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Unconditionally stable Crank-Nicolson algorithm with
enhanced absorption for rotationally symmetric multi-scale
problems in anisotropic magnetized plasma
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Abstract: Large calculation error can be formed by directly
employing the conventional Yee'’s grid to curve surfaces. In
order to alleviate such condition, unconditionally stable Crank-
Nicolson Douglas-Gunn (CNDG) algorithm with is proposed for
rotationally symmetric multi-scale problems in anisotropic mag-
netized plasma. Within the CNDG algorithm, an alternative
scheme for the simulation of anisotropic plasma is proposed in
body-of-revolution domains. Convolutional perfectly matched
layer (CPML) formulation is proposed to efficiently solve the
open region problems. Numerical example is carried out for the
illustration of effectiveness including the efficiency, resources,
and absorption. Through the results, it can be concluded that
the proposed scheme shows considerable performance during
the simulation.
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1. Introduction

Finite-difference time-domain (FDTD) algorithm can be
regarded as one of the most important methods in solv-
ing the Maxwell’s equations [1]. During the development
of FDTD algorithm, several problems should be further
investigated including multi-scale problems, conformal
techniques, and open region problems [2—4].

By applying the conventional FDTD algorithm to the
curve surfaces, large calculation error will be formed due
to the introduction of mesh conformal technique [5]. In
order to alleviate such condition, body-of-revolution
FDTD (BOR-)FDTD algorithm is proposed for the simu-
lation of rotationally symmetric structures [6]. According

Manuscript received December 02, 2022.
*Corresponding author.

to the BOR-FDTD algorithm, three-dimensional prob-
lems can be converted to two-dimensional problems
resulting in the improvement of efficiency and resources
[7,8]. However, the original BOR-FDTD algorithm is still
a time-explicit algorithm whose stability is severely lim-
ited by the Courant-Friedrichs-Levy (CFL) condition [9].
This means that the established relationship is formed
between the time step and mesh size. By applying such
scheme directly to multi-scale problems, mesh size is
selected according to the fine details resulting in
extremely large domain and long time duration. To allevi-
ate such condition, unconditionally stable algorithms are
proposed to overcome the stability condition and improve
the efficiency which include the alternating direction
implicit (ADI), locally one-dimensional (LOD) and split-
step (SS) schemes [10—12]. It can be concluded that all of
these schemes are based on the sub-step procedure which
results in the decrement in efficiency and accuracy. In
order to alleviate such condition, Crank-Nicolson (CN)
algorithm is introduced which can solve the Maxwell’
equations within a single calculation procedure. The origi-
nal CN scheme is merely efficient in one-dimensions
[13]. By applying the original scheme to multi-dimen-
sional problems, large sparse matrix must be calculated at
each time step resulting in increment in calculation com-
plexity. To alleviate such condition, approximate manipu-
lation and Douglas-Gunn (DG) scheme are applied into
the CN discretized form which can be denoted as the CN
approximate decoupling (AD) and CNDG algorithms
[14,15]. It has been testified that the CNDG algorithm
shows considerable accuracy and efficiency compared
with the CNAD algorithm [16,17].

In open region problems, absorbing boundary condi-
tion must be introduced to terminate the unbounded lat-
tice [9]. The perfectly matched layer (PML) is regarded



2 Journal of Systems Engineering and Electronics Vol. PP, No. 99, July 2023

as the most powerful and prevalent absorbing boundary
condition [18]. As the original split-field scheme
decreases the absorption and efficiency, unsplit-field
scheme including the stretched coordinate (SC) and com-
plex-frequency-shifted (CFS) formulation are carried out
to alleviate such condition [19,20]. The SC-PML and
CFS-PML schemes show advantages in terms of low-fre-
quency evanescent waves and late-time reflections [21].
In order to further improve the performance and decrease
the computation complexity, convolutional PML (CPML)
scheme was introduced [22]. Due to the medium indepen-
dent characteristic and considerable absorption, CPML
can be regarded as one of the most powerful and preva-
lent absorbing boundary conditions which has been
extensively employed in commercial software [23,24]. So
far, the investigation on CPML implementation has
become a frontier science in the field of computational
electromagnetics. Meanwhile, it has been extensively
employed in massive problems, such as, ground penetrat-
ing radar (GPR) problem, microwave components, and so
on [25-30].

