,  convolution, and 1×1 convolution.

 2.1.4    BTD

N
X ∈ RI1×I2×···×Id

BTD  was  introduced  in  [35]  as  a  more  powerful  tensor
decomposition,  which  combines  the  CP  decomposition
and  Tucker  decomposition.  Consequently,  BTD  is  more
robust  than  the  original  CP  and  Tucker  decomposition.
While CP approximates a tensor with a sum of rank-one
tensors, BTD is a sum of tensors in low rank Tucker for-
mat.  Or,  by  concatenating  factor  matrices  in  each  mode
and arranging all the core tensors of each subtensor into a
block diagonal core tensor, BTD can be considered as an
instance  of  Tucker.  Hence,  consider  a th  order  tensor,

, its BTD can be written as

X =
N∑

n=1

Gn×1 A(1)
n ×2 A(2)

n ×3 · · · ×d A(d)
n . (5)

N
Gn ∈ RR1×R2×···×Rd n

(R1,R2, · · · ,Rd)

In (5),  denotes the CP rank, i.e., the number of block
terms,  and  is  the  core  tensor  of  the th
block  term  with  multilinear  ranks  that  equals

.

X ∈ RI1×I2×···×Id

When  BTD  is  applied  to  compress  an  FC  layer,  the
yielded  compact  layer  is  called  block  term  layer  (BTL)
[39].  In  the  BTL,  the  input  tensor  is  ten-

x ∈ RI

W
W′ ∈ RO1×I1×O2×I2×···×Od×Id W′

{A(d)
n ∈ ROd×Id×Rd }dn=1

W′

X Y ∈ RO1×O2 ···×Od

W ∈ RS×C·H·W

1×H×1×W×S 1×C1×S 2×C2× · · ·×S d ×Cd

sorized from the original input vector  and the orig-
inal  weight  matrix  is  reshaped  as

.  Then,  we  can  factorize  by
BTD with factor tensors . By conduct-
ing  a  tensor  contraction  operator  between  BTD( )  and

, the output tensor  comes out, which can
be vectorized as the final output vector. For Conv layers,
it is claimed in [39] that by reshaping the 4D kernel into a
matrix, ,  the  layer  can  be  transformed  into
BTL. Specifically speaking, the matrix should be further
reshaped as .

 2.1.5    HT decomposition

X ∈ RI1×I2×···×IN

{1,2, · · · ,N}
T = {t1, t2, · · · , tk}, S = {s1, s2, · · · , sN−k} U12···N ∈
RIt1 It2 ···Itk Is1 Is2 ···IsN−k×1 X

Ut ∈ RIt1 It2 ···Itk×Rt Us ∈ RIs1 Is2 ···IsN−k×Rs

HT decomposition is a hierarchical variant of the Tucker
decomposition,  which  iteratively  represents  a  high-order
tensor  with  two  lower-order  subtensors  and  a  transfer
matrix via taking advantage of the Tucker decomposition
[32,43]. For a tensor , we can simply divide
the  index  set  into  two  subsets,  i.e.,

.  Let 
 denote the matrix reshaped from , and

truncated matrices ,  rep-
resent the corresponding column basis matrix of two sub-
spaces. Then, we can have

U12···N = (Ut ⊗Us)B12···N (6)

B12···N ∈ RRtRs×1 ⊗

T
L = {l1, l2, · · · , lq} V = {v1,v2, · · · ,vk−q}

Ut Ul ∈ RIl1 Il2 ···Ilq×Rl Uv ∈ RIv1 Iv2 ···Ivk−q×Rv

Bt ∈ RRlRv×Rt

where  is termed as transfer matrix and “ ”
denotes  the  Kronecker  product  between  two  matrices.
Subsequently,  divide  the  set  into  two  subsets

 and .  We  can  repre-
sent  with , ,  and

 as

Ut = (Ul⊗Uv)Bt. (7)

Us

The  similar  factorization  procedure  applies  simultane-
ously  to .  By  repeating  this  procedure  until  the  index
set cannot be divided, we can eventually obtain the tree-
like  HT  format  of  the  target  tensor.  An  illustration  of  a
simple version of HT can be seen in Fig. 2.
 
 

U12···d

Ud/2···dU12···d/2

U1 U2 U3 U4 Ud−1 Ud

···

···

Fig. 2    HT decomposition
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Since the Kronecker  product  in  (7)  is  computationally
expensive,  there  are  other  concise  forms  of  HT,  such  as
the contracted form introduced in [40]. This form merges
index subsets  to the universal  set  from bottom to top.  In
this  form,  an  external  input  can  be  contracted  with  each
transfer  matrix  and  truncated  matrix  one  by  one.  This
way  can  avoid  the  memory  and  computation-consuming
weight  reconstruction  procedure  and  intermediate  out-
puts will not be too large to out of memory.

W′ ∈ R(I1 ·O1)×(I2 ·O2)×···×(Id ·Od )

X ∈ RI1×I2×···×Id

W ∈ R(H·W)×(C1 ·S 1)×(C2 ·S 2)×···×(Cd ·S d )

For  the  realization  of  compressing  FC  layers  by  HT,
the  weight  matrix  should  be  transformed  into

,  and the  input  data  is  tensorized
into .  For  reducing  computation  complex-
ity,  the  chain  computation  shown  in Fig.  3 is  applied.
However,  as there is  no law associating convolution and
contraction, the kernel of Conv layers must be recovered
from  the  HT  format.  By  the  way,  in  order  to  keep  ba-
lance,  the  4D  kernel  should  be  tensorized  into

.
 
 

B1234

B34B12

U1x U2 U3 U4

Fig. 3    The chain computation for a fourth-order case
 

 2.1.6    TT decomposition

N X ∈ RI1×I2×···×IN

TT is a special case of HT, which is a degenerate HT for-
mat [33,44]. TT factorizes a high-order tensor into a col-
lection  of  third-or  second-order  tensors.  These  core  ten-
sors  are  connected  by  the  contraction  operator.  Assume
that we have a th order tensor, , element-
wise, we can factorize it into TT format as

Xi1 ,i2 ,··· ,iN
=

∑
r1 ,r2 ,··· ,rN

G1
i1 ,r1
G2

r1 ,i2 ,r2
· · ·GN

rN−1 ,iN
(8)

{Gn ∈ RRn−1×In×Rn }Nn=1 R0 = 1
RN = 1
{Rn}Nn=0

X

where  the  collection  of  with 
and  is  called  TT-cores  [33].  The  collection  of
ranks  is  called TT-ranks. Fig.  4 gives an illustra-
tion of a fourth order tensor represented in TT format. 
represents  a  fourth-order  input.  These  arrows  represent
the order of contraction.
 
 

I1 I2 I3 I4

R4R3R2R1R0

Fig. 4    A fourth order tensor in TT format
 

The TT was first applied to compress FC layers in [45],
where the weight matrix is reshaped into a high order ten-

W′ ∈ R(I1 ·O1)×(I2 ·O2)×···×(Id ·Od ) W′

{Gn ∈ RRn−1×In×On×Rn }Nn=1

sor, .  After  representing  in
TT  format,  the  resulted  TT-cores 
can  directly  be  contracted  with  the  tensorized  input.  It
was suggested in [40] that TT is more efficient for com-
pressing Conv layers than HT, while HT is more suitable
for  compressing FC layers  whose weight  matrix  is  more
prone to be reshaped into a balanced tensor.

(H ·W)× (C1 ·S 1)× (C2 ·S 2)× · · ·× (Cd ·S d)
X ∈ RH×W×C1×···×Cd

X

Employing  TT  on  Conv  layers  is  introduced  in  [38],
where the 4D kernel tensor should be reshaped to size of

 and  the  input
feature  maps  are  reshaped  to .  In  the
feedforward  phase,  the  tensorized  input  will  be  con-
tracted with each TT-core one by one.  Although TT can
significantly  save  storage  costs,  the  computational  com-
plexity  may  be  higher  than  the  original  Conv  layer.
Hence,  high-oeder  decomposed  convolution  (HODEC)
was  proposed  in  [46]  to  enable  simultaneous  reductions
in computational and storage costs, which further decom-
poses each TT-cores into two third-order tensors.

