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Abstract: In this paper, we study the accuracy of delay-Doppler
parameter estimation of targets in a passive radar using orthogo-
nal frequency division multiplexing (OFDM) signal. A coarse-fine
joint  estimation  method  is  proposed  to  achieve  better  estima-
tion accuracy of  target  parameters without  excessive computa-
tional  burden.  Firstly,  the  modulation  symbol  domain  (MSD)
method is used to roughly estimate the delay and Doppler of tar-
gets.  Then,  to  obtain  high-precision  Doppler  estimation,  the
atomic  norm  (AN)  based  on  the  multiple  measurement  vectors
(MMV) model (MMV-AN) is used to manifest the signal sparsity in
the  continuous  Doppler  domain.  At  the  same  time,  a  reference
signal compensation (RSC) method is presented to obtain high-
precision  delay  estimation.  Simulation  results  based  on  the
OFDM signal  show that the coarse-fine joint  estimation method
based on AN-RSC can obtain a more accurate estimation of tar-
get parameters compared with other algorithms. In addition, the
proposed  method  also  possesses  computational  advantages
compared with the joint parameter estimation.

Keywords: passive  radar, orthogonal  frequency  division  multi-
plexing (OFDM) signal, atomic norm (AN), parameter estimation.
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 1. Introduction
Passive  radar,  which  utilizes  the  existing  illuminators  of
opportunity  to  achieve  target  detection  and  tracking,  has
attracted increasing interest in recent years [1−3]. In addi-
tion, with the rapid popularization of digital broadcasting
using  orthogonal  frequency  division  multiplexing
(OFDM)  modulation,  such  as  digital  audio  broadcasting
(DAB) [4], digital video broadcasting-terrestrial (DVB-T)
[5],  and  digital  terrestrial  multimedia  broadcasting
(DTMB)  [6],  some  novel  estimations  of  target  parame-
ters  are  designed  that  make  full  use  of  the  two-dimen-

sional (2D) structure of the OFDM signal. In [7], a modu-
lation  symbol  domain  (MSD)  method  was  proposed  to
estimate the delay and Doppler of the targets. Because the
estimation is less susceptible to imperfect autocorrelation
characteristics of  baseband signals,  this  method provides
a significantly higher peak to sidelobe ratio. However, the
delay and Doppler resolution of the MSD are limited by
signal bandwidth and accumulation time, respectively. To
cope  with  this  limitation,  spatial  spectrum  estimation
algorithms  or  sparse  methods  can  be  used  in  target
parameter  estimation,  but  they may incur  higher  compu-
tational complexity [8,9].

The multiple  signal  classification (MUSIC) algorithm,
a  typical  subspace  classification  method,  is  widely  used
for target parameter estimation due to its good resolution
and  accuracy  [10].  However,  the  estimation  accuracy  of
MUSIC  algorithm  is  susceptible  to  the  signal  to  noise
ratio (SNR), which leads to poor estimation performance
in  noisy  environments.  With  the  development  of  sparse
signal  representation  and  later  the  compressed  sensing
(CS)  theory  [11−13],  sparse  methods  have  been  deve-
loped  for  improving  the  accuracy  of  parameter  estima-
tion [14]. When the CS algorithm has been considered in
range  Dopper  (RD)  map  generation,  the  dictionary  con-
sists  of  the  template  signals  with  discrete  delays  and
Doppler frequencies [15,16], and therefore the delays and
frequencies  of  targets  are  assumed  to  be  distributed  on
some  fixed  delay-frequency  grids  [17].  However,  since
the  targets  and  clutter  are  often  determined  by  parame-
ters  (delays  and  Doppler  frequencies)  in  a  continuous
domain,  the  discretization  tends  to  lead  to  model  mis-
matches and poor recovery performance [18].

In order to address the grid mismatch problem caused
by  traditional  sparse  methods,  a  mathematical  theory  of
continuous  sparse  recovery  was  proposed  to  achieve
super-resolution  [19,20].  Zheng  et  al.  [21]  used  the
atomic norm (AN) constraint to formulate the sparsity of
signals  in  the  delay-Doppler  plane,  and  the  results  have
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better performance compared with the existing high-reso-
lution methods based on CS and 2D-MUSIC algorithms.
However,  if  AN  is  directly  applied  to  delay-Doppler
parameter  estimation  with  a  long  integration  time  and
high  sampling  frequency,  although  the  alternating  direc-
tion  method  of  multipliers  (ADMM)  [22]  was  used  in
[21] to effectively solve the semidefinite program (SDP),
it still needs a lot of computation and may hinder the real-
time  application  for  it  involves  convex  optimization.  To
further reduce the computational complexity of the algo-
rithm， another  approach  is  to  utilize  a  series  of  one-
dimensional  (1D)  searches  that  alternate  between  opti-
mizations  on  one  variable  while  keeping  the  other  vari-
able  fixed,  which  better  achieves  2D  joint  estimation
without the heavy computational burden [17,23].