The application of PML formulation is severely limi-
ted by the medium dependent characteristic. By applying
the uniform formulation to complex medium, unmatched
impedance at the boundaries results in the non-absorp-
tion of outgoing waves. Among massive complex
medium, magnetized plasma which holds the unique
anisotropic characteristic can be regarded as one of the
most important ones [31]. With the external magnetic
bias, medium behaves anisotropic characteristics [32]. It
shows vital importance especially in microwave compo-
nents, re-entry flight and so on [33—37]. The simulation
of magnetized plasma according to the FDTD algorithm
can be regarded as one of the most important methods
[36]. Until now, several methods have been developed to
analyze the magnetized plasma in FDTD domains includ-
ing the auxiliary differential equation method, recursive
convolution methods and so on [38—42]. The analyzation
method for rotationally symmetric structures still should
be developed in BOR-FDTD scheme.

So far, it can be concluded that the simulation of rota-
tionally symmetric structures in anisotropic magnetized
plasma faces several challenges. (i) Although CN scheme
have been employed in BOR-FDTD scheme to overcome
the stability condition, existed algorithms cannot be
directly employed into such multi-scale problem. Such
condition results in the algorithm no longer valid. (ii) The
simulation of anisotropic magnetized plasma in BOR-
FDTD lattice still should be further investigated due to
the existence of singularity point. (iii) An adequate
absorbing boundary condition should be employed for the

termination of anisotropic magnetized plasma. By apply-
ing existing algorithm directly, impedance unmatching
results in the non-absorption of outgoing waves leading
to the inaccurate solution. (iv) In the commercial CST
software, the analyzation of magnetized plasma can
merely be implemented through the frequency solver
based on the finite element method. The absorbing
boundary condition of the magnetized plasma is also limi-
ted by the conventional algorithm which results in unac-
ceptable performance. (v) In the commercial High Fre-
quency Structure Simulator (HFSS) software, the fre-
quency based solver can merely accurately reflect the
performance at the individual frequency point or
extremely narrow frequency band.

Here, unconditionally stable CNDG algorithm is pro-
posed in the BOR-FDTD lattice for the simulation of
rotationally symmetric structures. For the unconditio-
nally stable algorithm, an alternative method is proposed
for magnetized plasma simulation in BOR-FDTD lattice
with unique anisotropic characteristic. In open region
problems, higher order CPML formulation is proposed
which is based on the CNDG algorithm and terminates
the magnetized plasma. A numerical example is carried
out to illustrate the effectiveness and efficient. The results
indicate that the proposed algorithm shows considerable
efficiency and absorption. Meanwhile, it can overcome
the CFL condition which shows significantly advantages
in multi-scale problems.

2. Formulation

Inside the higher order CPML regions, two-dimensional
TE, wave in the Maxwell’s equations for BOR-FDTD
algorithm can be given in the following expressions:

JWE, +jwJ, =-S_'0.H,, (1)
. . -1 H¢
JWE +jwJ, =S.0,H;+ = 2)
—jwH,=S_'0.E,—S'd,E., 3)

where E and H represent the electric and magnetic field
components; J is the electric current density; r, ¢, and z
are the directions in BOR-FDTD domain; 7 represents the
singularity point;S, represents the stretched coordinate
variables inside the CFS-PML regions which can be
given as
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- “)

S)] = Kr] +
CU,] +_](A)80

where «, is assumed to be positive real, o, and «, are
assumed to be real. In (2), the operator 7 represents the
complex spatial coordinate stretching variables in the
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BOR-FDTD domains which can be written as
F=r+ [ 8,0dr 5)

where r, is the distance between the computational
boundary and PML regions along r-direction. Equations
(1)=(3) can be reorganized by employing the inverse
Fourier transform (IFT) in the time domain as

O.E, +8,J,=-§_x0.H,, (6)
OE.+0,J.=8, %0,H,+H,[F, 7
-0,H;, =8 _*0,E,—8,%0,E,, 8)

where the operator * represents the convolution manipu-

lation. §, is the stretched coordinate variables inside
CPML regions which can be given as

(1)

nn

S, = +a,, () )

where 0(7) represents the impulse function. The coeffi-
cients a, (¢) can be written as