 2.1.7    TR decomposition

X ∈ RI1×I2×···×IN

Due  to  the  disunity  of  edge  TT-cores,  there  is  still  an
open  issue  that  how to  arrange  dimensions  of  tensors  to
find the optimal TT format. To conquer this problem, TR
decomposition was proposed to perform a circular multi-
linear  product  over  cores  [34, 47−49].  Consider  a  given
tensor, ,  elementwise, we can formulate its
TR representation as

Xi1 ,i2 ,··· ,iN
=

∑
r1 ,r2 ,··· ,rN

G1
r1 ,i1 ,r2
G2

r2 ,i2 ,r3
· · ·GN

rN ,iN ,r1
=

tr

 ∑
r2 ,··· ,rN

G1
:,i1 ,r2
G2

r2 ,i2 ,r3
· · ·GN

rN ,iN ,:


(9)

{Gn ∈ RRn×In×Rn+1 }Nn=1 RN+1 = R1

R1

where  all  cores  with  are
called TR-cores. Its tensor diagram for a fourth-order ten-
sor is illustrated in Fig. 5.  This form is equivalent to the
sum of  TT format.  Thanks to  the  circular  multilinear
product  gained  by  employing  the  trace  operation,  TR
treats all the cores equivalently and becomes much more
powerful and general than TT.
  

I1 I2

I3I4

R4 R2

R1

R3

Fig. 5    A fourth-order tensor in TR format
 

Moreover, due to the circular strategy, TR amends the
variousness  of  gradients  in  TT.  Hence,  TR  is  also  suit-
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d I1× I2× · · ·× Id ×O1×O2× · · ·×
Od

d
d F1 ∈ RR1×I1×···×Id×Rd+1

F2 ∈ RRd+1×O1×···×Od×R1

X ∈ RI1×I2×···×Id F1

F2

O1×O2× · · ·×Od

able  for  compressing  FC  layers.  In  [14],  TR  was  first
applied  to  compress  DNNs.  Specifically  speaking,  the
weight  matrix  of  FC  layers  should  be  reshaped  into  a
2 th  order  tensor  of  size 

,  followed  by  representing  the  tensor  into  TR format.
For  the  feedforward  process,  firstly,  merge  the  first 
cores  and  the  last  cores  to  obtain 
and ,  respectively.  Then,  we  can  cal-
culate  contraction  between  input  and ,
yielding  a  matrix  that  can  be  contracted  with .  The
final  output  tensor  will  be  of  size .  For
Conv layers, if keeping the kernel tensor in 4th order and
maintaining the spatial information, its TR-format can be
formulated as

Ks,c,h,w =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

Ur1 ,s,r2Vr2 ,c,r3Qr3 ,h,w,r1 . (10)

V Q U

U V d

Hence,  the  original  layer  can  be  represented  by  three
consecutive layers whose weight tensors are , , and 
respectively. If  a higher compression ratio is needed, we
can further view  and  as tensors merged from  core
tensors respectively, with an extra computation burden of
merging.

 2.1.8    Generalized KPD

U ∈ RJ1×J2×···×JN

V ∈ RK1×K2×···×KN

KPD can factorize a matrix into two smaller factor matri-
ces  interconnected  by  Kronecker  product,  which  has
shown  to  be  very  effective  when  applied  to  compress
RNNs [50]. To further compress Conv layers, it was gen-
erated  to  generalized  KPD  (GKPD)  [36],  which  repre-
sents a tensor by the sum of multidimensional Kronecker
product between two factor tensors.  Formally,  the multi-
dimensional  Kronecker  product  between 
and  is formulated as

(U⊗V)i1 ,i2 ,··· ,iN
= U j1 , j2 ,··· , jN

Vk1 ,k2 ,··· ,kN
(11)

jn = ⌊in/Kn⌋ kn = in Kn

N χ ∈ RJ1 K1×J2 K2×···×JN KN

where  and mod . Based on this, for a
given th order tensor , GKPD can be
denoted as

χ =
R∑

r=1

Ur ⊗Vr (12)

R
R

R
χ

U V

where  is referred to as Kronecker rank. For finding the
best  approximation  in  GKPD  with  a  given ,  we  can
transform  this  optimization  problem  into  finding  a  best
rank-  approximation for a matrix,  which can be solved
by SVD conveniently,  via  carefully  rearranging  into  a
matrix and rearranging  and  into vectors.

For the realization of using GKPD to decompress Conv
layers, the 4D kernel is represented as

WS ,C,H,W =

R∑
r=1

(Ur)S 1 ,C1 ,H1 ,W1 ⊗ (Vr)S 2 ,C2 ,H2 ,W2 (13)

S 1S 2 = S C1C2 =C H1H2 = H W1W2 =W
Ur ⊗Vr

C2

R
R

S 1 C2

where , , ,  and .
The 2D convolution between each  and input can
be  transformed  into  a  three-dimensional  (3D)  convolu-
tion  whose  depth  equals ,  followed  by  multiple  2D
convolutions.  Furthermore,  the  group  of  Kronecker
products can be viewed as  parallel channels that calcu-
late the above two steps separately.  And it  was analysed
that large  and  can help to obtain more reduction in
FLOPs.

 2.1.9    STP-based tensor decomposition

X ∈ RM×NP

W ∈ RP×Q

STP [51] is a generation of the conventional matrix pro-
duct, which extends the calculation of two dimensionally
matching matrices to that  of  two dimensionally arbitrary
matrices. Since tensor contraction is based on the conven-
tional matrix product, we can further substitute STP into
tensor  contraction,  which  will  lead  to  more  general  and
flexible  tensor  decomposition  methods.  In  [37],  STP-
based tensor decomposition was designed to enhance the
flexibility  of  Tucker  decomposition,  TT  and  TR  by
replacing the  conventional  matrix  product  in  tensor  con-
traction  by  STP,  which  demonstrates  much  higher  effi-
ciency than original  methods.  Consider  a  special  case  in
which  the  number  of  columns  in  is  propor-
tional  to  that  of  rows  in ,  the  STP  can  be
denoted as

Y = X⋉W, (14)

or, elementwise, as

Ym,g(n,q) =

P∑
p=1

Xm,g(n,p)Wp,q. (15)

Y ∈ RM×NQ ⋉ g(n,q) =
(q−1)N +n g(n, p) = (p−1)N +n

Note  that ,  " "  denotes  the  STP, 
,  and  are  rein-

dexing functions.
Hence,  take  STP-based  Tucker  decomposition  as  an

example, namely semi-tensor Tucker (STTu) decomposi-
tion, which can be formulated as

X = G⋉1 A(1) ⋉2 A(2) ⋉3 · · ·⋉N A(N) (16)

G ∈ RR1×R2×···×RN A(n) ∈ R
In

t ×
Rn
t

 N∏
n=0

Rn+

N∑
n=1

InRn

  N∏
n=0

Rn+

N∑
n=1

InRn

t2


where , . Compared with nor-
mal  Tucker,  the  number  of  parameters  is  reduced  from

 to .

 2.2    Low rank optimization method

We  have  already  introduced  various  tensor  decomposi-
tion  methods,  but  how to  apply  these  methods  to  DNNs
without  significant  accuracy  degradation  is  an  optimiza-
tion  problem,  which  remains  to  be  discussed.  Since  the

OU Xinwei et al.: Low rank optimization for efficient deep learning: making a balance between ... 7



lower the tensor rank is, the higher compression ratio we
will get, we hope that each layer of DNNs can be decom-
posed by very low rank tensor decomposition. However,
as the rank gets lower, the approximation error increases,
leading to a  dramatic  loss  of  accuracy.  Hence,  there is  a
tradeoff  between  accuracy  and  compression  ratio,  which

is a widely studied problem. There are mainly three kinds
of  low  rank  optimization  methods  to  achieve  a  good
tradeoff:  pre-train  method,  pre-set  method  and  compres-
sion-aware  method  (representative  works  can  be  seen  in
Table 5). For each method, we give the key points about
the implementation in detail.

 
 

Table 5    Three types of low rank optimization method for model compression

Method Description Representative works

Pre-train
Pretrain the target model, apply tensor decomposition to trained

weight tensors, and then fine-tune to recover accuracy
[9, 12, 30, 52]

Pre-set Construct tensorized netwoks, set proper initialization, and then train the whole network [14, 38,39]

Compression-aware Train the original network with normal optimizers but enforce weight tensors to enjoy low rank structure [53−55]
 

 2.2.1    Pre-train method

The  pre-train  method  is  the  earliest  used  method  in  the
literature  of  applying tensor  compression to  model  com-
pression,  which  directly  decomposes  an  already  trained
network  into  a  compact  format,  followed  by  fine-tuning
to recover the accuracy.  There are two critical  issues for
implementation: tensor rank selection and instability.