Based on the methods above, we propose a new param-
eter estimation method for OFDM-based passive radar. A
coarse-fine joint estimation method is presented, in which
only a few batches are selected for  parameter  estimation
to reduce calculations. Firstly, the method proposed in [7]
is  used  to  roughly  estimate  the  delay  and  Doppler  fre-
quency of targets. Then the AN and reference signal com-
pensation (RSC) methods are used in the Doppler domain
and  delay  domain,  respectively,  and  the  generated
Topeplitz  matrix  of  AN  no  longer  needs  huge  storage
space.  In  the  Doppler  dimension,  the  AN  based  on  the
multiple measurement vectors (MMV) [24] model (MMV-
AN)  is  used  to  improve  the  processing  ability.  In  the
delay  dimension,  the  RSC  is  presented  to  overcome  the
loss of SNR caused by the block processing of the signal,
which can easily achieve the accuracy and robustness of
delay estimation.

The remainder of the paper is organized as follows. In
Section  2,  the  passive  radar  signal  model  in  the  subcar-
rier domain is described. In Section 3, a new coarse-fine
joint  parameter  estimation  AN-RSC  method  for  OFDM
passive radar is proposed. In Section 4, the effectiveness
of the proposed method is presented via numerical simu-
lation  and  computational  complexity  analysis.  Finally,
conclusions are drawn in Section 5.

 2. Signal model and problem representation

TS = T +TG

T
TG

Nc

fn = n∆ f ∆ f = 1/T

We study  the  passive  radar  system utilizing  OFDM sig-
nals, which can be viewed as parallel streams of multiple
single-carrier  signals  with orthogonal  carrier  waveforms,
each modulated using different transmission data [7]. The
transmitted data is divided into multiple OFDM symbols.
The  duration  of  each  OFDM  symbol  is ,
which is  composed of  an elementary symbol  duration 
and  a  guard  interval  duration .  Assume  that  there  are

 orthogonal subcarriers in each OFDM symbol, and the
nth subcarrier frequency is , where  is

mththe subcarrier interval.  The transmitted signal in the 
OFDM symbol can be modeled as

xm(t) =
Nc−1∑
n=0

sm[n]exp(j2πn∆ f t)·ξ(t−mTS),

mTS−TG ⩽ t ⩽ mTS+T (1)

sm[n] n = 0,1, · · · ,Nc−1 m = 0,1, · · · ,Nsym−1
nth

mth

where  ( ; )  is
complex  modulation  data  with  the  subcarrier  of  the

 OFDM symbol, and

ξ(t) =
1, t ∈ [−TG,T ]

0, otherwise
. (2)

K

A typical passive radar includes two channels, a refer-
ence channel and a surveillance channel. In OFDM-based
passive  radar,  on  the  surveillance  side,  suppose  down-
conversion  has  been  carried  out,  and  only  baseband  sig-
nals  are  considered  below.  The  received  signals  contain
direct  path  interference,  target  echoes,  multipath  signals,
and noise.  Assume there are  paths,  it  can be modeled
as

y(t) =
Nsym−1∑

m=0

K∑
k=1

Ak exp(j2π fkt)·

xm(t−τk)+ω(t) ≈
Nsym−1∑

m=0

K∑
k=1

Ak exp(j2π fkmTs)·

xm(t−τk)+ω(t) (3)

τk fk

Ak

ω(t)

where  and  denote as the delay and Doppler shift of
the kth path, respectively;  is an attenuation coefficient
containing path loss, reflection and processing gains; 
is  additive  noise.  The  approximation  in  (3)  is  derived
from the constant phase rotation approximation within an
OFDM block [21].

mth
nth

Performe  Fourier  transform  on  the  surveillance  signal
of  (3)  in  the  OFDM  symbol,  then  the  signal  in  the

 subcarrier can be expressed as

rm[n] =
K∑

k=1

αk sm[n]exp(j2π fkmTs)·

exp(−j2π fnτk)+ vm[n] (4)

αk kth
αk = AkT vm[n]

δ2

where  is  the  complex  amplitude  of  the  target,
, and  is a complex Gaussian variable with

zero mean and variance .

xref = sm[n]

In order to implement a processor for the estimation of
delay  and  Doppler  frequency,  the  transmitted  informa-
tion  has  to  be  removed  from  the  surveillance  channel
firstly.  In  OFDM-based  passive  radar,  the  reference  sig-
nal  includes  a  direct  path  signal  and  multipath  signals,
and the clean reference signal  can be obtained
by  reconstruction  [25].  Therefore,  the  transmitted  signal
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D Dn,m

rm[n]
xm[n] D

can  be  effectively  removed  from  the  surveillance  infor-
mation symbols by the complex division of elements for
low-order modulation schemes such as binary phase shift
keying  (BPSK)  and  quadrature  phase  shift  keying
(QPSK) [7]. Let  be a new matrix, and its element 
is equal to the receiving symbol  divided by the ref-
erence symbol  [26],  is given as

D =


D0,0 D0,1 · · · D0,Nsym−1

D1,0 D1,1 · · · D1,Nsym−1

...
...

