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Sound event localization and detection based on deep learning
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Abstract: Acoustic source localization (ASL) and sound event
detection (SED) are two widely pursued independent research
fields. In recent years, in order to achieve a more complete spa-
tial and temporal representation of sound field, sound event
localization and detection (SELD) has become a very active
research topic. This paper presents a deep learning-based multi-
overlapping sound event localization and detection algorithm in
three-dimensional space. Log-Mel spectrum and generalized
cross-correlation spectrum are joined together in channel dimen-
sion as input features. These features are classified and
regressed in parallel after training by a neural network to obtain
sound recognition and localization results respectively. The
channel attention mechanism is also introduced in the network
to selectively enhance the features containing essential informa-
tion and suppress the useless features. Finally, a thourough
comparison confirms the efficiency and effectiveness of the pro-
posed SELD algorithm. Field experiments show that the pro-
posed algorithm is robust to reverberation and environment and
can achieve higher recognition and localization accuracy com-
pared with the baseline method.
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learning, convolutional recursive neural network (CRNN), chan-
nel attention mechanism.
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1. Introduction

Recognition of sound events category and occurrence
time in audio records is a relatively active research topic
which has a wide range of applications on many occa-
sions [1]. Although sound event detection (SED) can
reveal a lot about the recording environment, the spatial
information of events is just as important. Discovering
sound spatial information is what sound source localiza-
tion is aimed for. Sound source localization is a classical
signal processing task based on the propagation charac-
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teristics of sound and the signal relations between chan-
nels, without considering the types of sound representa-
tions. Sound event localization and detection (SELD) is a
comprehensive task, which is capable of achieving a
more complete spatial and temporal representation of the
acoustic scene by combining SED with acoustic source
localization. The spatial information makes SELD suit-
able for a wide range of machine listening tasks, such as
inference of environmental types [2], robot positioning,
navigation, tracking and mapping [3,4], and audio
surveillance [5].

Traditionally, acoustic source localization and SED are
two independent types of researches. Early research dealt
with these two problems without attempting to correlate
sound source location with the event type. SED tasks
often use different supervised classification methods to
predict sound class. Some methods contain hidden
Markov model (HMM), Gaussian mixture model (GMM)
[6], deep neural network (DNN) [7], recursive neural net-
work (RNN) [8—11], and convolutional neural network
(CNN) [12,13]. The latest research results are obtained
through continuous stacking of CNN and RNN layers,
which are jointly called convolutional recursive neural
network (CRNN) [14-—18]. Sound source localization
uses classical array processing methods such as time dif-
ference of arrival (TDOA) [5], steering response power
[19], and multiple signal classification (MUSIC) [20].
The classical array processing method performs poorly in
scenarios with strong reverberation and noise [21].

However, there are certain defects in independent
sound recognition and localization [22]. For instance, the
system correctly detects two sound events, yet the spatial
locations of the sound events are reversed. The use of
independent recognition metrics can evaluate whether the
system correctly predicts the presence of sound events
regardless of their location. Similarly, independent locali-
zation metrics would evaluate the spatial error between
the closest sound pairs regardless of the sound type.

An early attempt to combine these two tasks was pre-
sented in [23], where the beamforming output of a dis-
tributed array was used in combination with an HMM-