Tensor  rank  selection  means  how to  select  the  proper
tensor rank of each layer in a network. Since the extent of
redundancy varies from one layer to another, the rank of
each layer is not supposed to be equal. Hence, unlike time-
consuming  trial-and-error,  an  efficient  rank  selection
method  should  allocate  the  limited  computation  or  stor-
age  resources  to  each  layer  reasonably  via  carefully
deciding the  rank of  each layer,  while  ensuring the  low-
est accuracy degradation.

n n

A  simple  but  effective  way  is  to  set  the  rank  of  each
layer  to  be  proportional  to  the  number  of  corresponding
input  or  output  channels,  which  usually  performs  better
than  roughly  setting  all  ranks  equal.  A  probabilistic
matrix  factorization  tool  called  variational  Bayesian
matrix factorization (VBMF) [56] was used in [9] to esti-
mate  tensor  ranks of  a  tensor  in  Tucker  format.  In  order
to get the mode-  rank, the corresponding mode-  matri-
cization  of  the  target  tensor  was  viewed  as  an  observa-
tion  with  noise.  Then,  VBMF  was  employed  on  the
observation  to  filter  out  the  noise  and  then  obtain  a  low
rank matrix. In [30], the rank selection problem was for-
mulated  as  a  combinatorial  optimization  problem  [57]
with  computation  or  memory  resource  constrained.  The
objective  function  is  denoted  as  the  product  of  PCA
energy (the sum of singular values) of each layer,  as the
authors  empirically  observe  that  the  PCA  energy  is
roughly  related  to  the  classification  accuracy.  Similarly,
the  algorithm  in  [52]  also  employed  the  idea  that  the
approximation  error  is  linked  to  the  accuracy  loss.  But
more  efficiently  and  reasonably,  it  selects  the  maximum

approximation error of all the layers as a proxy for model
accuracy. By minimizing this proxy, it is guaranteed that
no  layer  decomposed  will  significantly  reduce  the  accu-
racy.  Together  with  the  resource  constraint,  the  final
problem is  a  minimax optimization which can be solved
by binary search.

Since  the  approximation  error  does  not  necessarily
reflect  the loss  of  accuracy,  the above methods can only
obtain  a  suboptimal  rank  configuration  scheme.  To
address  this  challenge,  reinforcement  learning  is
employed  to  automatically  select  ranks  [58,59].  In  the
established state-action-reward system, the reward favors
a  reduction  in  resource  cost  and  penalizes  loss  of  accu-
racy. The state (a possible global rank configuration of all
the layers) that renders the maximum reward can be cho-
sen as the next state.

Instability means that if a model is approximated by an
unstable  decomposed  format  such  us  CP format  and  TR
format,  it  will  lead  to  difficulty  in  fine-tuning,  i.e.,  con-
verge  slowly  and  converge  to  a  false  local  minima.  In
[60−62], it was noted that there is a degeneracy problem
that  causes  instability  in  CP  decomposition.  Specifically
speaking, when CP represents a relatively high-rank ten-
sor in a  low-rank format,  there are at  least  two rank-one
components  whose  Frobenius  norm  goes  to  infinity  and
cancels each other out. Due to the instability, [12,63] fails
to  decompose  the  whole  network  by  CP  decomposition,
as it is difficult to find a suitable fine-tuning learning rate.
To deal with this challenge, [64] proposed to use the ten-
sor  power  method  [65]  to  calculate  CP  decomposition
and  employ  iterative  fine-tuning,  i.e.,  decomposed  one
layer at a time and then fine-tune the entire network itera-
tivelly.  The  authors  of  [66]  devise  a  procedure  to  mini-
mize  the  sensitivity  (a  measure  for  the  degeneracy
degree)  of  the  tensor  reconstructed  from  CP  format  so
that the decomposed network with low sensitivity can be
fine-tuned  faster  and  obtains  a  better  accuracy.  A  more
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direct method proposed in [67] hold that each column of
the factor matrix should be normalized after each update,
as  normalization  can  improve  numerical  stability  in  the
outer  vector  product  [68].  A  similar  instability  problem
also happened to TR [69]. Hence, [70] proposed a sensiti-
vity correction procedure to address the problem via mini-
mizing  the  sensitivity  with  an  approximation  error
bounded constraint.

 2.2.2    Pre-set method

The  pre-set  method  has  the  interpretation  that  a  ten-
sorized neural network that is preset to a low tensor rank
format  will  be  trained  from  scratch.  As  the  method
requires no pre-training, it can save a great deal of time to
get  a  compressed  model.  However,  the  method  is  sensi-
tive  to  initialization  and  difficult  to  achieve  high  accu-
racy  due  to  the  limited  model  capacity.  Moreover,  simi-
lar  to  the  pre-train  method,  there  are  also  problems  in
configuring ranks. In a nutshell,  proper initialization and
tensor  rank  selection  are  the  main  issues  with  this
method.

N
0,std =

√
2
N

 N

N(0,σ2)
d

Rdσ2d

σ2

(
2
N

) 1
d

R−1

(
2
N

) 1
d

R
1
d −1

Initialization  plays  an  important  role  in  providing  a
warm start for training DNNs [71] as well as for the train-
ing of low rank structure networks [14], and can have an
impact on the final accuracy to a large extent. An empiri-
cally  determined  suitable  initialization  distribution  for

weights in a layer is ,  where  denotes

the total number of parameters in this layer. For a pre-set
model,  we  should  make  sure  that  weights  in  each  layer
approximated  by  factor  tensors  also  obey  this  distribu-
tion. For example, when a layer is compressed by TR and
the distribution of each core tensor is , then after
merging these  core tensors, elements of the merged ten-
sor will have mean 0 and variance . Hence, we need

to set  as  to obtain a good initialization. Simi-

larly,  for  TT,  the  variance  of  TT-cores  should  be

.  A  more  systematic  analysis  of  initialization

for  any  tensor  decomposition  method  was  introduced  in
[72].  It  is  suggested  that  by  extracting  the  Backbone
structure (i.e., a structure only contains contracted dimen-
sions, since only the contraction operator will change the
variance  of  weights)  from  the  original  tensorized  struc-
ture,  an  adjacency  matrix  can  be  obtained  from  node
edges of the Backbone structure, which can be utilized to
adjust the variance of factor tensors.

Tensor rank selection is seldom studied in the works of
training  a  tensorized  neural  network  and  usually  set  the
ranks  to  equal  in  experiments,  as  it  is  difficult  to  verify
the  redundancy  in  each  layer  without  a  pre-training  net-

work.  At  present,  there  are  only  a  few methods  to  solve
this problem for specific tensor decompositions. Inspired
by  neural  architecture  search  (NAS)  [73,74]  proposes  a
progressive  searching  TR  network  (PSTRN),  which  has
the  ability  to  find  an  appropriate  rank  configuration  for
TR  efficiently.  In  this  algorithm,  an  evolutionary  phase
and  a  progressive  phase  are  alternatively  performed.
While  the  evolutionary  phase  is  responsible  for  deriving
good  rank  choices  within  the  search  space  via  multi-
objective  genetic  algorithm  i.e.,  non-dominated  sorting
genetic  algorithm-II  (NSGA-II)  [75],  the  progressive
phase is responsible for narrowing the search space in the
vicinity of  the optimized rank coming from the previous
evolutionary phase. For rank selection with TT decompo-
sition, [76] proposes a low-rank Bayesian tensorized neu-
ral  network.  Bayesian  methods  are  always  used  to  infer
tensor ranks in CP format or Tucker format through low-
rank  priors  in  tensor  completion  tasks  [77−79].  This
paper generates this approach to TT format and nonlinear
neural networks.

A  more  easily  implemented  method,  modified  Beam-
search, was proposed in [80] to find the optimal rank set-
ting, costing much lower search time than the full search.
To verify optimality, it adopts the validation accuracy on
a mini-batch validation dataset as its metric. This method
is applicable to all kinds of tensor decompositions.

 2.2.3    Compression-aware method

Compression-aware  method  is  the  method  that  through
standard  training  and  iterative  optimization,  the  weights
of kernels and FC layers can gradually have desired low
tensor  rank  structures.  That  is,  consider  the  future  com-
pression into the standard training phase. Upon the end of
this  one-shot  training,  the suitable  tensor  ranks are  auto-
matically learned, without efforts to design efficient rank
selection schemes. Moreover, since the training process is
still on the original network structure instead of a deeper
factorized  network,  it’s easy  to  converge  towards  high
accuracy  without  being  prone  to  gradient  vanishing  or
explosion. There are mainly two kinds of ways to realize
this idea, namely using low rank regularization and solv-
ing constrained optimization.

Low  rank  regularization  is  similar  to  the  sparse  regu-
larization which is always used in DNNs to avoid overfit-
ting.  The  main  idea  of  low rank  regularization  is  to  add
low rank regularizer on weights in each layer to the basic
loss  function.  Hence,  with  the  constraint  of  such  regula-
rizer,  weight  tensors  will  gradually  have  a  desired  low
rank  structure  during  training.  Then,  after  low  rank
approximation, there is no need to retrain for a long time
and no risk of unstable recovery.

