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RFFsNet-SEI: a multidimensional balanced-RFFs deep neural
network framework for specific emitter identification
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Abstract: Existing specific emitter identification (SEI) methods
based on hand-crafted features have drawbacks of losing fea-
ture information and involving multiple processing stages, which
reduce the identification accuracy of emitters and complicate the
procedures of identification. In this paper, we propose a deep
SEl approach via multidimensional feature extraction for radio
frequency fingerprints (RFFs), namely, RFFsNet-SEI. Particularly,
we extract multidimensional physical RFFs from the received
signal by virtue of variational mode decomposition (VMD) and
Hilbert transform (HT). The physical RFFs and I-Q data are
formed into the balanced-RFFs, which are then used to train
RFFsNet-SEl. As introducing model-aided RFFs into neural net-
work, the hybrid-driven scheme including physical features and
I-Q data is constructed. It improves physical interpretability of
RFFsNet-SEl. Meanwhile, since RFFsNet-SEI identifies indivi-
dual of emitters from received raw data in end-to-end, it accele-
rates SEl implementation and simplifies procedures of identifica-
tion. Moreover, as the temporal features and spectral features of
the received signal are both extracted by RFFsNet-SEl, identifi-
cation accuracy is improved. Finally, we compare RFFsNet-SElI
with the counterparts in terms of identification accuracy, compu-
tational complexity, and prediction speed. Experimental results
illustrate that the proposed method outperforms the counter-
parts on the basis of simulation dataset and real dataset col-
lected in the anechoic chamber.
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(DL), radio frequency fingerprint (RFF), multidimensional feature
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1. Introduction

As one of the cases of high-dimensional signal process-

Manuscript received August 10, 2022.

*Corresponding author.

The work was supported by the National Natural Science Foundation
of China (62061003), Sichuan Science and Technology Program
(2021YFGO0192), and the Research Foundation of the Civil Aviation
Flight University of China (ZJ2020-04; J2020-033).

ing, specific emitter identification (SEI) refers to a pro-
cess of distinguishing individual emitters by comparing
radio frequency fingerprints (RFFs) originated from the
nonlinearity of power amplifiers (PAs) [1]. Nowadays,
SEI has become a critical issue in multidimensional
domain deep learning [2], Internet of Things (IoT) [3],
communication countermeasures [4], etc.

Conventionally, SEI is performed through three steps
such as preprocessing, feature extraction, and classifier
designing, in which the feature extraction is a core step.
Up to now, various feature extraction techniques based on
transient or steady-state RFFs including the amplitude,
phase, frequency, energy envelope and the coefficients of
wavelet are proposed [5—7]. However, these methods
have the problem of RFF information loss, which reduces
identification accuracy in SEI.

In addition, emitters from the same manufacturer may
be so much alike that some emitters are completely indis-
tinguishable from each other by existing methods. For
these emitters, more subtle features need to be extracted.
Several state-of-the-art (SOTA) approaches include short-
time Fourier transform (STFT) [8], Wigner-Ville [9], and
Choi-Williams distribution [10]. In these approaches, the
procedures include calculating the time-frequency distri-
bution of the received signal, applying morphological
processing on the generated time-frequency images and
finally classifying emitters.

It should be pointed out that all of the above methods
are usually limited by the uncertain principle, which
results in the contradiction between time resolution and
frequency resolution. Moreover, the difficulty with the
quadratic time-frequency representations is the inevitable
cross-terms problem. As one of self-adaptive analysis
methods for non-stationary signals, the Hilbert-Huang
transform (HHT) was proposed in [11]. In this method,
the received signal is decomposed into various empirical
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modes, but it suffers from the mode mixing problem [12].
Recently, although variational mode decomposition
(VMD) is proposed to decompose the received signal into
temporal-and-spectral modes in order to extract more non-
stationary RFFs, the problem of mode mixing is elimi-
nated at the cost of high computational complexity [13].
Another SEI method based on multi-dimension approxi-
mate entropy (MApEn) was proposed in [14], where
experimental results illustrate that when the length of
samples is less than one hundred, the identification accu-
racy of this method deteriorates dramatically.

In fact, SEI can be regarded as a fitting problem of a
nonlinear function mathematically. The universal approxi-
mation theorem in deep learning claims that it is feasible
to use deep neural network (DNN) to fit any multidimen-
sional (or high-dimensional) nonlinear function [15].
Therefore, several deep SEI methods have been proposed.

A deep SEI method based on complex-valued neural
network was proposed in [16]. A multi-domain feature
fusion SEI method via integrated learning (MDFFIL) was
addressed in [17]. They both confirm superiority to the
previously proposed SEI methods based on convolu-
tional neural network (CNN) in both identification accu-
racy and convergence. Meanwhile, a deep SEI approach
based on bi-spectrum feature was addressed in [18], in
which the compressed spectrum of the received signal is
used so that the feature information cannot be utilized
sufficiently. In [19], a deep SEI method based on one-
dimensional CNN (CNN-1D) was proposed, which
resolves shortcomings of traditional methods of feature
extraction and low identification accuracy. Moreover,
another deep SEI method by virtue of deep residual net-
work (DRN) was proposed in [20]. Based on ADS-B sig-
nal real data sets, it shows that DRN can achieve excel-
lent recognition accuracy. In addition, an unsupervised
SEI method using STFT and K -means algorithm was
reported in [21]. In addition, a multi-feature fusion SEI
method via deep ensemble learning (MFFDEL-SEI) can
be found in [22].

Although these above methods can achieve good per-
formance and have robustness in the case of low signal-to-
noise ratio (SNR), the time-frequency spectrograms of
emitters must be calculated in advance even in the identi-
fication stage. An open-set SEI method based on multi-
classifier fusion is proposed to deal with unknown situa-
tions which have not been learned by the models during
training [23]. It should be pointed out that the SEI issue
on close-set is different from the case of open-set SEI, we
do not address it in this paper.