@y () = Byue™ " u (1) (10)

where B, = -0, / (Kfmso), Yon = U/ €0+ O/ (Kpu&Eo). The
operator u(t) represents the unit step function. By substi-
tuting (9) into (6)—(8) and employing the CN discretized
form, they can be reorganized in the FDTD domain as
E:Hl :E’rl - plez‘p’elnt - pZezéz (H;+1 + H;) -
P}ez-]:'+1 + Psecd), (1m

E;H-l :pler(pzzqﬁ _p26r6r (H;+1 +H;)_
p3er‘lg+l +p3erJ;’ (12)

1
H™ = Hy + PunPrg. = Pin:Poge+

o0, (EX" +EL) = pud(ES +E),  (13)

. . At

where the coefficients can be given as p;,=—,
€o

.Y LY d At LY
Pren = FOKF]’ P3en = 2_80 and Py, = ,U_o’ Poam = T()Kn o)
and u, represent the relative permittivity and permeabi-
lity coefficients. It can be observed from (11)—(13) that
two critical problems still should be addressed which
include the solution of coupled field components and

polarization current density at the time step n+1.
2.1 Calculation of anisotropic magnetized plasma

As can be observed from (11) and (12) that the conduc-
ing current components are coupled resulting in the invali-

dation of algorithm [42]. In order to alleviate such condi-
tion, an alternative algorithm for the calculation of
anisotropic magnetized plasma should be investigated.
Inside the magnetized plasma regions, electric current
density can be given as

jwd, +vJ, = aowiE,—th(b, (14)

jG)J¢+VJ¢) =£0wiE¢+war9 (15)

where the coefficients w,, w, , and v represent the elec-
tron gyro-frequency, plasma frequency, and electron col-
lision frequency of the magnetized plasma, respectively.
Through employing (14) and (15), it can be observed that
the field components are coupled. By introducing the
auxiliary differential equation method, (14) and (15) can
be discretized as

2
80(4)17

v v
Jn+1 + _Jn+1 :J”-{— _Jn + En+| +En _
r 2 r r 2 r 2 ( r r)
Wy n+1 n
S (7). (16)
n+1 |4 n+1 n 4 n 80(1)12) n+1 n
L A R (B +E})+
Wy n+1 n
7(J, +J7). (17)

In order to decouple the equations, (16) is substituted
into (17) and (17) is substituted into (16). One obtains

S = pJl = oy + psEN +
P3E} = pE}T — piE;, (18)

JZH =ply—pJ; +P3EZ+1+
p:E; +pEl + pyE, (19)
where the coefficients can be given as

pi = [1-(vA1/2)’ — (w,At/2)*]/ ps,
D2 = w,At/ps,

ps = [eoAtwy (1 +vAL/2)]/(2ps),
P4 = (gOAtza)]z)a)b)/(4p5),

ps = (1+vAt/2) + (w,At/2).

As can be observed from (18) and (19) that the compo-
nents J, and J; are coupled components which must be
calculated simultaneously during the whole calculation
procedure. By substituting these components into the dis-
cretized equations (11) and (12), one obtains
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E:Hl = E:l _plezgogquﬁ _pZezéz (H;H + H;) _p3ezpl‘l:l+
pSeszJ; _p3e2p3E:l+l _pSeszE;l+
p3ezp4E;+1 +P3ezP4E; +p3ez‘]:'a (20)

E?H = E? _Pler‘PZw _pZer(Sr (H;H +H;> _P3erp|JZ+
p3erp2-]:l - p3erp3E;+l - p}erp3Ez_
p3erp4E:Hl _p3erp4Ef+p3erJ;’~ (21)

It can be observed that the electric field components
are also coupled. Although it can be solved according to
the original CN scheme, large sparse matrices must be
solved at each time step resulting in the calculation much
more expensive. Such circumstance leads to the unpracti-
cal simulation in large number of problems. In order to
alleviate such condition, an alternative method should be
investigated to decouple the coupled field components.