For  the  low rank  regularizer,  an  index  to  measure  the
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low rank degree is essential.  Since explicitly minimizing
the  rank  of  a  matrix  is  NP-hard,  nuclear  norm  [81]  was
widely  used  as  a  continuous  convex  relaxation  form  of
rank. In [82], the sum of nuclear norms of weight matri-
ces in each layer was added to cross-entropy loss,  yield-
ing a new optimization problem which can be solved by
proximal stochastic gradient descent. Similarly, [83] also
used  nuclear  norm  and  the  same  optimization  problem
was  solved  by  stochastic  sub-gradient  descent  [84].  In
addition,  this  paper  embeds  the  low  rank  approximation
into the training phase to boost the low rank structure.

However,  for  the  above,  SVD  will  be  performed  on
every  training  step,  which  is  inefficient,  especially  for
larger models. Hence, [85] proposed SVD training which
performs training directly on the decomposed factors. By
employing  sparsity  regularization  on  singular  values,  it
can  achieve  the  goal  of  boosting  low  rank.  In  order  to
maintain  the  valid  SVD  form,  orthogonality  regulariza-
tion  on  the  left  and  right  singular  matrices  is  necessary.
Moreover,  Orthogonality  also  can efficiently  prevent  the
gradient to explode or vanish, therefore achieving higher
accuracy.

Solving  constrained  optimization  is  a  method  that
through solving an optimization problem with explicit or
implicit  constraints  on  tensor  ranks  of  weights,  we  can
get  an  optimal  network  not  only  with  low  loss  but  also
with low rank structures. Classically, [53] formed the low
rank  constrained  problem  as  minimizing  the  sum  of  the
loss  and  a  memory/computation  cost  function  but  con-
straining each rank not to exceed a maximum rank. It can
be  solved  by  a  learning-compression  algorithm  [86].
More  conveniently,  [55]  directly  used  budget  (e.g.,  me-
mory/computation cost) as constraints, with low rank reg-
ularizer added on the loss function. However, since it rep-
resents  tensor  ranks  by  the  sum  of  nuclear  norms  of
unfolding  matrices  in  each  mode,  it  cannot  be  genera-
lized  to  certain  decomposition  methods  such  as  CP  and
BTD.  And  when  dealing  with  high-order  tensors,  there
will  be  too  many  auxiliary  variables  used  in  the  aug-
mented  Lagrangian  algorithm,  which  will  affect  conver-
gence.  Without  using  nuclear  norm,  [54]  just  set  the
upper bound of ranks, therefore it is applicable to various
tensor decompositions.

The  above  methods  have  an  unsatisfactory  tradeoff
between  accuracy  and  compression.  To  address  this
drawback, the Frank Wolfe algorithm was utilized in [87]
to optimize network weights with the low-rank constraint.
This  improvement  benefits  from  the  highly  structured
update directions of Frank Wolfe.

For  compression-aware  methods,  using  different  spar-
sity measures as low rank regularizers will greatly impact
compression  performance.  For  an  instance,  it  was  noted

ℓ1in  [85]  that  the  measure  (e.g.,  nuclear  norm)  is  more
suitable  for  an  extremely  high  compression  ratio  while
Hoyer  measure  performs  better  when  aiming  for  a  rela-
tively low compression ratio.  Hence,  it’s essential  to dig
out an efficient sparsity measure that is attractive for any
compression  ratio.  This  is  exactly  the  point  we  want  to
make below.

 2.3    Sparsity measure

ℓ1

Recently,  researches  on  compression-aware  method
emerge in large numbers and plenty of experiments show
that with the premise of using the same tensor decompo-
sition  method,  compression-aware  method  can  outper-
form  the  other  two  methods  [54,55, 85].  Hence,  we
should  pay  more  attention  to  it.  One  thing  that  has  not
been  fully  studied  is  the  sparsity  measure  used.  As  the
most  classical  convex  relaxation  form  of  rank,  nuclear
norm (  measure)  is  widely  used.  However,  there  is  no
evidence that the nuclear norm is a perfect choice. Conse-
quently,  a  comparison  between  common  sparsity  mea-
sures  should  be  made.  Finding  a  more  efficient  measure
may greatly improve the compression capability of exist-
ing compression-aware algorithms.

 2.3.1    Common sparsity measure

ℓ0

ℓ0
ℓp

0 < p ⩽ 1
x ∈ RN ℓp

For  sparse  representation  problems,  the  norm defined
as  the  number  of  non-zeros  is  the  traditional  measure  of
sparseness.  However,  since  the  norm  is  sensitive  to
noise  and  its  derivative  contains  no  information,  the 
norm  with  is  introduced  to  less  consider  the
small elements [88]. For a vector , its  norm can
be formulated as

ℓp(x) =

 N∑
i=1

|xi|p


1
p

. (17)

ℓ1 ℓp p = 1

x ∈ RN ℓ1

The  norm,  norm with ,  is  the  most  widely
used  sparsity  measure.  Formally,  consider  a  vector

, its  norm can be denoted as

ℓ1(x) =
N∑

i=1

|xi|. (18)

ℓ1
ℓ0

ℓ1
ℓ1 ℓ1 ℓ1

The  norm was introduced in  [89]  as  a  more practi-
cal substitute for the  norm. In addition, in order to bet-
ter  measure  sparsity  in  noisy  data,  more  flexible  forms
based  on  norm  were  proposed  in  [90,91],  namely
sorted  norm  and  two-level  norm.  The  sorted 
norm is formulated as

ℓsort1 (x) =
N∑

i=1

λi|xi| (19)

λ1 ⩾ λ2 ⩾ · · · ⩾ λN ⩾ 0where .  In  this  way,  the  higher  the
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ℓ1

magnitude  of  the  element,  the  larger  the  penalty  on  it.
More concisely, the two-level  norm only considers two
levels of penalty, which can be formulated as

ℓ2level1 (x) = ρ
∑
i∈I1

|xi|+
∑
j∈I2

|x j| (20)

|xi| ⩾ |x j|,∀i ∈ I1,∀ j ∈ I2 x
I1 I2

where .  The  index  of  is  indi-
vied  into  the  two  sets  and  and  they  contains  the
index of larger elements, while the rest is in I2.

x ∈ RN

x1 ⩽ x2 ⩽ · · · ⩽ xN

The Gini Index was initially proposed as a measure of
the  inequity  of  wealth  [92,93].  Afterward,  the  utility  of
Gini  Index  as  a  measure  of  sparsity  has  been  demon-
strated  in  [94,95].  Given  a  sorted  vector  whose
elements  increases by degrees,  i.e., ,  its
Gini Index is given by

G(x) = 1−2
N∑

i=1

xi

||x||1


N − i+

1
2

N

 . (21)

xN

1− 1
N

x = a y = b 100×a
100×b

Note that if all elements are equal, i.e., no sparsity, the
Gini  Index  reaches  its  minimal  0.  For  the  most  sparse
case,  i.e.,  only  is  non-zero,  the  Gini  Index  goes  to  a

maximum  of .  Graphically,  the  Gini  Index  can  be
represented  as  twice  the  area  between  the  Lorenz  curve
[93]  and  the  45°  line.  Each  point  on  the  Lorenz  curve
( , )  has the interpretation that top  per-
cent  of  the  sorted  elements  expresses  percent  of
the  total  power.  The  degree  line  represents  the  least
sparse  case  with  Gini  Index equal  to  0. Fig.  6 illustrates
the Lorenz curve for a vector. The dot line (45° line) rep-
resents  the case in which all  elements are equal,  and the
full line is the Lorenz curve of the vector. Twice the area
between them is equal to the Gini Index of such a vector.
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Fig. 6    A graphical illustration of Gini Index for a vector [1,2,3,4,10]
 

ℓ2/ℓ1
x ∈ RN

The Hoyer measure was devised in [96] as a new spar-
sity measure, which is a normalized version of . For
a given vector ,  its  Hoyer measure can be formu-
lated as

H(x) =

√
N − ||x||1||x||2√

N −1
. (22)

xThis  function  goes  to  unity  if  and  only  if  contains
only  a  single  non-zero  component,  and  takes  a  value  of
zero  if  and  only  if  all  components  are  equal,  changing
smoothly between the two extremes.