Although SEI methods based on hand-crafted features
have explicit physical meaning, the recognition pro-
cesses of which are complicated. The error imposed in

any step will affect the effectiveness of subsequent pro-
cessing. In addition, the existing deep SEI methods
suffer from weak physical interpretability about general
features of emitters, which lead to poor stability and scal-
ability of such methods. Compared with model-driven
SEI methods, the deep SEI methods with high dimen-
sional data representation ability have advantages in
terms of recognition accuracy, environmental generaliza-
tion, as well as fitting accuracy.

Motivated by these reasons, we propose a deep SEI
method based on DNN. To be specific, VMD technique is
firstly used to extract intrinsic mode functions (IMFs) of
the received signal. And then, high dimensional features
including temporal (i.e., the entropy feature (EF), the first
order moment (FOM), and the second order moments
(SOM)) and spectral (i.e., spectral flatness and spectral
brightness) and some other effective features of the
received are formed into RFFs for identification. The
main contributions of this paper are as follows:

(i) A DNN framework is designed for learning maps
from raw 1-Q data to classifier of emitters, which realizes
an end-to-end implementation of SEI. By virtue of RFFs-
embedding, the combined loss function with multistage
physical constraints is developed to train the network.
The mode decomposition loss is used to decompose time
modes and spectral modes of the received signal. Mean-
while, the feature extraction loss extracts time features
and spectral features from previous modes. Moreover, the
classification loss function learns classifier of emitters
from features to the individual of emitters. As the RFFs
of emitters are extracted by neural network automatically,
it improves the prediction speed by an order of magni-
tude compared with baseline methods.

(i1) In the proposed framework, we extract the auxi-
liary modes of the received signal by virtue of auxiliary
paths. Based on the auxiliary modes, the auxiliary fea-
tures are also extracted. In this way, the hybrid-driven
mechanism including data and physical RFFs is deve-
loped. As subtle features of emitters are utilized, the pro-
posed framework improves the physical interpretability.
Meanwhile, we analyze the computational complexity
and convergence of RFFsNet-SEI. Based on the simula-
tion dataset and real dataset, the merits of RFFsNet-SEI
are illustrated in terms of identification accuracy, compu-
tational complexity, and prediction speed.

The remainder of this paper is organized as follows.
Section 2 accounts for the system model of SEI. Section 3
introduces the methodology for SEI, and provides an
accelerated-and-enhanced SEI implementation. Section 4
presents numerical experiments. Finally, conclusions of
the paper are given in Section 5.
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2. System model

A typical received signal contains channel noise fol-
lowed by the transient signal and the steady-state signal.
Transient signals contain the unintentionally modulated
characteristics during the on-off switch or mode transfor-
mation. And the steady-state signal is defined when the
emitter is transmitting between the start and end of the
transients over the entire signal [24]. In an additive white
Gaussian noise (AWGN) channel, the discrete-time
received signal at time n can be expressed as follows:

e(n), 1<n<N,
s{(n)+&(n), Ny+

r(n) = 1
s,(n)+e&(n), Ny+1

N, (h
N

where r(n) is the data sample at time instant n. N is the
length of all sample points. N, is the starting point of the
transient signal. N, is the endpoint. £(n) is channel noise.
s{n) is the transient signal. When n < Ny, s(n)=0, and
s4(n) is the stable signal. When n < N, + 1, s(n)=0. At the
receiver, RFFs extracted from r(n) are used to identify
different emitters. A typical captured signal including
transient state and stable-state from two real PAs is
shown in Fig. 1. The bottom subplot is the local zoom in
version of the top subplot.
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Fig. 1 Typical captured step change signal from two power ampli-
fiers
Finally, the transient and steady-state attributes

involved in the received signal, such as shown in Fig. 1
for an instance, are utilized to identify individual of emit-
ters from r(n) with existing methods [11,12,14,17-20,22].

3. Problem solutions

In traditional SEI approaches, three stages are involved,
namely preprocessing raw 1-Q data, extracting features of
signal in the time or transform domain, and designing a
classifier for identifying features. A typical SEI flowchart
based on VMD is shown on the left side of Fig. 2, which

has been proposed in [14]. Lossl(:), Loss2(-), and
Loss3(+) are mode decomposition loss, feature extraction
loss, and classification loss, respectively.
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Fig.2 The proposed SEI flowchart

Mathematically, identification procedures can be mo-
deled as a series of linear and nonlinear nested functions
from the left part of Fig. 2. As the universal approxima-
tion theorem confirms that any nonlinear function can be
fitted by DNN, we can use neural networks to fit these
functions. In the proposed method, a segmented neural
network framework composed of three parts is deve-
loped to fit typical processing flow of the traditional SEI.

In the process of network development, we should pay
attention to two factors including network parameters and
computational complexity. The former affects the deploy-
ment cost of network. The larger the network parameters
are, the larger the training data set is required. If the net-
work size does not match the training data set, over fit-
ting or under fitting problem may occur. As far as the
computational complexity is concerned, it affects train-
ing time and system resource.

Another issue is the selection of hyper-parameters.
Two-dimensional parameter space including network
parameters and their feasible values are developed. The
greedy searching strategy can be used to solve the opti-
mal hyper-parameters in the two-dimensional parameter
space.

Under the above considerations, we present the dia-
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gram based on neural network on the right side of Fig. 2.
In the training stage, by virtue of minimizing the loss
function including mode decomposition loss, feature
extraction loss and classification loss, it enables the neu-
ral network to fit the SEI procedures. Therefore, the well
trained neural network can directly output the identifica-
tion results based on I-Q data in the prediction stage. The
end-to-end recognition scheme simplifies procedures of
identification.

3.1 Physical RFFs and model-aided SEI procedures

In this subsection, we first review the selection about
hand-crafted RFFs and model-aided SEI procedures as
shown on the left side of Fig. 2.

In the preprocess stage, VMD is used to decompose the
received signal. Through steps of modes update, center
frequencies update, and dual ascent update, the received
signal is decomposed into a specified number of tempo-
ral and spectral modes with its center frequency. Without
loss of generality, let g be the number of decomposed
modes, then the output of VMD can be written as

vy, 9,,m,] = VMD{x}, ¢g=12,---,0 2)

where Q is the number of IMFs. v, is the gth temporal
mode. ¥, is the gth spectral mode and n, is the center fre-
quency of the gth mode. The detailed procedures of VMD
are summarized in [24].