2 Journal of Systems Engineering and Electronics Vol. PP, No. 99, August 2023

GMM classifier. Over the past decade, DNNs have
become the most mature approach to SED, providing
ample modeling flexibility and surpassing traditional
machine learning approaches when training with suffi-
cient data [24]. Recently, DNNs have also been used for
source localization [25—27], with promising results.
Therefore, DNNs seem to be a good choice for joint mo-
deling of localization and detection in SELD tasks. The
first works we know of using this method are references
[28,29]. Hirvonen proposed to set joint modeling as a
multi-label-multi-class classification problem, which
maps two event classes into eight discrete angles on
azimuth [28] and uses CNN to infer the probability of
each sound class in each position. Then Hirvonen used a
predefined threshold to determine the existence and loca-
tion of the final sound event class [28]. This method is
called HIRnet. The angle resolution is subjected to the
predefined direction because it cannot detect angle val-
ues that are not seen in the training data. For larger data
sets, with more sound events and higher angular resolu-
tion, this approach can result in a lot of output nodes.
Training DNN with so many output nodes, where the
number of positive labels is much lower than the number
of negative class labels, can lead to the problem of dataset
imbalance. In addition, handling so many acoustic types
needs a large scale data set, where sufficient data is
needed for each class. Adavanne et al. proposed a SELD-
net network architecture [29] to solve the problem of joint
sound event localization and detection. There are two out-
put branches in the result, one performing SED and the
other performing localization. This approach solves the
problem of data association due to sound overlap in the
SELD task [24]. However, features used in this method
cannot sufficiently represent the sound and channel infor-
mation, thus the recognition and localization accuracy
still needs to be improved.

This paper proposes a sound recognition and localiza-
tion combination algorithm based on CRNN, and the net-
work structure is based on SELDnet. The proposed algo-
rithm is aimed at a circular array of omnidirectional
microphones. All the datasets used in this paper are gen-
erated by a circular array of omnidirectional micro-
phones. Different from [29], this paper uses the more
effective Log-Mel spectrum and generalized cross-corre-
lation (GCC) features in the field of SED and sound
source localization, which better represents the informa-
tion required by the SELD task. In addition, since the out-
put of the convolutional layer does not consider the rela-
tionship between each channel, this paper introduces the
channel attention mechanism to selectively enhance the
features with essential information and suppress useless
features, and finally achieves a result better than [29].
The rest of this paper is organized as follows. Section 2
describes the proposed method based on deep learning.

Experimental results and analysis are presented in Sec-
tion 3. Finally, conclusions are drawn in Section 4.

2. SELD algorithm

The input is a multi-channel audio signal. Then Log-Mel
and GCC spectra as features are extracted from the input.
The method takes a series of features in the continuous
Log-Mel and GCC spectra frames as input of the net-
work, predicts all the active sound event classes in each
input frame and their respective spatial location, and gene-
rates the time activity and arrival angle of each sound
event class. CRNN maps feature sequences to two out-
puts in parallel. The first output performs SED as a multi-
label classification task, allowing the network to estimate
the simultaneous presence of multiple sound event classes
in each frame. The second output takes direction of
arrival (DOA) estimation in a continuous three-dimen-
sional (3D) space as a multi-output regression task, where
each sound event class is associated with three regression
variables. These variables make up the DOA’s 3D coordi-
nates on the unit ball. For each acoustic type in the data
set, the SED output range belong to 0 to 1, and the thresh-
old value £ is set. If the SED output is greater than £, this
sound event class is considered to exist, and vice versa.
The corresponding acoustic source localization (ASL)
outputs for those present acoustic types provide their
space position. Feature extraction and the method pro-
posed in this paper are described as follows.

2.1 Feature extraction

The features used in the SELDnet cannot enough repre-
sent the sound and channel information. Therefore, more
effective Log-Mel spectrum and GCC phase transfrom
(GCC-PHAT) features in the field of SED and sound
source localization are used, which better represents the
information required by the SELD task.

2.2 Network architecture

The Log-Mel and GCC-PHAT spectra are stacked in the
channel dimension as input features. Note that the num-
ber of signal channels is M, the frame number is N, and
the number of Mel filters is L, then the input feature

dimension is
M
NxLx Z i
i=1

Input the features into the neural network as
shown in Fig. 1. Each CNN layer contains P filters of
3x3 dimensional receptive fields, which are activated by
rectified linear unit (ReLU). After the completion of each
layer of CNN, batch normalization [30] is used to nor-
malize the activation output, and then channel attention
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module is added to improve the network performance
[31]. Finally, maximum pooling is used to reduce the
dimension along the frequency dimension while keep-
ing the time dimension N unchanged. After passing
through three layers of CNN, the feature size becomes

NX2XP.
Feature
extraction

Ist
CNN layer
2nd
CNN layer
3rd
CNN layer
( Bidirectional GRU ]
FC FC
Sigmoid, N Tanh, 3N
\ 4 \ 4
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Fig.1 Algorithm flow chart