X
M×N σ ∈ RK

K =min{M,N}

The above-mentioned sparsity measure can be applied
to the singular value vector as a low rank measure of the
corresponding  matrix.  There  are  other  non-strict  mea-
sures  for  the  rank  of  a  matrix.  Here,  we  concentrate  on
effective  rank  [97].  Let  us  consider  a  matrix  of  size

 whose singular value vector is denoted by 
with , then its effective rank can be given
by

E(X) = exp

− K∑
i=1

σ̄i ln σ̄i

 (23)

σi σ σ̄i =
σi

||σ||1
ln0 = 0

where  is the ith element of , , and the con-
vention  that  is  adopted.  This  measure  is  maxi-
mized  when  all  the  singular  values  are  equal,  and  mini-
mized when the maximum singular  value is  much larger
than other values.

 2.3.2    Comparison

In  the  compression-aware  method,  it  is  common  to
employ  sparsity  regularizer  on  singular  value  vectors  to
encourage weight matrices to lie in a low rank subspace.
The nuclear norm is the most frequently used. However,
it  simply  makes  everything  closer  to  zero,  which  is
unfriendly  to  keeping  the  energy  of  weight  matrices.
Hence,  we  prefer  other  measures  that  encourage  the
insignificant singular values (with small magnitude) to go
to zero but keep the significant values (with large magni-
tude) or make them larger to maintain the energy. Hence,
we  choose  Gini  Index,  Hoyer,  and  effective  rank  as
potential  objects,  and  make  a  comparison  among  them
together with the nuclear norm.

λ

We  execute  the  comparison  experiment  on  ResNet32
trained  on  the  Cifar10  dataset.  We  utilize  the  most  sim-
ple  SVD  to  compress  the  network,  and  in  the  compres-
sion-aware  training  phase,  we  employ  various  sparsity
measures on singular vector values of each weight matrix,
with  a  hyperparameter  to  make  the  balance  between
accuracy and low rank. After this training, there are many
singular values close to zero that can be set to zero with-
out  degrading  performance.  An appropriate  indicator  for
identifying  singular  values  retained  was  introduced  in
[98],  namely  spectral  norm based  indicator.  This  indica-
tor is defined as the ratio of the largest discarded singular
value  to  the  maximal  singular  value.  It  is  more  efficient
than the normal  Frobenius norm based indicator  [99],  as
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it  can  get  rid  of  the  interference  caused  by  small  and
noisy singular values.

λ

Fig.  7 shows  the  effect  of  the  four  sparsity  measures.
The most  frequently  used nuclear  norm shows the worst
performance.  With  the  increase  in  the  compression  rate,
the accuracy drops sharply. The reason behind this can be
that at the time of pursuing a high compression ratio, the
value  of  is  increased,  with  more  singular  values
imposed  to  zero.  It  dramatically  destroys  the  expressive
ability of the model. This figure also suggests that effec-
tive  rank  surpasses  the  rest  measures  for  any  compres-
sion regime. To be specific, when the accuracy is close to
85%,  effective  rank  can  achieve  a  compression  ratio
almost  four  times  greater  than  the  nuclear  norm.  And in
the  case  of  90%,  it  can  achieve  two  times  greater  than
Hoyer. For a low compression regime, effective rank also
has the greatest potential to achieve accuracy close to the
original.
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Fig. 7     Accuracy on Cifar10 v.s.  compression ratio of the number
of parameters in ResNet32
 

For the spectral norm based indicator,  if  we are in the
need of discarding most of singular values to gain a high
compression  ratio,  there  are  two  choices:  increase  the

value of maximum singular value or decrease the value of
tiny singular values. However, increasing the value of the
maximum singular value 10 times is much more difficult
than decreasing the value of tiny singular values 10 times.
Hence,  we prefer  a  measure  that  can  strongly  encourage
tiny  singular  values  to  reach  0.  This  is  also  the  reason
why effective rank can demonstrate great efficiency.

 3. Integratable techniques
Apart from low rank approximation, there are other com-
pression  schemes  that  can  result  in  a  significant  reduc-
tion of parameters at the expense of only a small drop in
output  accuracies,  such as  pruning [100],  weight-sharing
[101],  sparsification  [102]  and  knowledge  distillation
[20].  Undoubtedly,  the  integration  of  these  parameter
reduction techniques, namely parallel integration, can fur-
ther enhance the efficiency of compression. While plenty
of surveys suggest integrating various compression tech-
niques, a detailed discussion on the combination between
low  rank  approximation  and  other  schemes  is  still  lack-
ing. In addition, not only the reduction of parameters but
also the reduction of bits for representing parameters can
significantly cut down the high complexity, which can be
realized  by  quantization  and  entropy  coding.  Quantiza-
tion  can  represent  each  parameter  with  lower  bit-width,
and entropy coding can use codewords to encode source
symbols.  Both  techniques  are  orthogonal  to  the  above
parameter  reduction  methods.  Hence,  we  can  directly
employ  them  on  a  compact  model  to  gain  a  more  com-
pact  representation,  namely  orthogonal  integration.
Table  6 lists  representative  works  of  different  types  of
integration,  and Table  7 lists  whether  these  techniques
can compress or accelerate models.

 
 

Table 6    Integratable techniques

Type of integration Technique Description Representative integration works

Parallel integration

Pruning Discard insignificant connections [82, 98, 103]

Sparsification Zero out insignificant weights [104−106]

Weight sharing Share weights across different connections [107−109]

Knowledge distillation Transfer knowledge learned from teacher to student [110−112]

Orthogonal integration
Quantization Reduce precision [113−115]

Entropy coding Encode weights into binary codewords [116−118]

 
 
 

Table 7    Ability to compress and accelerate for various techniques

Technique Acceleration Compression
Pruning √ √

Sparsification √ √
Weight sharing × √

Knowledge distillation √ √
Quantization √ √

Entropy coding × √

 3.1    Parallel integration

In this subsection, we give an all-round survey on how to
integrate  low  rank  approximation  with  other  parallel
compression  techniques,  including  pruning,  weight  shar-
ing,  sparsification,  and  knowledge  distillation.  Through
joint-way  use,  we  can  pursue  a  higher  compression
capacity.
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 3.1.1    Integration with pruning

Pruning is used to find unimportant connections in a full
structure  network  and  then  abandon  them,  resulting  in  a
compact  structure  without  significant  loss  of  accuracy.
Pruning  can  be  classified  according  to  various  levels  of
granularity, including weight-level, filter-level, and layer-
level.  Weight-level  is  the  most  flexible  approach  [102]
and  can  gain  the  lowest  memory  costs  by  storing  in
sparse  matrix  format  such  as  compressed  sparse  co-
lumn (CSC) [20].  However,  it  leads to difficulty in infe-
rence due to the need for identifying each weight kept or
abandoned.  That  is,  this  approach  cannot  speed  up  infe-
rence  or  save  the  memory  footprint  unless  supported  by
hardware  [119].  Layer-level  aims  at  abandoning  trivial
layers,  which  is  unsuitable  for  shallow  networks  [120].
To overcome these drawbacks, a more flexible and appli-
cable  approach,  namely  filter-level,  is  proposed  [121].
Filter-level  considers  each  filter  as  a  unit  and  discards
insignificant  filters  to  obtain  a  compact  model  but  with
regular structures.  Note that  for two successive Conv la-
yers, the removal of a filter in the first kernel leads to the
removal of the input channel in the next kernel.

Filter  pruning  does  not  deal  with  the  redundancy
within  a  filter,  while  low  rank  approximation  can  over-
come this by representing each filter in low rank format.
Hence,  it  is  promising  to  combine  them  to  explore  a
higher  compression  ratio.  Reference  [122]  proposed  to
perform  filter  pruning  first  and  then  employ  Tucker
decomposition  on  the  pruned  kernels.  Experiments  in
[122] showed that the joint-way approach can achieve up
to 57% higher compression ratio than either of them. Re-
ference  [98]  exchanged  the  order  of  filter  pruning  and
low-rank approximation since the smaller filters obtained
by low rank approximation can reduce the probability of
discarding  essential  filters.  In  addition,  previous  works
pointed out that filter pruning is likely to prune more fil-
ters  in  deeper  layers,  resulting  in  still  high  computation
costs  of  the  whole  network  [123].  But  with  the  help  of
low  rank  approximation,  the  shallow  layers  also  can  be
compressed. Then, both high-level compression of mem-
ory and computation costs can be achieved.