In the feature extraction stage, both temporal features
and spectral features are extracted from temporal mode v,
and spectral mode ¥,, respectively. As shown in Fig. 2,
temporal features are extracted from the Hilbert spec-
trum. The Hilbert spectrum for each mode of original sig-
nal x can be calculated as

~ _ deq(m)
ngmﬂz{ AT 0= 2" )

0, otherwise

where 7,(m) denotes the Hilbert transform of v,(m). w is
the instantaneous angular frequency and 6,(m) denotes
the instantaneous phase for the gth mode. With the calcu-
lated time-frequency distribution H,(w,m), the EF, FOM,
and SOM of the modes are extracted as follows:

F,
EF:—Z

m
i=1

/55 55 )

j=1

where F,, and F, are the number of time frames with
time resolution 6,, and frequency frames with frequency
resolution ¢, respectively. The energy in each time-fre-
quency frame is defined [25] as

O J6w
&, = j f H; j(w,m)dwdm. %)
i-1)6, J (j-1)3,,

In (5), H,;(w,m) is the (i,j)th time-frequency frame for

i=1,2,+, F,andj=12,-, F,.
Before computing FOM and SOM features, the Hilbert
transform is converted into K-bit greyscale image [25] as

Hi'
(2K = 1) x 20
maXHi,j

ij

Gi;= (6)

where |-] is the floor operation. K denotes the bit value in
an image. G;; is the (ij)th pixel value of the greyscale
image G. And then FOM and SOM are computed by

I J
=1

| -

FOM =

2

i=1

- G\ 7

1 I
SOM = | —
1] &

~

(G;;—~FOMY’, @®)

1§

J
j=1
where / and J are the dimensions of rows and columns of
matrix G.

In Fig. 2, spectral features including spectral flatness
(SF), spectral brightness (SB), and spectral roll-off (SR)
are also extracted from spectral modes. We denote each
spectral mode ¥,(m) and N, denotes the number of points
in Fourier transform. And SF and SB are calculated by

Ni/2 Q

L3 6,0m)

SF = , )

Q

SB _ m=B | g=1

N, /2

Q
2,2, 74tm)

m=0 | g=1

) (10)

where B is the bin corresponding to the frequency f(B).

The SR is defined as the frequency corresponding to
bin B, below which certain percentage (for example,
80%) of total spectral energy is concentrated. Then SR is
calculated [26] as

B ] N/2| ©Q
SR =max f(B): Y |3 9,()|<0.8> > 0,()| (1)
7=0 | g=1 =0 | g=1

Once temporal and spectral features of training
sequences are extracted, the feature vector of the training
sequence can be utilized to construct the training set.
With the training set, any classifier such as k-NN can be
trained and emitter can be identified using the well
trained classifier as the same as in [13].
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In the following, we illustrate the discriminability of
the selected features by virtue of boxplot representation.
The boxplot representation of each feature for eight PAs
are denoted by El, E2, -+, E8, respectively. The details
of eight PAs are addressed in Section 4. The boxplot
representations of EF, FOM, SOM, SF, SB and SR for
different emitters are shown in Fig. 3—Fig. 8. The box-
plots of the six features depict the median value with the
central line for different emitters. The median accounts
for the concentration trend of each feature. Top and bot-
tom edges indicate the maximum and minimum value,
respectively.
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It can be seen from Fig. 3 that the median entropy
value of E1 and E4 are both 0.895, while the median
entropy value of the other six PAs are distinguishable.
Though an overlap in the values can be seen in the box-
plot of entropy value for E1 and E4, they can be discrimi-
nated based on the 25th percentile and the 75th per-
centile of entropy value. Thus it shows that entropy fea-
ture is effective for identifying individual of emitters.

Fig. 4 and Fig. 5 illustrate the variation in FOM value
and SOM value for eight emitters, respectively. It can be
observed that emitters have different median values.
Similarly, though an overlap in the values can be seen
from the boxplot of FOM value for E3 and E4 in Fig. 4,
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emitters can be discriminated based on the other median
value such as EF and SOM.

In the same way, SF and SB plots have been illus-
trated in Fig. 6 and Fig. 7, respectively. Meanwhile, the
25th percentile and the 75th percentile based on the
median value are also shown in Fig. 6 and Fig. 7, respec-
tively. We can see that both SF and SB features provide
discriminative feature for emitters.

From the results of Fig. 8, we can see that the SR fea-
tures based on the emitters are difficult to distinguish,
because the median value for E1-E2 and the 75th per-
centile of SR for E1-E8 are same constants. We found
that SR feature should be discarded through experiments.
Thus we do not use SR feature in our proposed method.

If limited physical features are utilized, there is the
problem of feature information loss. Extracting more
physical features may improve the performance of identi-
fication. For instance, the additional features including
high-order cumulants, entropy spectrum, fractional
Fourier transform and other features can also be utilized.
However, they increase the computational complexity in
the SEI. More importantly, experimental results show that
the increase of feature types cannot always imply the
identification accuracy. Hence, an alternated solution is
developed by using limited physical features and deep
features from I-Q data. It realizes the balance between the
identification accuracy and the number of RFFs types.

3.2 An accelerated-and-enhanced deep SEI imple-
mentation based on balanced-RFFs

As shown on the left part of Fig. 2, the SEI has carried
out a series of transformations including VMD, Hilbert
transform, feature extraction, and classification. As any
linear and nonlinear transforms can be fitted by DNN,
without loss of generality, the nonlinear function g is
parameterized by a CNN of L layers, i.e.,

8x) =g, (g1 (- g(x)) =y (12)

where x is the input data of the neural network. y is the
corresponding one-hot label for emitter. In order to fit the
nonlinear function g(x), we propose the RFFsNet-SEI
framework based on CNN architecture in Fig. 9, which is
composed of convolution-batch-normalization-Leaky-
ReLU (CBL) blocks, residual unit (ResUnit) blocks, and
convolution-batch-normalization-fusion (CBF) blocks.
With these blocks, signal modes decomposition, signal
features extraction, and emitter classification are realized
in sequence.