Input features

Feature

Multi-channel extraction
signal

The output is reshaped as Nx2P features of the CNN
layer is fed to the bi-directional RNN layer for learning
time information. The RNN layer uses gated recurrent
unit (GRU) with O nodes, and Tanh is used in this layer.
Next, two parallel full connected (FC) layers are con-
nected for SED and DOA estimation, respectively. The
FC layer used for SED has H nodes, and the activation
function is Sigmoid. The FC layer used for DOA estima-
tion has 3H nodes, which are activated by Tanh, corre-
sponding to x, y, and z values of H sound event classes,
and the value range of [—1,1].

2.3 Channel attention mechanism

The attention mechanism was first proposed and
used in natural language processing and machine transla-
tion to align text, and achieved good results. In the field
of computer vision, scholars have explored how to use
attention mechanism to improve network performance in
CNNE.

The output of the convolutional layer does not con-
sider the relationship between each channel, while the
channel attention mechanism is to model the correlation
of each channel. Therefore, we can selectively enhance
the features with essential information and suppress use-
less features by using the channel attention mechanism
[31]. The principle of the channel attention mechanism is
shown in Fig. 2.
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Fig. 2 Schematic diagram of the channel attention mechanism

First, we investigate the features of each channel,
squeeze the global spatial information into the channel
descriptor, and use global average pooling to generate the
statistics of each channel.

H
HxW Z

i=1

Ms

ze=Fyu)= ue (i, J) (1

1

~.
]

where H, W, and C denote the 3D of feature U, z. denotes
the global average pooling result in channel ¢, and u,
denotes the plane of feature U on channel c.

Second, investigate the degree of dependence of each
channel. This is achieved through a threshold mechanism
with a sigmoid activation function. In order to limit the
complexity of the model and enhance the generalization

ability, two FC layers in the form of bottleneck layer are
used in the threshold mechanism. The first FC layer
reduces its dimension to 1/R, where R is the hyperpara-
meter, and the second FC layer increases it to R. The final
sigmoid function is the weight of each channel. Adjust-
ing the weight of each channel feature according to the
input data helps to enhance the distinguishability of fea-
tures.

§s=Fy@ZW)=0(@giW)=cW,6(W2)) (2)

where s is the degree of dependence, W, and W, are two
FC layers, and o is the Sigmoid activation function.

Multiply the weight of each channel with the original
features to get the features needed.
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jc = Fscale (uw sc') =8¢ Ue (3)
where X, is the feature after processing.
2.4 Model training

In the part of the SED, the target value is 1 if there is a
sound event class in the frame, and 0 otherwise. Since
there may be multiple overlapping sound events, we use
binary cross-entropy loss to predict losses. In the DOA
estimation, if the corresponding event is non-existent, the
values are set as: x =0,y =0,z=0. We use mean square
error (MSE) to estimate the losses. Adavanne et al. [29]
proposed that it is theoretically more beneficial to use
Cartesian coordinates instead of azimuth and elevation
regressions when predicting omnidirectional or full-ele-
vation DOA. This is because the angle is discontinuous at
the border. The flaw makes network learning even worse.
Therefore, Cartesian coordinates are used to replace
azimuth angle and elevation angle for regression. We
train the model with a dropout rate of 0.3 and a dynamic
learning rate using the Adam optimizer for 250 epochs
with MSE and binary cross-entropy loss. The learning
rate drops to 80% of its original value every 30 epochs
with an initial value of 0.003. In order to extract input
features, the sampling rate of short time Fourier trans-
form (STFT) is set at 44.1 kHz. A 1024-point Hanning
window is used, with a sliding size of 512 points. In the
dataset used, the maximum microphone distance is 10 cm.
The number of Mel filters and the GCC-PHAT delay are
set to 96. For eight channels of sound signals, 36 chan-
nels of input features are transmitted to the neural net-
work. This network is implemented by TensorFlow [32].