One branch of works can achieve low rank approxima-
tion and filter pruning simultaneously via regularizers. In
[82],  the  nuclear  norm  regularizer  and  the  sparse  group
Lasso  regularizer  [124]  were  combined  to  make  weight
matrices  not  only  low  rank  but  also  group  sparse.  Then
the  original  layer  can  be  represented  by  two  smaller  la-
yers,  followed by discarding insignificant  input channels
of the first layer and output channels of the second layer.
Different from this method, [103] used one type of regu-
larizer  to  achieve  both  two  motivations.  It  represents  a

ℓ2,1

weight matrix by a basis matrix and a coefficient matrix.
By  imposing  regularization  both  on  the  coefficient
matrix  and  its  transpose,  the  basis  matrix  can  turn  to  be
low rank and insignificant output channels are identified.
Or, there are also some works that employ the two tech-
niques  on  different  modules  of  a  network.  For  instance,
aiming  for  Transformer  architecture,  [125]  compressed
the  attention  blocks  by  low  rank  approximation  and
applied to prune to feedforward blocks, which gains great
enhancement.

 3.1.2    Integration with sparsification

Sparsification in DNNs focuses on making weight matri-
ces  sparser  so  that  sparse  matrix  computation  can  be
employed to reduce high computation costs.  Meanwhile,
it  can  provide  storage  efficiency,  as  non-zeros  and  their
locations  can  be  recorded  in  compressed  sparse  row
(CSR)  [20]  or  ellpack  sparse  block  (ESB)  [126]  format.
There  are  two  types  of  sparsification,  namely  irregular
sparsity  and  structural  sparsity.  When  the  non-zeros  are
located randomly in the matrix,  we call  it  irregular spar-
sity, which is flexible but may result in poor acceleration
due  to  its  irregular  data  access  pattern.  On  the  contrary,
structural  sparsity  can  achieve  regular  data  access  pat-
terns.  To  be  more  specific,  structural  sparsity  normally
zeros out a series of continuous elements in the matrix.

Low rank  approximation  factors  a  matrix  into  smaller
components,  but  these  components  still  contain  tiny  ele-
ments which can be zeroed out without leading to a sig-
nificant  increase  in  approximation  error.  Hence,  it  is
promising to combine low rank approximation and sparsi-
fication  to  achieve  better  compression.  Sparse  PCA
(SPCA) [127] was a well-known instance to integrate fac-
torization  with  sparsity.  The  main  idea  of  SPCA  is  to
make  each  principal  component  only  contain  a  few  fea-
tures  of  data,  so  that  SPCA  is  more  explainable  than
PCA. There were also sparse HOSVD and sparse CP pro-
posed in [65].

ℓ1 ℓ2,1

In  [105],  it  has  shown  that  surprisingly  high  sparsity
can  be  achieved  after  two-stage  decomposition.  It  was
claimed that more than 90% of parameters can be zeroed
out with less than 1% accuracy degradation on ImageNet
Large  Scale  Visual  Recognition  Challenge  2012
(ILSVRC2012)  dataset.  In  this  algorithm,  sparsity  and
low  rank  are  achieved  by  employing  norm  and 
norm respectively on a coefficient matrix. Finally, it con-
verts the convolution operation in Conv layers into spare
matrix  multiplication,  which  dramatically  reduces  com-
putation costs.  Sparse  SVD, i.e.,  factor  matrices  in  SVD
are  sparsed,  was  proposed  in  [104],  which  outperforms
truncated  SVD.  According  to  the  view  that  a  portion  of
the input and output neurons in a layer may be insignifi-
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cant, the corresponding rows of the left and right singular
matrix  can  be  zeroed  out.  And  considering  the  impor-
tance  of  entries  in  a  row  of  left  or  right  singular  matrix
decreases  from  left  to  right,  the  sparse  SVD  prefers  to
abandon entries nearing the right. The resulting structural
sparsity  allows  basic  linear  algebra  subprogram  (BLAS)
[128] libraries to be used for higher speed-up.

ℓ1

Aiming for RNNs, [106] proposed low-rank structured
sparsity. Considering dimensional invariance in time, this
method  employs  regularization  on  the  left  and  right
singular matrix derived from SVD, resulting in a column-
wise and row-wise sparse matrix without  dimension dis-
tortion.

 3.1.3    Integration with weight sharing

Weight  sharing  is  defined  as  an  operation  that  shares
parameters  across  different  connections  in  DNNs  by
exploiting  redundancy.  In  order  to  design  a  more  com-
plex network with a better capacity for feature extraction,
it is common to copy or reform some well-designed mo-
dules in a shallow network, and then add new modules to
the end,  yielding a deeper network.  One typical  network
is the well-known ResNet [129]. Due to this similarity, it
is promising to explore a more compact representation by
sharing parameters across these similar subnetworks. For
low  rank  approximation,  similarly,  the  idea  of  sharing
factor  tensors  across  tensor  decompositions  of  similar
weight tensors can also be adopted.

A  simple  illustration  of  integration  with  weight  shar-
ing can be found in [108], where a set of 3D filter bases is
shared  across  several  or  all  convolutional  layers.  The
search for bases is equivalent to low rank approximation
of  all  the  matrix-shaped  kernels  with  a  shared  basis
matrix.

x ∈ RN w ∈ RP

y ∈ R
N
P

N
P

x
W

Some  tensor  decomposition  methods  naturally  com-
bine weight sharing. For example, in the previously men-
tioned  semi-tensor  product-based  tensor  decomposition,
STP  can  calculate  a  multiplication  between  a  vector

 and  a  weight  vector ,  resulting  an  output

vector .  The  entries  in  each  block  of  share
one weight parameter of .

Alternatively,  one  branch  of  works  shares  factor  ten-
sors  across  tensor  decompositions  of  weight  tensors  in
different  layers.  Reference  [107]  proposed  T-Basis,
which constructs a set of third-order tensors. For an arbi-
trary-shaped  tensor,  each  of  its  TR-cores  can  be  repre-
sented as a linear combination of T-Basis. Hence, a com-
pact  representation  of  DNNs  can  be  derived.  Reference
[109]  proposed  coupled  TT,  which  contains  a  common
component and an independent component. The common
component is represented by shared TT-cores for similar
network blocks, while the independent components in TT

format  are  various  from  different  layers  to  maintain  the
characteristics of each layer.

 3.1.4    Integration with knowledge distillation

qs qt

qs qt qt

qs qt

Knowledge  distillation  [130]  is  a  promising  solution,
which  aims  to  feed  some  extra  knowledge  learned  from
teacher networks (one or more complex networks) into a
student  network  (much  simpler  network).  With  the  help
of  a  teacher,  the  student  can  achieve  comparable  accu-
racy but with much lower memory and computation costs
compared with the teacher. Let  and  denote the soft-
max outputs of the student network and teacher network,
respectively.  The  student  network  will  be  trained  via
aligning  and . But in the case that  is close to the
one-hot code of true labels,  the information contained in
small values cannot be transferred to the student. Hence,
a  trick  named temperature  [130]  is  utilized  to  soften  the
distribution of both  and .

Networks  compressed  by  low  rank  approximation  is
also a simpler network that can learn knowledge from the
uncompressed  version.  In  general,  the  decomposed  net-
works  are  recovered  by  simply  fine-tuning  to  minimize
the cross-entropy function. However, the fine-tuning pro-
cess  always  converges  slowly  and  cannot  recover  the
original  accuracy  well.  Hence,  this  underlines  the  need
for  training  the  compressed  network  with  information
from the corresponding pre-training network.

However,  it  was  demonstrated  in  [71]  that  it  is  diffi-
cult  to  train  a  student  network  deeper  than  the  teacher
network  with  knowledge  distillation  due  to  the  undesir-
able  phenomenon  of  vanishing  gradient.  Hence,  a  novel
knowledge  transfer  (KT)  was  proposed  in  [111],  which
aligns  both  outputs  and  intermediate  responses  from  a
teacher (original) network to its student (compressed) net-
work.  Experiments  show  that  it  surpasses  the  common
fine-tuning and knowledge distillation, particularly with a
high compression ratio.

However,  the  KT  method  is  still  time-consuming  and
has  a  demand  for  a  fully  annotated  large-scale  training
set,  which  may  be  infeasible  in  practice.  Li  et  al.  [110]
proposed  a  revised  knowledge  distillation  that  only
requires  a  few  label-free  samples.  It  adds  a  1×1  Conv
layer at the end of each block of the student network, and
aligns block-level outputs of teacher and student by esti-
mating  the  1×1  Conv  layer’s parameters  using  least-
squared  regression.  Since  the  number  of  parameters  in
1×1  Conv  layers  is  relatively  small,  only  a  few samples
are  necessary.  It  also  enables  fast  model  convergence,
thereby saving much time for recovery of accuracy. After
learning, the 1×1 Conv layer will be merged into the pre-
vious layer, without an increase in the number of parame-
ters.
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 3.2    Orthogonal integration

 3.2.1    Quantization

The  operation  that  maps  data  from  full  precision  to
reduced  precision  is  referred  to  as  quantization.  In  the
training  and  inference  phase  of  DNNs,  it  is  common  to
represent  weights  and  activations  in  32-bit.  However,
transferring data in 32-bit is a burden, and multiply-accu-
mulate  (MAC) will  be  operated between 32-bit  floating-
point  values.  In  addition,  energy  consumed  scales  lin-
early  to  quadratically  with  the  number  of  bits  used.
Hence, lowering the precision is necessary for the reduc-
tion of memory size, acceleration and energy saving.