In Fig. 9, the input layer of RFFsNet-SEI is configured
according to the received signal model x € R™™*!, Sym-
bol ‘C’ is the channel combination operation. Symbols ‘7’
and ‘o’ are the number of input channels and output chan-

nels, respectively. O is the number of IMFs. N, is the
number of auxiliary channels. In RFFsNet-SEI, O+1+
N,=8. Q and N, are chosen by experiments.
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Fig. 9 Diagram of RFFsNet-SEI

We present the workflow of the framework in the fol-
lowing.

Firstly, that signal modes decomposition module con-
tains three cascaded residual units and three parallel CBF
blocks. These CBF blocks share the output feature maps
of three cascaded ResUnits, namely ResBlockl. This
sharing scheme is helpful because the temporal modes v,
and the spectral modes 9, of the received signal cannot
perform orthogonal decompose completely by neural net-
work. In order to reduce the errors of decomposed modes,
an additional CBF block is used to extract the auxiliary
modes. Based on the advanced scheme, the temporal
modes and spectral modes as well as the auxiliary modes
of the received signal are decomposed from the outputs of
ResBlockl.

Secondly, the temporal modes and spectral modes as
well as the auxiliary modes (i.e., the other unknown but
existed modes except for the temporal modes and spec-
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tral modes) are combined in the feature extraction mo-
dule, which are fused by the CBL block. In the next, by
using three cascaded residual units (ResBlock2), the fea-
tures including EF, FOM, SOM, SF, and SB are
extracted. As five kinds of physical features cannot cover
all the information of the original data (viz., feature infor-
mation is lossy), similar with the auxiliary mode scheme,
the auxiliary feature extracted by CBF is used to increase
the information of features.

Thirdly, the temporal features, spectral features, and
the auxiliary features are combined in the emitter identifi-
cation module and nonlinear transformation is performed
by the CBL block at first. And then, the CBF block is
imposed to extract the fused features from outputs of
CBL block. A full connection (FC) layer followed by
CBF block reshapes outputs of the CBF block into a vec-
tor. Finally, the emitter identification is performed by a
Sigmoid layer, which applies Sigmoid function element-
wise to the values of previous layer and returns values in
(0, 1). The selection of Sigmoid function over the soft-
max is due to the presence of labels, which can receive a
value equal or close to 1 independently.

There are three merits in the proposed framework.
Firstly, the manually selected empirical features and the
other potential features are used by RFFsNet-SEI, which
improve information utilization of the received signal.
Moreover, the nonlinear mappings from raw data to emit-
ter identification are learned by network, so as to realize
an end-to-end identification. RFFsNet-SEI improves the
identification accuracy because both transient and stable-
state of the received signal are utilized.

Given by workflow of the framework, we further intro-
duce the specific blocks shown in Fig. 10, viz., CBL,
ResUnit, and CBF block. Symbol ‘+’ is addition opera-
tion. Both ‘Conv’ and ‘Conv*’ are the convolutional lay-
ers with the kernel size of d x1, wherein the strides are
1x1 and 2x1, respectively. In ‘CBL*”, the convolutional
layers are constructed by ‘Conv*’ instead of ‘Conv’.

v
Y
o CBL*, 31, i
Batch norm Conv, 3x1, i
LeakyReLU Batch norm
| omL
4
Conv*, 1x1,
l i Batch norm
CBL¥, Ix1, i JD‘—I
CBL*, 3x1, 2i Y
l CBF ResUnit

Fig. 10 Structure of CBL, ResUnit, and CBF block

In each CBL block, the convolutional layer has n.
channels and is followed by a batch normalization layer
and a LeakyReLU layer. The batch normalization layer
accelerates network convergence in the training and
reduces the initialization sensitivity by performing zero
mean and unit variance. As ReLU suffers from slow
learning or even dead neurons, LeakyReLU is used as the
activation function. For each one of the n. channels,
mathematical expression of the convolution operation
with input x € R™™! and the kernel k € R ig a vec-
tor of dimension A as

(x * K)(r = Z ZKi,l.cxx((r—l)H,l,c + br (13)

i=1 c=1

where o=1,2,---,4, 4=|(N—ng)/s|+1, ne is the
width of kernel, and s is the stride. b, is the bias for the
cth channel.

FEU?L = FLeakyReLU (FBN (FConv (Fm))) (14)

where F;, is the input of CBL. The oth entry of
Feon(Fin) equals (x #k),. Fpn(-) is the batch normaliza-
tion function [27]. Fieuyreau(-) is the Leaky ReLU func-
tion [28].

Deepening the neural network layers may saturate or
degrade the performance due to the back propagation gra-
dient disappearing, the residual connection is designed in
RFFsNet-SEI, so the ResUnit block involves two
branches in Fig. 10. The left branch has the CBL block
with the kernel size of d X1, wherein the stride is 1x1
without down sampling or 2x1 with down sampling car-
ried out. The convolutional layer followed by a batch nor-
malization layer is cascaded to the output of CBL block.
Mathematically, given the input of ResUnit FR=U"' the
output feature of ResUnit is performed as

Fou=Fiy (F BN (F Conv (F iiesunh))) , (15)

FiE _ g ( Fion ( Fil:.eSUn")) . (16)

out

where F(y () is the CBL function wherein the down
sampling is adopted.

The right branch of ResUnit is composed of a convolu-
tional layer with the size of 1x1 and cascaded by a batch
normalization layer. Finally, the features from different
layers are merged. The outcome of residual connectivity
with LeakyReLU activation operation is

ResUni left ight
F = FLeakyReLU (FO(;: + F:ft ) (17)

out

In order to improve the expression ability of features in
different receptive fields, three cascaded CBL blocks
with different channel sizes are involved in CBF block:

CBF _ pCBL (F3CXBIL (FCBL)) ) (l 8)

out 1x1 1x1
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Base on the diagram of RFFsNet-SEI, we present its
explicated implementation in Table 1. The ‘Output size’
is the size of the output tensor of current component. In
CBL, Conv, and the right sub-branch of ResUnit (#Res),

the kernel size of filter, the number of channels and the
stride are written in the form of ‘dx1, n/s’. It should be
pointed out that the architecture details of RFFsNet-SEI
in Table 1 correspond to the order in Fig. 9.