2.2 CNDG algorithm for magnetized plasma
calculation in BOR-FDTD simulation

To calculate coupled field components, CNDG algorithm
is proposed to update the entire calculation procedure.
According to the CNDG algorithm, electric field compo-
nents are substituted into the magnetic field components,
given as
Hz+l _pZer‘thr(srérHZ+l _pZEszhz6161H2+l =
H; + pZerthrérérH:; + p292p2h16161H;+

PuirPag, = P10cPogr = PrerParOr P pt

pleszhzézsoﬁmj - p3erp1p2hr6r];+

p3erp2p2hr5r‘]:~l - 2p3erp3p2hr6rE;_

2D3er PaDoneOr B} + Doy PoneO,J, +

P3e:P1P2c0: 0} = Prepr P60 S5+

2p3€zp3p2/1161E;l - 2p361p4p2hz62E:;_

D3ezPon:0. 07 + 2P0, 60, EY — 2P0 E. (22)

Introducing Ds, = paoyPoay0,0, term as an auxiliary
term to rewrite the equations, one obtains

(1=Dy = Do) Hi™' = (14 Dy, + Do) HL+ A" (23)

where A" represents the other field components at the
time step #n in (22). According to the DG scheme, (23)
can be given as

(1-Dy)H; = (1+ Dy +2D0) Hi+ A", (24)

(1-D,)H"' = H,— D,.H3, (25)

where Hj is the mid-field components for updating the
equations. It can be observed that the magnetic compo-

nents can be updated according to (24) and (25) impli-
citly. Once the magnetic components are solved, the other
components can be calculated explicitly. Inside the PML
regions, the auxiliary variables can be given as, for exam-
ple,

Perg = buPlse + W0, (H;H + HZ) (26)
where the coefficients can be given as

o\ At
b, = —exp(a,7+ k—:)a—o,

o= o, (b, —1)
T Kﬂ(o-W+Kf7af7).

However, it can be observed that the value of » can be
chosen as zero in the BOR-FDTD domain. According to
(2), the proposed algorithm will become no longer stable
in such circumstance due to the denominator infinity. In
order to alleviate such condition, an alternative method
for the singularity calculation should be investigated
which can be given with the space mesh size discretized
form as

EM(0,k+1/2) = E2N0,k+1/2) = progl,(0.k+1/2)-

At 4
~—Hy(1/2,k+1/2) = p3.,p1 S50,k +1/2)+
K& Ar

PaerD2d} 0,k +1/2) = pae, ps EGT 0,k +1/2)—
PaerPsEG(0.k+1/2) = pse, o 7710,k +1/2)—
p3erp4E:l(07k+ 1/2) + p3er~];(09k+ 1/2)

@7

Through employing (27) during the singularity calcula-
tion, the entire algorithm can be implemented. As com-
pared with the BOR-FDTD which is based on the CFS-
PML scheme, the proposed algorithm shows less auxi-
liary variables, coefficients, and manipulators which indi-
cates improvement in terms of efficiency and memory
consumption.

3. Numerical results and discussion

Coaxial waveguide model with anisotropic magnetized
plasma, dielectric bulk, and metal is proposed to demon-
strate the effectiveness of the algorithm numerically. A
sketch of the waveguide is shown in Fig. 1.

: Dielectric.

: Metal; Bl : Plasma;

Fig. 1 Sketch of the coaxial waveguide model
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As can be observed that the coaxial waveguide model
is composed of metal, anisotropic magnetized plasma,
dielectric bulk and metal from the inner to outer. The
entire structure holds the radius and length of 4.1 mm and
50 mm. According to the BOR-FDTD algorithm, the
entire three-dimensional computational domain can be
converted to two-dimensions. Fig. 2 shows the sketch
picture of the entire computational domain. The entire
computational domain holds dimensions of 4.1 mmx
50 mm in r- and z-directions, respectively. Four layers
including the metal, anisotropic magnetized plasma,
dielectric, and metal locate along positive side along posi-
tive r-direction with the thickness of 2 mm, 1 mm, 1 mm,
and 0.1 mm. In the calculation, the metal and dielectric
materials can be expressed by the perfectly electronic
conductor (PEC) and parameter of &, = 4.3, respectively.
The anisotropic magnetized plasma holds the parameters
of w,=287nx10° rad/s, w,=10" rads and v=20x
10° Hz.