...
DNc−1,0 DNc−1,1 · · · DNc−1,Nsym−1

 (5)

where

Dn,m = rm[n]/sm[n] =
K∑

k=1

αk exp(j2π fkmT )·

exp(−j2π fnτk)+ϖm[n].

The  problem  is  to  estimate  the  unknown  parameters

αk τk fkreflections , delays , and Doppler shifts  of targets
in (5).

 3. Coarse-fine joint estimation method based
on AN-RSC

In  this  section,  a  coarse-fine  joint  estimation  method
based on AN-RSC is presented to achieve high-precision
estimation  of  Doppler  frequency  and  delay  respectively
with OFDM-based passive radar data, and the signal pro-
cessing flow chart can be seen in Fig. 1.  There are three
main  modules:  rough  estimation  of  Doppler  and  delay
parameters,  precise  estimation  of  Doppler  parameters,
and  precise  estimation  of  delay  parameters.  First,  the
rough estimation of the parameters of the interesting tar-
gets  is  conducted  by  the  MSD method.  Then,  combined
with the rough estimation parameters,  AN and RSC me-
thods are used to realize the high-precision estimation of
Doppler and delay, respectively. The specific operation of
each module is as follows.
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Fig. 1    Flow chart of the estimation of Doppler and delay
 

 3.1    Rough estimation of target parameters

X
xτ, fD

Construct  a  new  sparse  matrix  whose  non-zero  ele-
ments  represent reflective targets or clutter, given as

xτ, fD
=
αk, τ = τk; fD = fk

0, otherwise
. (6)

Then, (5) can be apporximated as

D = FNc XFH
Nsym
+ω (7)

FNc FNsym

Nc×Nc Nsym×Nsym ω
(·)H

where  and  denote Fourier transform matrices of
different sizes  and , respectively;  is
the  additive  noise  matrix;  represents  the  conjugate
transformation  of  a  matrix.  To  obtain  high  precision
parameter estimation effectively, the method proposed in
[7] is used to estimate the target parameters roughly. For
Doppler  parameter  estimation,  a  classical  spectrum  esti-
mation  method  is  used,  formally,  the  inverse  discrete
Fourier  transform  (IDFT)  is  performed  for  each  column

Dof the matrix  in (7), one has
Y1 = FH

Nc
D = FH

Nc
FNc XFH

Nsym
+FH

Nc
ω =

XFH
Nsym
+FH

Nc
ω. (8)

Y1 Y
The discrete Fourier transform (DFT) is calculated for

every row of the matrix  in (8). The resulting matrix 
in (9) directly represents a 2D RD map:

Y = Y1 FNsym = X+FH
Nc
ωFNsym = X+ ω̃. (9)

Gτ, f ∈ RP×2 P

Gτ, f (p, :) =
(
gp
τ , gp

f

)
(p ∈ [1,P]) gp

τ

gp
f pth

From  the  RD  map  given  in  (9),  we  can  preliminarily
obtain the delay and Doppler frequency parameters of the
interesting targets expressed as , where  rep-
resents  the  total  number  of  the  point  targets  of  interest.

 denotes  the  delay  bin 
and Doppler shift  of the  target.

 3.2    Doppler parameters estimation

In  this  subsection,  the  high-precision  estimation  of  the
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Nc

ith Y1

Doppler frequency of the interested point target is mainly
carried  out.  The  multivariable  estimation  problem in  (7)
becomes  at  most  parallel  univariate  estimation  pro-
cess. In (8), the  row of the matrix  be expressed as

yi =

K∑
k=1

ck exp(j2π fkmTs) ∈ C1×Nsym (10)

ck exp(j2π fkmTs)
kth

fk

where  and  denote  the  coefficient  and
atom  corresponding  to  the  scattering  center  respec-
tively,  and  is  the  normalized  frequency.  For  (10),  the
following continuous dictionary set is established:

A = { a( f ) : f ∈ [0,1]}. (11)

Note that the method in [24], the MMV at a single step
while  the  joint  processing  exploiting  in  a  unified  frame-
work  can  provide  a  sufficient  condition  for  exact  reco-
very.  To  facilitate  the  practical  operation,  we  adopt  the
method  of  partial  extraction  of  data,  which  can  be
expressed as

Y1_sub = ΨpY1 (12)

Ψp ∈ RP×Nc

Gτ, f (:, 1)
Y1_sub ∈ CP×Nsym

where  denote a partial identity matrix, which
is  determined  by  delay  bin  obtained  by  (9).
Therefore,  the  MMV-AN  for  the  signal 
can be defined as∥∥∥Y1_sub

∥∥∥
A = inf

cp , fk

∑
p

∥∥∥cp

∥∥∥
2

: Y1_sub =
∑

p

cpa( fk,p)