2.5 Dataset

The dataset consists of static point sources, each of which
is associated with a spatial coordinate. And it is gener-
ated from a circular array of omnidirectional micro-
phones. All datasets contain three sub-datasets, at most
one (OV1), two (OV2), and three (OV3) overlapping
sound events. Each sub-dataset has three cross-validation
splits (Splitl, Split2, and Split3). Refer to [29] for details.

(1) Circular Array, Anechoic and Synthetic Impulse
Response (CANSYN) dataset: a circular array with a
radius of 5 cm in which eight microphones are evenly
located.

(i) Circular Array, Reverberation and Synthetic
impulse Response (CRESYN) dataset: it is similar to
CANSYN dataset, and the only difference is the addition
of reverberation.

2.6 Evaluation metrics

For SED, we use the standard polyphonic SED metrics,
error rate (ER) and F-score calculated without overlap
within the one-second segment [33]. Mathematically, the

F-score is calculated as follows:

2ZH: TP (h)
h=1

ZZH:TP(h)+ ZH:FP(h) + iFN(h)
h=1 h=1 h=1

where TP(h) denotes the total number of sound event
classes that are existing in both the label and the predic-
tion in the Ath 1-second segment. FP (k) denotes the total
number of sound event classes that are existing in the pre-
diction but not in the label. FN (k) denotes the number of
acoustic types which are not existing in the prediction but
in the label. ER score is calculated as follows:

ZH:S(h)+ZH:D(h)+ZH:I(h)
R= h=1 h=1 h=1 ,
ZN(h)
h=1

where for the Ath 1-second fragment, N (k) denotes the
number of existing acoustic events in the label,

S (h) = min(FN (h),FP (h))
D (h) = max (0,FN (h) —FP(h)) 6)
I(h) = max (0,FP (h) — FN (h))

F “)

E Q)

where S(%) is the number of times an event detected but
given the wrong level. The remaining false positives and
false negatives, if any, are counted as insertions /(%) and
deletions D(h) respectively.

The ideal value of F-score is 1 and the ER score is 0.

For the DOA estimation (xg,yg,zz) of the label
(x6,Y6,26), the center angle and frame recall rate are used
to evaluate as follows:

TP

i = ————

rame recall = 0, @)
VAX2+Ay? +AZ2) 180

a'=2arcsin(#]><?, ®)

where true positive TP denotes the total frame number of
predicted DOA equal to the reference DOA, false nega-
tive FN denotes the total frame number of predicted DOA
not equal to the reference DOA, and Ax = x;—xg,
Ay =y —yg, Az =z —zz. DOA error is calculated as fol-
lows:

1 K
DOA error = - Do ©9)
k=1

where K is the number estimated by DOA.
3. Experiments
3.1 Baseline

(i) SELDnet
Spectrogram and phase spectrogram are introduced



ZHAO Dada et al.: Sound event localization and detection based on deep learning 5

into the CRNN network as input features and mapped to
two branches. One branch produces the time activity of
all the acoustic types on each time frame. The other
branch is positioned by DOAE.
(ii) HIRnet
The logarithmic spectral powers are fed into CNN and
maps it to each of the two classes (voice and music) as an
all-around eight angles for a multi-label classification
task. In order to compare with the algorithm proposed in
this paper, the azimuth resolution of the proposed algo-
rithm is improved to 10°.
(iii) MUSIC
MUSIC is a high-resolution DOA estimator. Specifi-
cally, it is very generic in terms of array geometry, direc-
tional characteristics. It is based on matrix eigenspace
decomposition. From the geometric point of view, the
observation space of signal processing can be decom-
posed into signal subspace and noise subspace, which are
obviously orthogonal.
(iv) Two-Stage method
The two-stage method [34] deals with sound event
detection and localization in two stages: the SED stage
1.00
0 0.01 0.75
0.50
1 0.03 0.25
0

0 1
(a) CANSYN OV1

0 1 2 3

0 1 2 3 4
(e) CANSYN OV3

Fig.3 Confusion matrixes of the proposed algorithm on two datasets

and the DOAE stage, corresponding to the SED branch
and the DOAE branch in the model, respectively. During
training, the SED branch is trained first only for SED,
after which the learned feature layers are transferred to
the DOAE branch. The DOAE branch fine-tunes the
transferred feature layers and uses the SED ground truth
as a mask to learn only DOAE.