Table 1 The architecture details of RFFsNet-SEI
Name Component Output size CBL Conv #Res
ResUnit(top) 64x1x16 3x1,16/1 3x1,16/1 1x1,16/1
ResBlock! ResUnit(mid.) 64x1x16 3x1,16/1 3x1,16/1 1x1,16/1
ResUnit(bot.) 64x1x16 3x1,16/1 3x1,16/1 1x1,16/1
Component Output size CBL(top) CBL(mid.) CBL(bot.)
CBFs CBF(left) 64x1x1 1x1,16/1 3x1,32/1 1x1,1/1
CBF(mid.) 64x1x3 1x1,16/1 3x1,32/1 1x1,3/1
CBF(right) 64x1x4 1x1,16/1 3x1,32/1 1x1,4/1
CBL 64x1x8 1x1,8/1 - -
Component Output size CBL Conv #Res
ResBlock ResUnit(top) 32x1x16 3x1,16/2 3x1,16/1 1x1,16/2
ResUnit(mid.) 16x1x16 3x1,16/2 3x1,16/1 1x1,16/2
ResUnit(bot.) 8x1x16 3x1,16/2 3x1,16/1 1x1,16/2
Component Output size CBL(top) CBL(mid.) CBL(bot.)
CBF*s CBF*(left) Ix1x2 1x1,16/2 3x1,32/2 1x1,2/2
CBF*(mid.) 1x1x3 1x1,16/2 3x1,32/2 1x1,3/2
CBF*(right) 1x1x3 1x1,16/2 3x1,32/2 1x1,3/2
CBL 1x1x8 1x1,8/1 - -
CBF Component Output size CBL(top) CBL(mid.) CBL(bot.)
CBF 1x1x8 1x1,16/1 3x1,32/1 1x1,8/1
FC 10x1 - - -

3.3 Loss function

In this paper, RFFsNet-SEI conducts offline training in
supervised manner over the training dataset. The loss
function is composed of three parts, namely, the mode
decomposition loss including temporal IMF modes and
spectral IMF modes, the feature extraction loss including
temporal and spectral features, and the classification loss.
It is explicitly expressed as
mﬂinLoss(ﬁ) =, mine Loss(6,,6,,60,,0;) =

0,61.,0>.05

P N
DI =G, 00+ Dy = 21(x, 00, +
p=1

p=1

mode decomposition loss

N N
DA, — 82l + Dy, — 838 (19)

p=1 p=1

feature extraction loss classification loss

where ¢ =1{6,,0,,6,,05}. 6y, 0,, and 0, are the network
parameters for fitting temporal IMF modes and spectral

IMF modes and fitting temporal features and spectral fea-
tures, respectively. 6; is the network parameter of emit-
ter identification module. ¥, and G(x,,6,) are temporal
IMF modes matrix and the corresponding prediction
about the p th training sample x,, respectively. v, and
gi(x,,6,) are the averaged spectral IMF modes and the
corresponding prediction version about x,, respectively.
A, is composed of the temporal features and spectral fea-
tures, viz., 4, = [EF,, FOM,, SOM,, SF,, SB,]". g:(x,,6,)
is the temporal features and spectral features about the
pth outputs of the signal decomposed module (viz., x,).
¥, is the classifying label. g;(%,,6;) is the predicted emit-
ter identifier about the pth outputs of the signal feature
extraction component (viz., ¥,).

We optimize the set of all trainable parameters whose
updates are carried out via back-propagation by minimiz-
ing the reconstruction error. For simplicity, we let x!~!
be the input in the /th layer of RFFsNet-SEI. Operator
@"(-) is used in the convolution map for the input of the
Ith layer. W is the weight matrix of the /th layer for
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2<I<L. p() is the activation function. y is a scaling
factor to normalize the input of each layer. Thus, the for-
ward calculation can be defined recursively as

x=x
. 20
{x[” — Wp(W[IJ‘pUJ(x[/—IJ))’ 1<I<L (20)

The training of RFFsNet-SEI can be achieved via a
randomly initialized gradient descent algorithm to find
the global optimum of the loss function. The random ini-
tialization scheme adopted in this paper is xavier. For any
layer, each entry in W is sampled from a standard Gaus-
sian distribution with mean 0 and unit variance. Then the
back propagation update can be formulated as
O0Loss(9(k—1))

W = Wik=1 =156 —)

2

where 77 > 0 is the learning rate.

Let Q(-) and O(:) be Big-Q and Big-O notations and
poly(n) represents a polynomial about the kernel number
n. According to the results of [29], we know that if the
number of hidden nodes per layer and the step size sa-
tisfy Q(poly (n)2°")and Q(poly (n) /2°"), then we have

Loss(?(k)) < (1 —1-¢)*Loss(1}0)) (22)

In(22), k=1,2,--- and ¢ is a constant value related to a
certain fixed matrix, which only depends on the input
training data and the architecture of neural network and
has no dependence on weight parameters.

Obviously, (22) implies that the loss function is con-
vergent. In other words, once the training dataset is given,
RFFsNet-SEI can learn the data distribution by minimiz-
ing the loss functionLoss(?). And the nonlinear map-
pings from the received signal to individual of emitters
are established, which can be used to predict individual of
emitters in the prediction stage.

In deep SEI methods, the optimal weights of the net-
work are learned by forward gradient descent searching
and back forward error propagation. As the back propaga-
tion algorithm usually converges to the local solution, a
reasonable loss function is needed. In this paper, the clas-
sification loss function (Loss 3) is developed for the clas-
sification of abstract features. In addition to Loss 3, mode
decomposition loss (Loss 1) and feature extraction loss
(Loss 2) are also imposed in the developed loss function.
As Loss 1 and Loss 2 have explicit physical meaning,
they enhance distinguishability of emitters. The final loss
is devised on the basis of Loss 1, Loss 2 and Loss 3. In
this way, the probability of the optimal gradient descend-
ing and convergence speed of network are both improved
by the loss. Besides, the identification accuracy, physical
interpretability, and generalization of network are also
enhanced.