 . (13)

where inf{·} is the infimum
Ŷ1_subWe can  recover  using  the  MMV-AN minimiza-

tion as follows:

Ŷ1_sub = arg min
Ŷ1_sub

∥∥∥Ŷ1_sub

∥∥∥
A

s.t.
∥∥∥Ŷ1_sub−Y1_sub

∥∥∥2
F
⩽ ε. (14)

Or, equivalently, the semidefinite program
{Ŷ1_sub,T(u)} =

arg min
u,Ŷ1_sub

τ

2
[tr(T(u))+ tr(Φ)]

s.t.
[

Φ Ŷ1_sub

(Ŷ1_sub)
H

T(u)

]
≻0,

Φ =ΦH,
∥∥∥Ŷ1_sub−Y1_sub

∥∥∥2
F
⩽ ε (15)

τ = 1
/ √

Nsym tr(·)
Φ ∈ CP×P u ∈ CNsym

T(u) ∈ CNsym×Nsym u

≻

where  and  is  the  trace  of  the  input
matrix;  is  a  Hermitian  matrix;  and

 is  the Toeplitz  matrix  of  a  vector ;  the

notation  indicates that the matrix is positive semi-defi-

nite. The problem of the semidefinite program in (15) can
be solved by ready-made solvers  such as  self-dual-mini-
mization (SeDuMi) [27] and SDPT3 [28]. However, these

solvers are usually slow when solving large-scale data, so
a  reasonably  efficient  algorithm based  upon  the  ADMM
is used in this paper. Express our problem in the appropri-
ate ADMM form, then (15) can be rewritten as

{Ŷ1_sub,T(u)} = arg min
u,Ŷ1_sub

1
2

∥∥∥Ŷ1_sub−Y1_sub

∥∥∥2
F
+

τ

2
[tr(T(u))+ tr(Φ)]

s.t.


U =
[

Φ Ŷ1_sub

(Ŷ1_sub)
H

T(u

]
≻0

Φ =ΦH

. (16)

By  dualize  the  equality  constraint  by  augmented
Lagrangian, there are

L(Ŷ1_sub,u,Φ,Λ,U) =
1
2

∥∥∥Ŷ1_sub−Y1_sub

∥∥∥2
F
+
τ

2
[tr(T(u))+ tr(Φ)] +⟨

Λ,U−
[

Φ Ŷ1_sub

(Ŷ1_sub)
H

T(u)

]⟩
+

ρ

2

∥∥∥∥∥∥U−
[

Φ Ŷ1_sub

(Ŷ1_sub)
H

T(u)

]∥∥∥∥∥∥
2

F

(17)

ρ

ρ = 2δ
√

Nsym log2 Nsym δ

Φ Λ ∈ C(P+Nsym)×(P+Nsym) U ∈ C(P+Nsym)×(P+Nsym)

where  the  fourth  term  on  the  right  side  of  (17)  is  the
penalty  term,  and  is  the  penalty  term  coefficient.  We
set  and  is  the  standard  variance
of the noise obtained from base statistics  without  targets
in (8). , ,  and  are
Hermitian matrices, and

Λ =

[
ΛP×P ΛP×Nsym

ΛNsym×P ΛNsym×Nsym

]
U =
[

UP×P UP×Nsym

UNsym×P UNsym×Nsym

] . (18)

The ADMM [29] contains the following update steps:
(Ŷt+1

1_sub,u
t+1,Φt+1) =

arg min
Ŷ1_sub ,u,Φ

L(Ŷ1_sub,u,Φ,Λt,Ut), (19)

Ŷt+1
1_sub =

1
2ρ+1

(Y1_sub+ρUt
P×Nsym

+2(Λt
Nsym×P)H+

ρ(Ut
Nsym×P)H), (20)

Φt+1 =
1
2

Ut
P×P+

1
2

(Ut
P×P)H+

1
ρ

(Ut
P×P−

τ

2
IP×P), (21)

ut+1 =
1
ρ
Γconj(g(Λt

Nsym×Nsym
)+ρg(Ut

Nsym×Nsym
)− τ

2
e1), (22)

Ut+1 = argmin
≻0

L(Ŷt+1
1_sub,u

t+1,Φt+1,Λt,Ut), (23)

Λt+1 = Λt +ρ

Ut+1−
 Φt+1 Ŷt+1

1_sub

(Ŷt+1
1_sub)

H
T(u)

 , (24)
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t tth
conj( · )

Ip×p a = g(A)
A a

ai = sum
(
Ap,q |q− p+1 = i

)
e1

Γ =diag
(
1/Nsym,1/

Nsym−1, · · · ,1) Ŷ1_sub

Ŷ1_sub

where  the  superscript  represents  the  iteration;
 means  taking  conjugate  for  each  element  of  the

input  matrix;  is  a p×p indenfity  matrix; 
indicates  that  the matrix  is  converted into a  vector ,
and ;  is  the  first  column
vector  of  the  identity  matrix; 

;  can be obtained after iterative con-
vergence.  Finally,  to  obtain  the  Doppler  parameter  esti-
mation of targets, the dual solution method in [21] is used
to search the peak for each row of .