There are some special advantages of applying quanti-
zation on neural networks. First, compared with continu-
ous form, the discrete representations are more robust  to
noise [131,132] and are more similar to the way of stor-
ing information in human brains [133,134]. Second, both
high  generalization  power  [135,136]  and  high  efficiency
under limited resources [137] of discrete forms are actu-
ally what  deep learning needs.  Third,  common compres-
sion methods, like low rank approximation, weight-shar-
ing, and pruning, focus on either memory compression or
acceleration  so  that  it  is  deficient  to  achieve  significant
acceleration and compression simultaneously for a whole
network,  while  quantization  can  conquer  this  challenge.
In  addition,  it  was  shown  in  [138]  that  most  of  the
weights and activations in DNNs are close to zero, which
can greatly promote the compression ability of quantiza-
tion. A more detailed survey about implementing quanti-
zation on DNNs could be found in [139,140].

A straight-forward way to  combine low rank approxi-
mation and quantization is to consider the network com-
pressed by tensor decomposition as a new network, which
can be normally further compressed by various quantiza-
tion methods. However, since there is already an approxi-
mation error derived from decomposition, the subsequent
quantization  will  suffer  from  serious  accuracy  degrada-
tion.  Hence,  a  novel  integration  method  that  considers
low rank decomposition and quantization simultaneously
instead  of  successively  has  the  potential  to  address  the
challenge.

This idea can be found in [141], where both factors of
Tucker format and activations are quantized, and with the
help of knowledge distillation, the approximation error is
minimized.  In  [114],  quantization  was  introduced  in
PCA,  where  the  component  matrix  and  the  coefficient
matrix  are  quantized  with  different  bit-widths.  Together
with  a  sparsity  constraint  on  the  coefficient  matrix,  the
approximation  error  on  the  data  manifold  derived  from
low rank decomposition, sparsity and quantization will be
minimized  by  an  iterative  projected  gradient  descent
method.

Also,  there  are  some  approaches  that  directly  extend

basic  tensor  decomposition  algorithms  to  tensor  decom-
positions  with  quantized  factors.  For  instance,  quantized
CP-alternating  least  squares  (ALS)  was  proposed  in
[115], where each optimization iteration factors are quan-
tized,  and it  is  shown that  the reconstruction error  under
ALS and quantized ALS are almost the same.

The  above-mentioned  methods  are  all  aiming  at
approximating  a  tensor  with  quantized  factors,  which  is
not suitable for pre-set method. In [113], a quantized TT
(QTT)  was  utilized  for  compressing  three-dimensional
convolutional  neural  networks.  TT-cores  in  tensorizied
neural networks are first quantized, and then the quantiza-
tion  of  feedforward  process  is  also  made,  achieving  a
three times faster inference than using only TT.

 3.2.2    Entropy coding

Entropy coding is  a lossless compression scheme, which
encodes source symbols with a lower number of bits per
symbol  by  exploiting  the  probability  distribution  of
source [142].  Entropy coding originally adopted for data
compression  is  introduced  to  further  reduce  the  memory
size  of  quantized  DNNs  by  representing  quantized
weights  with  binary  codewords  [20].  It  uses  Huffman
coding  to  further  save  20% to  30% of  network  storage
with no loss of accuracy.

Huffman  coding  is  a  theoretically  optimal  method  to
encode  multivariate  independence  source  symbols,  but
with  the  precondition  that  statistical  characteristics  of
source  symbols  are  already  known.  There  is  a  problem
with  DNNs that  statistical  characteristics  of  weights  cal-
culated by histogram is a time-consuming preparation and
are  different  for  each  network,  even  for  a  network  fine-
tuned.  Hence,  an  encoding  method  without  the  need  for
exact statistics is more efficient for compressing DNNs.

One  branch  of  works  called  universal  coding,  such  as
the variants of Lempel-ZivWelch [143−145] and the Bur-
rows –Wheeler  transform  [146],  can  be  applied  to  deal
with  this  problem.  The “universal”  means  that  this  cod-
ing method has a general probability model which can be
slightly  adapted  to  a  broad  class  of  input  sources.  In
application,  deep  context-based  adaptive  binary  arith-
metic coder (DeepCABAC) [117], as a type of universal
coding,  is  utilized  to  encode  weights  in  DNNs.  It  is  the
first  attempt  to  apply  state-of-the-art  video  coding  me-
thods (e.g., CABAC) to DNNs. Compared with Huffman
coding,  DeepCABAC  also  has  the  advantage  of  higher
efficiency in throughput.

However, both Huffman coding and DeepCABAC are
fixed-to-variable (F2V) schemes in which the number of
bits  for  each  symbol  is  variable.  Due  to  the  variable
length  in  codewords,  it  is  inefficient  for  memory  usage
when decoding, and hence leads to high latency for infe-
rence.  Instead,  Tunstall  coding [118],  a  variable-to-fixed
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(V2F) method, is designed to fix the length of each code-
word so that we can process multiple bits simultaneously
and  decode  multiple  encoded  strings  in  parallel.  It  is
reported  that  Tunstall  coding  can  achieve  around  six
times faster decoding than Huffman coding.

 4. Low rank optimization for subspace
training

 4.1    Low rank function

For  a  differentiable  real-valued  function,  if  its  gradient
always lies in a fixed low-dimensional subspace, it can be
called  a  low  rank  function  [147].  The  dimensionality  of
such  subspaces  is  much  lower  than  the  number  of  inde-
pendent variables,  and it  is  referred to as the rank of the
function. Ridge functions are the most common low rank
function, which are defined as functions that can be con-
verted  into  a  univariate  function  by  applying  an  affine
transformation  to  the  argument  [148].  Hence,  the  gradi-
ent  of  such  a  function  can  also  be  projected  into  a  line.
For  example,  the  least-square  regression  function  which
is  a  classic  ridge  function  can  be  considered  a  rank-one
function. The low rank property of ridge functions makes
them widely used in classic statistics. They are utilized as
regression  functions  in  projection  pursuit  regression  to
deal  with  the  curse  of  dimensionality  and  the  noise  in
data [149]. In scientific computing, since the variables of
functions for uncertainty quantification are always corre-
lated,  the  concept  of  active  subspaces  can  be  utilized  to
reveal  a  set  of  independent  variables  whose  fluctuation
can lead to the most significant change [150,151].

Low rank property has also been found in the training
phase of DNNs. In DNNs, the number of trainable parame-
ters  is  always  far  more  than  that  of  training  samples.
Thus, for this type of over-parameterized model, it is pos-
sible to guess that  there is  a large part  of the parameters
that  will  remain  unchanged  during  the  whole  training
phase. More generally, there is a hypothesis that the train-
ing  trajectory  of  parameters  lies  in  a  subspace  con-
structed by a few irrelevant variables.  That is to say, the
optimization of millions of parameters can be equivalent
to optimization in a tiny subspace. There is also evidence
that  the  gradient  of  various  DNNs will  gradually  remain
in a  tiny subspace spanned by a  few top eigenvectors  of
the Hessian [152].

 4.2    Subspace training

In  deep  learning,  the  challenge  that  the  process  of  train-
ing converges very slowly is a thorny obstacle. The slow
convergence  is  caused  by  the  dominating  first-order
method,  i.e.,  gradient  descent-based methods.  This prob-
lem can be relieved by second-order methods which uti-
lize  the  information  derived  from  Hessian  matrices.

Moreover, the second-order method is not sensitive to the
learning rate, so no specific learning rate schedule needs
to be designed.  However,  due to the massive parameters
in  DNNs,  it  is  a  computational  burden  to  calculate  Hes-
sian  matrices.  Some  approaches  such  as  Adam  [153],
RMSprop  [154],  and  AdaGrad  [155]  utilize  part  of  sec-
ond-order  information,  like  momentum  and  accumula-
tion  information,  have  already  surpassed  the  perfor-
mance of conventional gradient-based methods.