3.4 Computation complexity of RFFsNet-SEI

Next, we assess the computation complexity of the RFFs-
Net-SEI in terms of network size and the computational
cost. The network size is characterized by the number of
trainable parameters and the computational cost is mea-
sured via mega floating-point operations (MFLOPs). The
input feature maps, the convolution kernel size, and the
output channels of the /th layer are denote by C!', S"x 1,
and C" | respectively. The learnable parameters of the /th

out?

convolution layer equal (C!'S"+1)Cl. Thus the learn-

out *

able parameters of RFFsNet-SEI can be calculated as
L
Py = ) (CISU 4 1)CLL. (23)
=1

The FLOPs measurements include the height /=1 and
width W of the input channel of each convolution layer
and the non-linearity function is calculated for free. The
FLOPs of the/ th convolution layer is
2x Wi(Cls 4 1)CY . And the FLOPs of RFFsNet-SEI

can be calculated as

conv out*

L
Fio_ Z 2x WH(CS 1 4 1)l (24)
=1
Let I, and Oy, refer to the input and output dimension-
ality of the fully connected layer, then the FLOPs for
fully connected layer equals 2(l;. — 1)Ox.. Therefore, the
whole computational cost of the proposed architecture is

L

Friops = Z 2x WS+ 1HCY +2 (1. — 1) Or.. (25)

=1

Equations (23) and (25) imply that the computation
complexity of RFFsNet-SEI are mainly affected by the
input feature maps, the convolution kernel size, the out-
put channels, the input and output dimensionality of the
fully connected layer and each convolution layer, as well
as the network depth. Therefore, we design the expli-
cated network structure of RFFsNet-SEI in Table 1 based
on these factors, the effectiveness of which is confirmed
by virtue of experiment in Section 4.

With the increase of network depth, there will be gradi-
ent disappearance and gradient explosion, which degrades
the recognition performance. Therefore, we introduce
residual connection used in the proposed network to over-
come this problem, which has been successfully used in
our previous work [30].

3.5 Dataset setup

The pseudo code procedures for dataset setup are given as
follows.
Input parameters: Fix the length of the segmented sig-
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nal Z, the number of classes of emitters M, the dataset
size P, and the number of IMFs Q.

(i) Compute temporal v, and spectral modes ¥, of all
received signal sequences for g=1,2,---,0 using (2). The
details procedures of VMD are calculated with Algo-
rithm 1 in [13].

(ii) Compute Hilbert spectral H,(w, m)from the decom-
posed VMD temporal modes v, using (3) for ¢g=1,2,---,0.

(iii) Compute temporal features (EF, FOM, and SOM)
from the decomposed VMD modes using (5), (7) and (8)
for all the signal sequences.

(iv) Compute averaged spectral IMF modes from v,
using

p==>0,

1

Q=

Q
g=

(v) Compute spectral features (SR and SB) from the
decomposed VMD modes using (9) and (10) for all the
signal sequences.

(vi) Combine the feature vector of training sequence
4,= [EF,, FOM,, SOM,, SF,, SB,]".

(vii) Let {[x,.?,,v,,4,], y,}be the pth training sample,
where y, denotes the class label of emitters.

After repeating Step (i) to Step (vii), the dataset is con-
structed. Finally, the dataset is randomly split into train-
ing (80%) and test sets (20%) to train and test RFFsNet-

SEI, respectively.
4. Numerical results

In this section, we conduct comparison for the proposed
RFFsNet-SEI and the others including RFFs-SVM [11],

VMD-KNN [13], MApEn [14], MDFFIL [17], BiSpectral-
CNN [18], CNN-1D [19], DRN [20], as well as MFFDEL-
SEI [22]. Experiments are verified on two datasets,
namely, the simulation dataset and the real dataset. As
typical transmitter RFFs are originated from the power
amplifying process of analog elements, so we just con-
centrate our attention on PA in this paper.

4.1 Data generation

(i) Simulation data: To verify the adaptability of the pro-
posed method to the environment, a simulation dataset
consisting of monotone signals is generated under differ-
ent SNR levels. We use the Taylor polynomial to model
different power amplifiers. The system response of PA is

described in a memory polynomial model [31] as follows:

em), 1<n<N,

v U
=13 hyaalx=vPFxn-v),  (26)

v=0 u=1

N0+1<H<N0+Z

where (n) is the data sample at time instant #, and Z is
the number of I-Q points for each sample (Z=64 in simu-
lation). N, is the starting point of the transient signal,
which is the rise edge start point of the pulse signal in
simulation. In (26), 4,, x2,.1, V, and U are the memory
coefficients, nonlinear coefficients, memory depth and
order of the polynomial, respectively. In this paper, V" and
U are set as 2 and 3, respectively. The details of £, and
X2 for different PA coefficients are shown in Table 2.

Table 2 Details of power amplifier coefficients

Emitter = o3
ho h hy X X3 X5
El 1.00 -0.36 —0.36 1.00 -0.36 —0.36
E2 1.00 -0.27 —0.27 1.00 -0.27 -0.27
E3 1.00 —0.18 —0.18 1.00 -0.18 -0.18
E4 1.00 -0.09 —-0.09 1.00 -0.09 -0.09
ES 1.00 0.00 0.00 1.00 0.00 0.00
E6 1.00 0.09 0.09 1.00 0.09 0.09
E7 1.00 0.18 0.18 1.00 0.18 0.18
E8 1.00 0.27 0.27 1.00 0.27 0.27
E9 1.00 0.36 0.36 1.00 0.36 0.36
E10 1.00 0.45 0.45 1.00 0.45 0.45

The input signal to the power amplifier is written as
x(n) = rect(nT,/T)e™ ™. 27

where rect(-) denotes the rectangle baseband modulated

signal with width 7, 7 is the sampling period, and f=1575
MHz is the carrier frequency. Additionally, the signal
passes through various SNRs from 0 dB to 30 dB with a
step size of 3 dB. Each signal is sampled as 125 MHz.
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We have simulated a total of 10 emitters, which are
marked as E1-E10, respectively. The number of training
and test samples is set to 24 000 and 6000 for each emit-
ter. For each sample, the first five I-Q points are noise,
the subsequent ten I-Q points are transient signal, and
residual points are steady-state signals. Therefore, both
transient signal and steady signal are fed into the net-
work for each sample.