 3.3    Delay parameters estimation

τoffset

mth
nth

After  obtaining  the  accurate  estimation  of  the  Doppler
frequency of targets, the RSC method is proposed to esti-
mate  their  delay  with  high  precision.  Firstly,  a  known
delay vector  is compensated on the reference signal,
and  the  compensated  signal  in  the  OFDM  symbol,
the signal in the  subcarrier can be expressed as

f l
m[n] = sm[n]exp(j2πτoffset(l) fn), l = 1,2, · · · ,L (25)

τoffset = [(L−1)/L, (L−2)/L, · · · ,0]T

L

where  the l is  the  delay  vector  index.  The  delay  vector
can  be  expressed  as ,
and  is equivalent to the sampling multiple.

Foffset

Foffset(:, :, l)
(n,m)th f l

m[n] lth Foffset

Let  be a three-dimensional (3D) matrix after RSC,
and  the  structure  is  shown  in Fig.  2.  The  matrix  of  the
shaded part in Fig. 2 is represented as  whose

 element is  in the  layer matrix of .

 
 

0                    Nsym−1

N c
−1

n

m

L

1

l

l

FoffsetFig. 2    Structure of the matrix 
 

D̂ ∈ CNc×Nsym×L

rm[n]
f l
m[n]

Let  be a new matrix with its  entries  the
element-wise division of the received symbols  and
compensated reference symbols , given as

D̂l
m[n] =

rm[n]
f l
m[n]
, l = 1,2, · · · ,L. (26)

D̂

Therefore, the influence of Doppler parameters should
be  eliminated  firstly,  performing  DFT  on  the  Doppler
dimension.  Formally,  DFT  is  performed  on  each  row  in
each layer of the 3D matrix , one has

D̂1(:, :, l) = D̂(:, :, l)FNsym , l = 1,2, · · · ,L. (27)

D̂1(:, :, l)
Then, performing IDFT on each column of the matrix

 in (27), one has

D̂2(:, :, l) = FH
Nc

D̂1(:, :, l). (28)

D̂2 ∈ CNc×Nsym×L

L = 10

gp
τ p

[gp
τ −5, gp

τ +5] 5 ⩽ gp
τ ⩽ Nc−6

pth

The resulting matrix is , to speed up pro-
cessing  time  and  reduce  the  storage  memory,  we  set

 and extend five delay bins forward and backward
respectively  based  on  the  rough  estimated  delay.  For
example, the rough estimated delay is  of the target ,
then  the  range  of  delay  fine  estimation  is  taken  as

 ( ).  The  signal  to  be  esti-
mated of the  target can be expressed as

D̂2([gp
τ −5, gp

τ +5], gp
f , :) ∈ C11×1×10. (29)

pthThen  the  compensated  signal  of  the  target  can  be
expressed as

dp = reshape((D̂2([gp
τ −5, gp

τ +5], gp
f , : )T), [·], 1) ∈C110×1

(30)

reshape(·, [·], 1)

dp

where  means converting the matrix into
a column vector. Finally, the accurate delay estimation is
found in vector .

gp1
τ = 51.2,

gp2
τ = 52

To  emphasize  the  effectiveness  of  RSC, Fig.  3 gives
the  delay  dimension  signal  after  compensation  by  RSC,
which  contains  two  adjacent  delay  targets  (

).  As  shown  in Fig.  3,  the  compensated  signal
obtained  by  RSC  has  the  following  two  advantages:
(i)  the  peak  value  is  closer  to  the  real  value,  and  the
amplitude  of  target  estimation  is  increased  accordingly;
(ii)  it  has  potential  advantages  in  near-neighbor  target
recognition.  These  illustrate  the  necessity  of  the  RSC
method for target time delay estimation in passive radar.
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Fig. 3    Comparison of uncompensated and RSC compensated sig-
nals in delay dimension
 

 4. Simulation analysis
In  this  section,  we  evaluate  the  coarse-fine  joint  estima-
tion  method  based  on  AN-RSC  using  metrics  of  root
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mean square error (RMSE) of target parameter and com-
putational complexity.

 4.1    Simulation setup

To verify  the  effectiveness  of  the  proposed  method,  one
illuminator transmits the 4 quadrature amplitude modula-
tion (4QAM)-modulated OFDM signal in the simulations,
which contains two parts,  namely the frame header  (420
symbols) and frame body (3 780 symbols). The baseband
sampling  rate  (equal  bandwidth  sampling)  is  7.56  MHz.
180 OFDM blocks for signal processing are used, namely
approximately  0.1  s  coherent  processing  interval.  The
three  targets  are  assumed  to  be  point  scatterers  in  our
simulations,  and  the  values  of  the  simulation  parameters
are listed in Table 1.
  