In order to apply second-order methods such as quasi-
Newton method [156] to network training, the straightfor-
ward way is to reduce the number of parameters that need
to be optimized. In view of the low rank structure disco-
vered in DNNs, it is promising to optimize the whole net-
work in a subspace using quasi-Newton method, without
the loss of accuracy. DLDR-based Quasi-Newton method
[157]  is  introduced  to  save  35% of  training  time  versus
SGD [24].  To be  specific,  in  this  algorithm,  dynamic  li-
near dimensionality reduction (DLDR) is devised to iden-
tify  the  low-dimensional  subspace  constructed  in  some
important directions which can contribute significantly to
the variance of the loss function. It achieves this by sam-
pling the training trajectory and then performing PCA to
analyse  the  dominating  directions.  Then,  second-order
optimization  can  be  directly  executed  in  this  tiny  sub-
space, resulting in fast convergence.

 4.3    Spatial redundancy and temporal redundancy

While model compression exploits the redundancy in net-
works  to  reduce  memory  and  computation  complexity,
subspace training exploits the redundancy to reduce train-
ing time. In other words, the objective of model compres-
sion  and  subspace  training  is  spatial  efficiency  and  tem-
poral  efficiency,  respectively.  Since  they  both  exploit
redundancy,  we  are  wondering  whether  the  redundancy
they deal with is of the same origin or not.

We  analyse  this  by  performing  subspace  training  on
low  rank  approximated  networks  to  determine  if  sub-
space  training  has  a  poor  performance  on  compressed
networks.  If  so,  it  is  evidence  that  the  redundancy
decreased  by  model  compression  is  insufficient  for  sub-
space training, i.e., the low rank property in time domain
disappears.

Here, we perform a simple experiment on LetNet-300-
100 with Mixed National Institute of Standards and Tech-
nology  (MNIST)  dataset.  LeNet-300-100  contains  two
hidden fully connected layers with output dimensions 300
and  100,  and  an  output  layer  with  dimension  10.  We
apply SVD on the first two layers and then fine-tune. We
record the training trajectory and establish a 5D subspace
by performing PCA. To see if such a tiny subspace is suf-
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ficient,  we project weights onto this subspace and calcu-
late  the  normalized approximate  error. Fig.  8 shows that
as  the  rank  decreases,  the  normalized  error  increases
almost  linearly.  It  suggests  that  the  higher  the  compres-
sion  ratio,  the  less  suitable  the  subspace  with  such  low
fixed  dimensionality  is.  In  other  words,  model  compres-
sion  decreases  the  redundancy  subspace  training  can
exploit.  The  normalized  error  is  the  ratio  of  norm  of
error between original parameters and projected parame-
ters and  norm of the original parameters. The rank is in
respect to SVD. “Base” is the uncompressed network.
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Fig.  8      Normalized  error  v.s.  rank  when  projecting  SVD-com-
pressed LeNet-300-100 on a 5D subspace
 

Also, we can figure that after low rank decomposition,
a  higher-dimensional  subspace  is  in  need.  As  shown  in
Fig.  9,  increasing  the  dimensionality  of  subspace  has  a
greater  effect  on  the  highly  compressed  network.  the
dimensionality of subspace ranges from 5 to 15. Under all
the rank settings, normalized error goes to zero when the
dimensionality is equal to 12. But there is a sharp descent
when  the  dimensionality  is  increased  from  11  to  12  for
rank=20. That is to say, a slight drop in dimensionality is
serious  for  a  highly  compressed  network.  When  a  net-
work is  compressed extremely,  there is  little  redundancy
in time domain.
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Fig. 9    Normalized error v.s. dimensionality of subspace under dif-
ferent ranks (different compression extents)

 4.4    Making a balance

Since  redundancy  exploited  by  model  compression  and
subspace  training  are  of  the  same  origin,  there  is  a  ba-
lance between spatial efficiency and temporal efficiency.
If  we  assign  most  of  the  redundancy  to  model  compres-
sion, we can obtain a compact network and hence achieve
spatial  efficiency,  but  little  redundancy  is  left  for  sub-
space  training.  Conversely,  if  we  are  in  need  to  train  a
network quickly, we should promise to assign most of the
redundancy to subspace training.

For  model  compression,  the  training  of  a  tensorized
neural network (TNN) is much time-consuming than that
of the original network. Hence, there is a need for utiliz-
ing  subspace  training  to  accelerate  the  training  of  TNN.
Intuitively,  for  a  highly  compressed  TNN,  since  there  is
little redundancy, it is inefficient to train such a TNN in a
tiny  subspace. Fig.  10 shows  the  performance  of  sub-
space training when applied to TT-based TNNs with vari-
ous compression regimes. The base network is ResNet32
trained  on  Cifar10  dataset.  All  the  experiments  run  15
epochs  (saving  35% time  of  SGD  method)  with  Quasi-
Newton method and the subspace is fixed to 40D. In this
figure,  the  orange  line  (the  case  in  which  TT-Net  is
trained in normal way) is almost a horizontal line, but the
green  line  (trained  in  subspace)  descends  sharply  at  the
time of high compression ratio. It suggests that subspace
training  can  be  combined  with  model  compression  to
achieve  spatio-temporal  efficiency  under  a  moderate
compression regime, but such a tiny space is not suitable
for an extremely compressed network.
  

21

: TT without subspace training; : TT with subspace training.
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Fig.  10      Comparison  of  the  accuracy  degradation  when  applying
subspace training to TT-Nets
 

Hence,  under  an  extreme  compression  regime,  it  is
essential  to  increase  the  dimensionality  of  subspace  to
relieve  the  accuracy  degradation.  But  it  is  infeasible  to
increase  dimensionality  blindly,  as  the  number  of  sam-
pling epochs will also increase, i.e., lessen temporal effi-
ciency. Fig. 11 shows the effect of increasing the dimen-
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sionality of subspace for a highly compressed TT-Net. In
Fig. 11, the dashed line represents the accuracy of teain-
ing TT-Nets in an normal way. It demonstrates that as the
dimensionality of subspace increases, the accuracy degra-
dation  of  subspace  training  decreases.  When  the  dimen-
sionality is increased to 55, we can achieve a good accu-
racy  close  to  the  original,  but  it  is  worth  noting  that  the
total time (time for subspace training and for sampling) is
near  the  normal  training time.  However,  in  the  case  that
we want to train a compact TNN quickly and a small drop
in  accuracy  can  be  tolerated,  it  is  a  good choice  to  train
such a network in a moderate subspace.
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Fig.  11      Effect  of  increasing  the  dimensionality  of  subspace  on
training TT-Nets in subspace
 

 5. Conclusions and future directions
In  this  paper,  two  types  of  low rank  tensor  optimization
for efficient deep learning are discussed, namely low rank
approximation  for  model  compression  and  subspace
training  for  fast  convergence.  For  low  rank  approxima-
tion,  we  list  various  efficient  tensor  decomposition  me-
thods and introduce three types of optimization methods.
Since sparsity  measure  is  applied frequently  in  low rank
approximation,  we  make  a  comparison  among  common
measures,  and  experiments  show  that  effective  rank  can
achieve the  best  accuracy-compression tradeoff.  In  addi-
tion, we investigate how to integrate low rank approxima-
tion with other compression techniques. Then, we give a
brief  introduction  to  subspace  training  and  analyze  that
redundancy exploited by subspace training and low rank
approximation is of the same origin. Further,  we make a
discussion  on  how  to  combine  the  two  to  accelerate  the
training of tensorized neural networks.

However,  up  to  now,  few  works  focus  on  integrating
more  than  three  types  of  parameter  reduction  compres-
sion  techniques,  which  is  more  promising  to  take  maxi-
mum advantage of redundancy in networks. Further, it is
possible  to  devise  a  flexible  framework  to  integrate  all
kinds of compression techniques.

In practice, low computation complexity is not equiva-
lent  to  low  latency  [158],  and  the  energy  consumed  by
computation  is  only  a  small  part  of  the  total  energy  for
inference  [159,160].  But  most  works  take  FLOPs  and
memory size as benchmarks. That is to say, an advanced
algorithm with  very  low complexity  may  not  be  applied
to  battery-powered  mobile  devices.  Hence,  more  efforts
are  needed  in  decreasing  the  energy  consumption  of
DNNs.

For  subspace  training,  the  temporal  efficiency  is  still
limited, as the quasi-Newton method is still based on the
gradient  of  the  original  millions  of  parameters.  Direct
optimization  on  several  independent  variables  is  still  to
be  studied.  In  addition,  since  the  sampling  procedure
occupies  most  of  the  training  time,  there  is  a  need  to
introduce  new  techniques  to  construct  subspace  with
fewer  sample  epochs.  One  potential  way  is  to  represent
all  the  parameters  in  tensor  format  and  apply  tensor
decomposition  to  better  analyze  principal  components,
i.e., higher-order PCA [68].
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