(i) Real-world data: A real-data acquisition system is
deployed in the anechoic chamber. The interconnection
diagram is shown in Fig.11, which is designed to collect
signals from eight PAs cascaded by the same vector sig-
nal generator. Two rod antennas are used for transmitters
and receivers and eight emitters are marked as E1-ES,
respectively. In order to reduce the difference of power
amplifiers, all these PAs come from the same manufac-
turer, factory batch, and working mode act as objective
emitters. an RF receiver connected to a rod antenna con-
verts the RF signals to the intermediate frequency (IF)
and a digital acquisition card is used to collect the zero-IF
I-Q data. Then the captured signals are stored via 1000
Base-T Ethernet in the digital format for further process-
ing. For each PA, the number of training and test sam-
ples is also set to 24 000 and 6 000, respectively. The real-
world data generation and acquisition system configura-
tions are listed in Table 3—Table 6, respectively.

The performance of RFFsNet-SEI is analyzed in terms
of probability of correct identification. Let A..(i’'/i)
denote the probability of identifying a received signal as a
signal from the /’th emitter, when the signal from the ith
emitter has been transmitted. Here, i and i’ belong to the
emitter set {E1, E2,---,EM}. The M X M matrix is formed

where diagonal element represents the probability of cor-
rect classification A (i’/i) for the ith emitter. Consider-
ing all the M emitters to be equiprobable, the aggregate
probability of correct classification can be given as

M
A= %;Ama//i). (28)

In our experiments, the RFFsNet-SEI is implemented
within the Tensorflow!.12 framework and the network is
trained on NVIDIA GeForce GTX 2080 GPU using the
Adam optimizer, and the learning rate is 0.001. The total
number of epochs is 100. In the prediction, all experi-
ments are conducted on the 128GB RAM and two Intel
Xeon E5-2678v3@2.50 GHz CPUs.

Gain=25 dB

Vector
signal
generator

1575 MHz

Switch

Ethernet Data IF
acquisation

Digital
receiver

Fig. 11 Signal acquisition system setup for SEI

Table 3 Vector signal generator specifications

Type Power output/dBm Waves type Pulse repetition interval/us Duty ratio RF output/MHz

E4438C 0 Pulse wide modulation 50 26/50 1575
Table 4 PA specifications
Frequency range Power supply voltage Maximum power output/dBm Gain System impedance/Q
0.1 MHz~2 GHz 6-12 VDC +10 25 dB @ 1500 MHz 50
Table 5 RF-receiver specifications

Frequency range Tuning frequency/MHz Bandwidth/MHz Attenuation/dB Work mode IF value/MHz
30 MHz~3 GHz 1575 4 0 normal 70

Table 6 Digital acquisition card specifications

Sampling rate Quantization bit

DDC value

Sampling duration/s 1-Q rates/MHz

250 MSPS 16 2

5 125

4.2 Identification experiments
4.2.1 Effectiveness verification of RFFsNet-SEI

In this experiment, both simulation dataset (given by

SNR=15 dB) and real-data dataset are exploited to vali-
date the performance of RFFsNet-SEI. The trainable
parameters of neural network, the computational cost, and

the prediction speed are denoted by Para., MFLOPs (mil-
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lion floating-point operations per second), and FPS
(frame per second), respectively. In order to illustrate the
effectiveness of the proposed neural network, we show the
design process of RFFsNet-SEI in an incremental manner.

S1: For simplicity, we denote the simplified structure
of RFFsNet-SEI without ResBlock1, ResBlcok2 and two
auxiliary CBL blocks in Fig. 3 as the RFFsNet-SEI-
Basic. In RFFsNet-SEI-Basic, the number of channel n.
is 16. The performance illustrates that it is feasible to take
four CBF blocks to fit the functions of VMD and Hilbert
transform and obtain the features including EF, FOM,
SOM and SF. However, the drawback of RFFsNet-SEI-
Basic is the poor identification accuracy. The identifica-
tion accuracy 4., on simulation dataset for 10 emitters is
only 49.1% while 4., on real dataset is 21%, which indi-
cates that the individual differences of eight PAs are more
subtle than the simulated version. The prediction speed of
emitter identification reaches 15366 FPS, which indi-
cates that RFFsNet-SEI-Basic can meet the needs of high
real-time processing.

S1—S2: Noted that temporal modes and spectral
modes of signal by using VMD are separately fitted in
RFFsNet-SEI-Basic, however, the VMD map capacity is
limited with two parallel paths. To enhance the feature
extraction ability of RFFsNet-SEI-Basic, the ResBlockl
is deployed in front of temporal modes and spectral
modes extracting blocks. The identification accuracy of
RFFsNet-SEI-Basic including ResBlockl is improved as
much as 9.2% on simulation dataset and 18.2% on real
dataset, which illustrates that the deployed ResBlockl is
effective in the neural network. However, the negative
effect is that both the trainable parameters of neural net-
work and the computational cost increase, and the predic-
tion speed decreases.

S2—S3: Similarly, temporal features (EF, FOM, SOM)
and spectral features (SF, SB) of VMD modes cannot be
fitted perfectly in RFFsNet-SEI-Basic plus ResBlockl.
Therefore, the ResBlock?2 is deployed in front of tempo-
ral features and spectral features extracting blocks. The
identification accuracy of RFFsNet-SEI-Basic including
ResBlockl and ResBlock?2 is further improved as much
as 18.9% on simulation dataset and 38.9% on real dataset,
which illustrates that ResBlock?2 is effective in the RFFs-
Net-SEI It shows that the information fusion mechanism
of ResBlock2 can improve the feature extraction. It also

illustrates that Loss 2(-) function in (19) plays a signifi-
cant effect on improving the identification accuracy.