Table 1    Simulation parameters (input SNR: SNRi)

Parameter Target 1 Target 2 Target 3

Delay bin 50.55 102.93 155.36

Doppler shift/Hz −106.23 −59.36 105.45

SNRi/dB −30 −25 −15
 

Fig.  4(a)−Fig.  4(c)  present  the  Doppler  shifts  estima-
tion  for  three  simulation  objectives  in Table  1 by  MSD,
MMV-AN,  optimized-MUSIC  (OP-MUSIC)  [29],
extended OMP (EOMP) [14], and RSC methods. One can
see that as the target input SNR increases, the estimation
results of these algorithms are closer to the true Doppler
position  of  the  target.  Compared  with  the  MSD method,
the  Doppler  estimation  accuracy  of  these  methods  is
improved,  which  proves  the  correctness  of  these  algo-
rithms. From Fig. 4(a)−Fig. 4(c), compared with the OP-
MUSIC and EOMP algorithm, the estimated values of the
MMV-AN and RSC are all  closer  to  the real  position of
the  target,  which  proves  the  performance  of  the  algo-
rithm in estimation accuracy.
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Fig. 4    High precision Doppler estimation of three targets in Table 1
using different methods
 

Fig.  5 gives  the  simulation  results  for  high  accuracy
estimation  of  delay  by  MSD,  MMV-AN,  OP-MUSIC,
EOMP,  and  RSC  methods.  Due  to  the  block  processing
of the signal,  the signal SNR loss, and the input SNR of
Target  1  is  as  low as  −30 dB,  which  results  in  incorrect
time  delay  estimation  by  the  OP-MUSIC  algorithm  in
Fig. 5(a). In Fig. 5(c), the value of delay estimation of the
OP-MUSIC algorithm is  close to  the true value of  delay
of Target  3.  These prove that  the estimation accuracy of
the  OP-MUSIC algorithm is  affected  by  the  SNR of  the
signal.  Compared  with  the  OP-MUSIC  algorithm,  the
EOMP  algorithm  still  has  better  estimation  results  in  a
low SNR environment. During the simulation, it is found
that  the  estimation  accuracy  of  the  EOMP  algorithm
increases with the increase of the grid density, but the tar-
gets  are  split  into  many scatterers  once the coherence of
the sensing matrix increases, which may get a false target
position.  From Fig.  5(a)−Fig.  5(c),  compared  with  the
AN,  OP-MUSIC,  and  EOMP  algorithms,  the  estimated
value of the RSC method is closest to the real position of
the  target,  and  the  amplitude  of  the  target  estimation  is
improved compared with the MSD method, which bene-
fits target detection.
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Fig. 5    High precision delay estimation of three targets in Table 1
using different methods
 

Table  2 lists  the  values  of  parameter  estimation  using
different methods. As can be seen from the Table 2, these
algorithms can make the high-precision estimation of the
time  delay  and  Doppler  of  the  target.  In  the  Doppler
dimension, the methods of MMV-AN and RSC have bet-
ter  estimation  accuracy  than  other  algorithms.  In  the
delay  dimension,  the  proposed  RSC  method  has  better
performance  despite  the  low  SNR  compared  to  other
algorithms.
 

Table 2    Parameter estimation of different methods

Parameter Method Target 1 Target 2 Target 3

Doppler shift/Hz

True value −106.23 −59.36 105.45

MSD −110 −60 110

MMV-AN −106.09 −59.53 105.43

OP-MUSIC −105.89 −58.63 105.41

EOMP −106.1 −59.5 105.4

RSC −106.07 −59.52 105.44

Delay bin

True value 50.55 102.93 155.36

MSD 51 103 155

MMV-AN 51.7 102.6 155.3

OP-MUSIC 368.4 101.7 155.4

EOMP 51.7 102.6 155.3

RSC 50.6 102.9 155.4

 

In  order  to  evaluate  the  performance  of  the  proposed
method  and  others,  the  off-grid  values  of  delay  and
Doppler  are  uniformly  distributed  within  [−0.5,0.5],  and
the input SNR varies from −35 dB to 0 dB with a step of
5 dB. For each SNR value, 2 000 Monte Carlo (MC) simu-
lations are performed with independently generated mea-
surements. The RMSEs of the delay-Doppler are utilized
to  evaluate  the  performance.  The  delay  RMSE  and
Doppler RMSE are defined as

delay_RMSEq
i =

√√
1

Mc

Mc∑
m=1

(
tq

i − t̂q
i,m

)2
, (31)

Doppler_RMSEq
i =

√√
1

Mc

Mc∑
m=1

(
f q

i − f̂ q
i,m

)2
, (32)

t̂q
i,m f̂ q

i,m

qth i mth tq
i

f q
i

qth i
q = 1 Mc = 2 000

where  and  denote  the  delay  and  Doppler  esti-
mates  of  the  target  at  scan  in  the  MC run; 
and  denote  the  true  values  of  the  delay  and  Doppler
estimates of the  target at scan . In this paper, we ran-
domly generate  a  target  so that .  repre-
sents the number of MC simulations.