3.2 Experimental results

Fig. 3 shows the confusion matrix of the proposed algo-
rithm for the estimation of the number of sound event
classes per frame. As shown in Fig. 3(e), frames with
three sound sources in the label are estimated by the net-
work as three sound sources in 44% (true positives). The
frame recall rate is a value representing these confusion
matrixes. In Fig. 3, the true positives percentage de-
creases with the increase in the number of sources, and
the decrease is more significant in the case of reverbera-
tion. However, compared to the baseline frame recall rate
metrics in Table 1, the algorithm presented in this paper
performs better for a higher number of overlapping sound
events, especially under reverberation conditions.
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Table 1 Comparation of the proposed algorithm with baseline

CANSYN CRESYN
Algorithm Evaluation metrics

oVl ov2 ov3 oVl oVv2 OV3
ER 0.11 0.18 0.19 0.13 0.22 0.30
F score 93.0 86.6 85.3 90.4 82.2 78.0

SELDnet
DOA error 29.5 31.3 343 28.4 33.7 41.0
Frame recall 97.9 78.8 67.0 96.4 75.7 60.7
ER 041 0.45 0.62 0.43 0.46 0.50
F score 60.0 54.9 58.8 59.3 60.2 58.6

HIRnet

DOA error 5.2 16.3 33.0 7.4 18.6 433
Frame recall 60.2 35.9 18.4 56.9 20.5 10.7
MUSIC DOA error 26.4 28.9 31.1 38.6 49.5 61.9
ER 0.07 0.17 0.20 0.12 0.21 0.28
F score 95.9 91.0 84.7 92.4 84.2 81.0

Two-stage
DOA error 27.6 31.3 36.2 27.0 335 39.8
Frame recall 98.0 82.1 65.0 96.3 78.1 62.7
ER 0.08 0.16 0.18 0.12 0.18 0.23
F score 95.8 91.0 89.5 93.7 89.5 86.2

The proposed algorithm

DOA error 28.5 31.0 32.6 27.2 324 38.4
Frame recall 97.8 85.5 72.1 96.6 82.4 68.5

A comparison of the algorithms on the two datasets is
listed in Table 1. For the SED metrics, the proposed algo-
rithm almost outperforms all the baselines on the datasets
used, and is just slightly lower than the two-stage algo-
rithm on CANSYN OV 1, which shows an acceptable per-
formance of our algorithm to polyphonic events and
reverberation. In terms of DOA metrics, the frame recall
rate of the proposed algorithm is the highest on OV2 and
OV3, and slightly lower than that of SELDnet and two-
stage algorithm on CANSYN OVI1. On the dataset of
CANSYN, the DOA errors of the MUSIC algorithm are
the lowest except HIRnet because of the knowing num-
ber of acoustic sources and the environment without
reverberation. The DOA error of the proposed algorithm
is the best on OV3. The DOA error of others on OV1 and
OV2 is higher than HIRnet because it only evaluates the
azimuth angle, while the rest of the algorithms evaluate
the azimuth and elevation angle. Moreover, the regres-
sion method used for both the proposed algorithm and
SELDnet localization may not fully learn the complete
mapping between input features and continuous DOA
space. However, the proposed algorithm shows better
performance than SELDnet in localization and recogni-
tion. In general, the proposed algorithm achieves good
results in recognition and localization, and it is robust to
reverberation and polyphonic events.

4. Conclusions

This paper proposes a CRNN based multi-overlapping

SELD algorithm in 3D space. Log-Mel spectrum and
GCC spectrum are used as features to feed to the neural
network, and a channel attention module is added to
enhance the network performance. Compared with the
other three SELD algorithms and the MUSIC algorithm
on both datasets, the proposed algorithm achieves better
performance in localization and recognition than those
algorithms in the vast majority of aspects. Experiments
show that the proposed algorithm is robust to reverbera-
tion and polyphonic events.
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