ZA
P Rotate direction

— 4.1

Port 1

25

PEC

S|
~

25
Port 2
Tlncidenc o

2 3 4
PML/mm

Fig. 2 Sketch picture of the coaxial waveguide model computa-
tional domain in BOR-FDTD lattice

The Port 1 and Port 2 are located at the top and bottom
surface, respectively. The source radiates at the bottom
from Port 2 to Port 1. The source is a Gaussian pulse with
the maximum frequency of 30 GHz. The outer boun-
daries are terminated by PEC. The top and bottom are ter-
minated by the 10-cell-PML regions. The observation
point is located at the top right corner with the distance of
one cell from both sides of the PML regions. The parame-
ters inside PML regions are chosen to obtain the best
absorption both in time domain and frequency domain. In
order to compare the absorption inside different PML
regions, CPML formulation based on the conventional
FDTD algorithm which can be denoted as FDTD-PML in
[43], CFS-PML scheme based on the CNAD scheme

which can be denoted as CNAD-PML in [44] are chosen
as examples for demonstration. The proposed algorithm
is denoted as CNDS-PML for simplify the demonstration.
It can be observed that the existences of extremely thin
layer and huge difference between the width and length
belong the multi-scale problem. According to the conven-
tional FDTD scheme, uniform mesh selection and CFL
stability condition limit the effectiveness of the algo-
rithm.

In the unconditionally stable algorithm, mesh size
selection can be chosen according to the calculation accu-
racy rather than the CFL condition. Thus, the mesh size
can be chosen as Ar =0.1 mm and Az = 1 mm. Thus, the
entire computational domain can be discretized into
41Arx50Az. The maximum time step of the conven-
tional FDTD algorithm can be chosen as Aff°™° = (.22 ps.

max

The CFL number can be defined as CFLN =Az/AfP™P
where At is the time step in the unconditionally stable
algorithm. The accuracy of the calculation can be
reflected by the time domain waveform obtained by dif-

ferent PML algorithms and CFLNs, shown as Fig. 3.

1.0
0.5}
&
= 0
E
S 05
&
=
-1.0+
_15 I I I I
0 0.2 0.4 0.6 0.8 1.0
Time/ms
—— :FDTD-PML; - - - : CNAD-PML, CFLN=1;
.. : CNDG-PML, CFLN=1; —+- : CNAD-PML, CFLN=§;
-%-- : CNDG-PML, CFLN=8.
Fig. 3 Time domain waveform obtained by different PML algo-

rithms and CFLNs at the observation point

As can be observed from Fig. 3 that the curves
obtained by unconditionally stable algorithms are over-
lapped with the curves obtained by FDTD-PML. Such
condition indicates that these algorithms hold the similar
calculation accuracy with CFLN=1. With the enlarge-
ment of CFLNs, the waveforms show shifting compared
with that obtained by CFLN=1. Such condition indicates
that the accuracy decreases with the increment of CFLNs
due to the enlargement of numerical dispersion. Com-
pared with the CNAD algorithm, the proposed CNDG
algorithm shows less shifting during the entire time
domain simulation. Such circumstance indicates the pro-
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posed CNDG algorithm behaviors considerable calcula-
tion accuracy.

The absorption inside PML regions can be evaluated
by the relative reflection error in the time domain which
can be given as

HOES (t)|} 08)

R =20lg| —————+

where E'(¢) is the test solution which can be directly
obtained from the observation point. E’(#) is the refe-
rence solution which can be obtained by the enlarged
computational domain with 20 times and 128-cell-PML
regions with non-changed relative distance between the
source and observation point. During the calculation of
reference solution, the reflection wave at the observation
point can be ignored due to the existence of thick PML
regions and enlarged domains. Fig. 4 shows the relative
reflection error obtained by different PML algorithms and
CFLNs.

—60

—80 |
~100 |
~120

—140

Relative reflection error/dB

—-160

-180 : : : : :
0 0.6 1.2 1.8 2.4 3.0 3.6
Time/ns
—— :FDTD-PML; - - - : CNAD-PML, CFLN=1;

: CNDG-PML, CFLN=1; —+-
-- : CNDG-PML, CFLN=8.

: CNAD-PML, CFLN=8;

Fig. 4 Relative reflection error obtained by different PML algo-
rithms and CFLNs

It can be observed that the conventional FDTD algo-
rithm based CFS-PML holds the best absorption. Such
condition also indicates that the conventional scheme
holds the best accuracy among these schemes. Compared
with CNAD-PML scheme, the proposed CNDG scheme
holds the better absorption. The reason is that CNDG
algorithm has the better calculation accuracy compared
with the CNAD scheme due to the non-approximation
manipulation. With the enlargement of CFLNs, absorp-
tion becomes worse due to the increment of numerical
dispersion and calculation error. Meanwhile, it can also
observe that the proposed CNDG algorithm behaves bet-
ter absorption compared with the existed implicit CNAD-
PML algorithm. Although the performance degenerates to
—70 dB, it can still be employed in practical engineering

(below —40 dB as a standard) [45]. The effectiveness can
also be evaluated by the simulation duration, memory
consumption, shown as Table 1.