The  RMSEs using  different  estimation  methods  under
different  SNR  conditions  are  shown  in Fig.  6. Fig.  6(a)
and Fig. 6(b) show the delay RMSE and Doppler RMSE
of  the  different  SNR conditions,  respectively.  As  shown
in Fig.  6(a),  the  performance  of  the  OP-MUSIC  algo-
rithm is easily affected by SNR. When the input SNR of
the signal is greater than −30 dB, the estimation accuracy
of  the  MMV-AN,  OP-MUSIC,  EOMP,  and  RSC  me-
thods is higher than that of the MSD method, which can
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be used for fine estimation. Because the estimation accu-
racy  of  the  signal  is  mainly  affected  by  SNR  and  grid
density,  when the grid is  sparse,  the estimation accuracy
is mainly affected by grid density. When the grid density
is  large  enough,  SNR  is  the  main  factor  of  accuracy.
Therefore,  the  estimation  accuracy  of  MSD  remains
almost  unchanged.  Compared  with  the  OP-MUSIC,
EOMP algorithms, the Doppler RMSEs of MMV-AN and
RSC methods are lower, and they are close to the Cramer-
Rao  bounds  (CRBs).  Compared  with  the  RSC  method,
when  SNR  <  −15  dB,  the  accuracy  of  MMV-AN  is
equivalent  to  that  of  RSC.  When  the  SNR  is  large
enough,  the  estimation  accuracy  of  MMV-AN is  higher,
and the accuracy of RSC tends to the grid density boun-
dary.  As  shown  in Fig.  6 (b),  compared  with  other  me-
thods, the RSC method has the highest accuracy and sta-
ble  robustness  in  delay  estimation.  The  delay  estimation
accuracy of MMV-AN and OP-MUSIC algorithms is eas-
ily  affected  by  signal  noise,  while  the  delay  RMSEs  of
EOMP,  MSD,  and  RSC  methods  remain  basically
unchanged.  Due  to  the  coherence  of  the  sensing  matrix,
the  estimation  accuracy  of  the  EOMP  algorithm  is  lim-
ited.  The  accuracy  of  MSD and RSC methods  is  mainly
related to the grid density, and the MSD is a special form
of RSC (i.e.,  no signal compensation, compensation step
L =  0).  By increasing  the  step  size,  the  estimation  accu-
racy of the RSC method is greatly improved. In addition,
in the simulations, the search accuracy of all algorithms is
set  to  0.1  delay  unit,  which  results  in  the  accuracy
of these algorithms being limited by the grid density and
not  close  to  the  CRB.  It  should  be  noted  that  increasing
the search accuracy of the algorithm can improve the esti-
mation  accuracy,  which  is  closer  to  CRB,  but  it  also
greatly  increases  the  computational  complexity  of  the
algorithm.
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Fig. 6    2 000 MC simulation results for each SNR
 

 4.2    Computational complexity

The computational complexities of the method for obtain-
ing  parameter  estimates  come  from  the  following  four
stages:  signals  conversion  from  the  time  domain  to  the
symbol domain, OFDM channel response estimation, tar-
get  Doppler  dimension  estimation,  and  target  delay
dimension  estimation.  The  first  two  stages  of  these  me-
thods are exactly the same, except for the third and fourth
stages.  Therefore,  only  the  complexity  analysis  of  para-
meter estimation is considered below.

O((NcNsym)3)

O(N f NτNcNsym)
N f Nτ

O(NcNsym(log2(Nsym)+ log2(Nc)))

O((Nsym+P)3)
O(PN f Nsym) O(N f Nsym)+O(PG f N f Nsym) O(PN2

sym)
O(2PN3

sym)+O(PN f (2Nsym(Nsym−K f )+Nsym)) O(2L f Nc

Nsym(1+ log2(Nsym)+0.5log2(Nc))) G f

K f

L f

The  computational  complexity  of  2D-AN  [21,30]  is
mainly reflected in two aspects:  one is  to  solve the SDP
via the ADMM, which requires ; the other is
to  jointly  estimate  the  delay  and  Doppler  parameters  of
targets  by  dual  solution,  which  requires ,
where  and  are  the  number  of  Doppler  and  delay
grids respectively.  In this  paper,  the computational  com-
plexity  of  the  coarse-fine  joint  estimation  method  is
mainly reflected in three aspects: the coarse estimation of
target  parameters  using  (8)  and  (9),  estimation  of  target
Doppler  parameters,  and  estimation  of  target  delay
parameters. Firstly, the coarse estimation of target parame-
ters  requires .  Then,  the
MMV-AN,  EOMP,  OP-MUSIC,  and  RSC  methods  are
used to estimate the Doppler parameters respectively, and
computational  complexity  as  follows: +

, , +
, and 

, where  is the num-
ber  of  iterations,  represents  the  number  of  frequency
sources，  and  is  equivalent  to  the sampling multiple
in  Doppler  domain.  Finally,  the  parameter  estimation  of
the  delay  dimension  with  MMV-AN,  EOMP,  OP-
MUSIC,  and  RSC  methods,  respectively.  It  is  not  diffi-
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cult to find that the complexity of the delay dimension of
MMV-AN,  EOMP,  OP-MUSIC,  and  RSC  methods  are
basically  the  same  as  the  complexity  expression  of  the
Doppler  dimension,  except  that  the  value  of  dimension
and grid is different. The computational complexity of the

O(LτNcNsymlog2(Nc)) O(2LτNcNsym·
(log2(NcNsym)+ log2(Nsym)))

L

RSC method requires  + 
, which is related to the value

of  and  coarse  estimation.  The  overall  computational
complexities of the different methods of solving the third
and fourth stages are concluded in Table 3.

 
 

Table 3    Comparison of the computational complexity of different methods

Parameters to be estimated Method Computational cost

Delay and Doppler
2D-AN O((NcNsym)3 +N f NτNcNsym)

MSD O(NcNsym(log2(Nsym)+ log2(Nc)))

Delay

RSC O(2LτNcNsym(log2(NcNsym)+ log2(Nsym)+0.5log2(Nc)))

MMV-AN O((Nc +P)3 +PNτNc)

EOMP O(NτNc +PGτNτNc)

OP-MUSIC O(PN2
c +2PN3

c +PNτ(2Nc(Nc −Kτ)+Nc))

Doppler

RSC O(2L f NcNsym(1+ log2(Nsym)+0.5log2(Nc)))

MMV-AN O((Nsym +P)3 +PN f Nsym)

EOMP O(N f Nsym +PG f N f Nsym)

OP-MUSIC O(PN2
sym +2PN3

sym +PN f (2Nsym(Nsym −K f )+Nsym))

 

Nc = 3 780
Nsym = 180

P = 1 G = 3 N f = 1.8×105 L f = 1 000
Lτ = 10

4.979 9×108

3.155 0×1017

Nτ = 4 200

An intuitive comparison for computational complexity
is  given  via  a  study  case.  Assume  that  and

 and  that  the  parameter  configuration  for  the
AN-RSC is , , , , and

. The computational complexity of the coarse-fine
joint  method  based  on  AN-RSC  is .  For
comparison, the computational complexity of the 2D-AN
algorithm is ,  and  its  parameter  configura-
tion .

3.833 0×107

1.164 3×1010

K f = 1

N f = 1.8×104

G f =Gτ = 3
1.296 0×107 1.964 2×1010

5.406 9×1010

6.350 4×107 1.740 3×1011 4.464 8×108

It  can be concluded that the complexity of the coarse-
fine joint estimation method is lower than that of 2D-AN.
In  the  Doppler  estimation  dimension,  the  complexity  of
MMV-AN  is .  The  complexity  of  OP-
MUSIC  is  with  its  parameter  configura-
tion .  Due to the coherence of the sensing matrix,
the  grid  size  of  the  EOMP algorithm is  limited,  and  the
parameter configuration for the EOMP is ,
and .  So,  the  complexity  of  EOMP  is

, and that of RSC is . It can be
seen that the complexity of RSC is the largest. Therefore,
compared  with  the  RSC  method,  the  MMV-AN  algo-
rithm  is  more  suitable  for  Doppler  estimation.  In  the
delay  estimation  dimension,  the  complexity  of  MMV-
AN,  EOMP,  OP-MUSIC  and  RSC  are ,

, , and . It can be
seen that the algorithm complexity of EOMP is the sma-
llest,  OP-MUSIC  is  the  largest,  and  RSC  is  close  to
EOMP.  Thus,  the  coarse-fine  joint  estimation  method
based on AN-RSC is attractive in computational load for
real-time implementation.

 5. Conclusions
In this paper, the delay and Doppler of targets in OFDM-
based  passive  radar  are  investigated.  In  order  to  reduce
the  complexity  of  joint  estimation  parameters,  we  have
proposed a coarse-fine joint estimation method, in which
the MMV-AN is used to perform sparse reconstruction of
Doppler dimension, and then, the RSC method is used to
perform sparse reconstruction of range dimension.  Com-
pared to previous OP-MUSIC and EOMP algorithms, we
can  achieve  high-precision  parameter  estimation  of  the
target scenario and do not suffer from the heavy computa-
tional  burden.  The effectiveness  of  the proposed method
is  verified  by  simulated  data.  In  future  work,  the  influ-
ence of adjacent targets on their parameter estimation will
be taken into consideration.  The high resolution of  adja-
cent targets using the OFDM-based passive radar system
is also an interesting topic.
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