Table 1 Comparison of CPU time, iteration steps, memory and
reduction of different PML algorithms

Algorithm  CFLN Itesrtaet Ii)on Time/s Memory/MB Reduction/%
FDTD-PML 1 65536 21.7 2.8 -
CNAD-PML 1 65536 84.0 3.1 —287.1
CNAD-PML 8 8192 13.9 3.1 36.0
CNDG-PML 1 65536 92.1 33 —324.4
CNDG-PML 8 8192 15.4 33 29.1

As can be observed from Table 1 that conventional
FDTD-PML holds the least computational resources and
duration due to the explicit non-matrix calculation. The
memory and duration of implicit algorithms increase sig-
nificantly due to the solution of matrix during each time
iteration. Compared with the CNAD algorithm, CNDG
algorithm slightly increases the duration and memory
during the whole simulation. Among the implicit algo-
rithms, the calculation efficiency can be improved by
employing larger CFLNs due to the employment of larger
time step during the calculation.

The absorbing performance inside PML regions can
also be evaluated by the reflection coefficient in the fre-
quency domain which can be defined as follows:

FFT{E! () - E; (1)}
FFT{E! (1)}

Ry (f) =201g (29)

where the operator FFT represents the fast Fourier trans-
formation. Fig. 5 shows the reflection coefficient
obtained by different PML algorithms and CFLNs in the
frequency domain.
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1
1
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=120 . . . . .
0 5 10 15 20 25 30
Frequency/GHz
—— :FDTD-PML; - - - : CNAD-PML, CFLN=1;
: CNDG-PML, CFLN=1; —+- : CNAD-PML, CFLN=8;
--- : CNDG-PML, CFLN=8.
Fig. 5  Reflection coefficient obtained by different PML algo-
rithms and CFLNs in the frequency domain
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It can be observed that the conventional scheme holds
the best performance through most of the entire fre-
quency band. Compared with the CNAD algorithm, the
proposed CNDG scheme improves the performance due
to the enhancement of calculation accuracy. Thus, the
proposed scheme behaves significantly advantage during
the entire frequency band simulation. The calculation
accuracy and absorption can also be reflected by the scat-
tering parameters in the frequency domain including the
return loss (S11) and transmission coefficient (S21), as
shown in Fig. 6.

S11/dB

760 1 1 1 1 1
0 5 10 15 20 25 30
Frequency/GHz
(a) S11
0
-5t
710 -
2
= -15
[9\]
[75]
20} 3 /‘;
=25
_30 L L L L L
0 5 10 15 20 25 30
Frequency/GHz
(b) S21
—— :FDTD-PML; - - - : CNAD-PML, CFLN=1;

----- : CNDG-PML, CFLN=1; - +- : CNAD-PML, CFLN=8;
-x-- : CNDG-PML, CFLN=8.
Fig. 6
rithms and CFLNs in the frequency domain

Scattering parameters obtained by different PML algo-

Through employing these parameters, it can also draw
the same conclusion that the curves obtained by different
with CFLN=1 are almost overlapped which indicates the
same accuracy. With the increment of CFLNs, curves
show shifting compared with CFLN=1 which indicates
the degeneration of calculation accuracy. However, the
proposed CNDG algorithm still maintain considerable
accuracy compared with the existed implicit algorithm.

4. Conclusions

An alternative CNDG-PML algorithm which is based on
the CPML formulation and CNDG scheme is proposed in
BOR-FDTD lattice for the anisotropic magnetized plasma
simulation of rotationally symmetric multi-scale prob-
lems. At the boundaries of the lattice, CPML formulation
is introduced in the proposed algorithm not only to
improve the absorption but also to enhance the efficiency
and memory consumption. An algorithm is proposed to
efficiently analyze the magnetized plasma with unique
anisotropic characteristic in the BOR-FDTD domains. In
the numerical results, it can be concluded that the pro-
posed scheme shows considerable performance during
the simulation. Through converting the three-dimen-
sional problem to 20 simulation, the proposed algorithm
avoids the calculation error caused by the conformal
manipulation in the conventional Yee’s grid.
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