S3—S4: Although ResBlockl improves the fitting
ability about the VMD modes of signal, fitting errors still
occur. Meanwhile, although ResBlock2 enhances the rep-
resentation ability of features, feature information is still
losing with limited features. Therefore, two auxiliary
CBFs are additionally deployed in the RFFsNet-SEI,
which decreases the fitting residual of signal modes and
improves the utilization of feature information. By
imposing auxiliary CBFs, the identification accuracy is
improved by 2.5% on the simulation dataset and 4.2% on
the real dataset, respectively. Here it must be pointed out
that the results in terms of identification accuracy seem to
violate the common sense because the accuracy tested on
simulation dataset is worse than that of real dataset. A
possible reason is that ten emitters are considered in the
simulation dataset while only eight PAs are tested in the
real dataset.

S5—S6: Additionally, an appropriate number of chan-
nels is effective to balance the network size and the com-
putational complexity. Therefore, we evaluate the identi-
fication accuracy under different channel numbers in this
step. It is found that when the number of channels is
eight, the computational complexity will be reduced, but
the accuracy will also deteriorate. On the contrary, we
find that even if the number of channels increases by 32,
the identification accuracy is almost unchanged, but the
network size increases significantly. Therefore, the num-
ber of channels of RFFsNet-SEI-Basic n is set to 16.

Besides, in the RFFsNet-SEI designing, we verify the
identification accuracy of different numbers of ResUnit in
ResBlockl and ResBlock2 on the simulation dataset.
When the number of ResUnit increases from 1 to 5, the
recognition accuracy is 60.2%, 70.3%, 79.7%, 79.9% and
79.8%, respectively. It can be seen that in order to bal-
ance the network complexity and prediction accuracy, it
is appropriate to set the number of ResUnit to 3. In addi-
tion, we also verify the identification accuracy of other
skills such as sequeze-and-excitation block [32], label
smooth [33], and dropout [34]. It is found that the
improvement of accuracy is the minimal. Therefore, con-
sidering the tradeoff between computational complexity
of network and its identification accuracy, the final RFFs-
Net-SEI network only adopts the design skills in Table 7.

Table 7 Effectiveness verification of RFFsNet-SEI

Step Note MFLOPs Para. FPS Simulation-data A./% Real-data 4 ../%
S1 RFFsNet-SEI-Basic 601.5 12976 15366 49.1 21.0
S2 + ResBlcoks1 1756.5 18384 10380 58.3 39.2
S3 +ResBlcoks2 1993.4 23872 7135 77.2 78.1
S4 +auxiliary CBL blocks 2627.2 26730 5645 79.7 82.3
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Continued
Step Note MFLOPs Para. FPS Simulation-data 4 /% Real-data A../%
S5 ne:16—8 692.0 7514 9851 76.0 78.1
S6 ne:16—32 10266.8 100874 2687 79.6 82.3

4.2.2 Comparative analysis to baselines under different
SNR cases

(1) Identification accuracy of different methods
This experiment is implemented under the same simula-
tion dataset for the case of ten emitters for all methods.
The identification accuracy 4., of different methods
against SNR values is shown in Fig. 12.
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—o— : BiSpectral-CNN; —— : CNN-1D; : DRN;

—v— : MFFDEL-SEI; — : RFFsNet-SEI.

Fig. 12 Identification accuracy versus SNRs

As shown in Fig.12, the recognition accuracy of all
methods shows an overall upward trend with the increase
of SNR. For RFFs-based methods, the accuracy of identi-
fication is less than 60% even if SNR reaches 18 dB. And
the identification rates of VMD-KNN, Bi-Spectral CNN,
and RFFs-SVM are close to 75.9%, 72.9%, and 65.4%
respectively for SNR=30 dB and far behind the identifi-
cation accuracy of RFFsNet-SEI method, CNN-1D
method, DRN method, MDFFIL method, and MFFDEL-
SEI method, which indicates the advantages of the data-
driven methods. Regardless of SNR, the MApEn method
is the worst. The reason is that MApEn requires a large
number of I-Q samples (typically thousands of I-Q sam-
ples) is needed for good performance. However, only 64
I-Q points for each sample is used in the experiment.

In addition, although the CNN-1D method and DRN
method, the MDFFIL method, the and MFFDEL-SEI
method have approximated accuracy with the RFFSNet-
SEI method when the SNR exceeds 20 dB, their recogni-
tion accuracy is far lower than that of the proposed
method except for the MFFDEL-SEI method when SNR
is small (for example, SNR<15 dB). The reason is that
RFFs-SEI has stronger feature identification ability than
the other three methods in the low SNR scenario because
of the explainable physical features. To some extent, this

experiment shows that our proposed neural network is
more effective than other data-driven methods (i.e.,
MDFFIL method [17], CNN-1D method [19] and DRN
method [20]).

(i1) The classification confusion matrix of RFFsNet-SEI

On the simulation dataset of 10 emitters, this experi-
ment analyzes the identification of RFFsNet-SEI through
the classification confusion matrix, whose diagonal ele-
ments represent the correct recognition rate 4. (i'/i) of
each class. The details of confusion matrix at SNR=0 dB,
9 dB, 18 dB, and 27 dB are shown in Fig. 13—Fig. 16,
respectively. In Fig.13, the SNR is 0 dB. The accuracy of
the other nine emitters except E10 is less than 50%, espe-
cially for E2, the accuracy is only 7%, which shows that
our method has the ability of preliminary feature extrac-
tion, rather than distinguishing emitters through random

guess.

E10

El E2 E3 E4 E5 E6 E7 E8 E9 EI0

Fig. 13 Classification confusion matrix of RFFsNet-SEI at

SNR=0 dB
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Fig. 15 Classification confusion matrix of RFFsNet-SEI at

SNR=18 dB
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When the SNR is increased to 9 dB, the overall recog-
nition accuracy of 10 emitters is increased to 55%, espe-
cially the recognition accuracy of E10 is up to 99%,
which indicates that E10 has obvious characteristic differ-
ences with the other nine emitters. When the SNR is
increased to 18 dB, the emitters recognition accuracy of
E6—E10 is more than 90%. Meanwhile, there is still a
ratio of recognition errors between E1—E4, and the over-
all recognition accuracy is greatly improved to 87%.
When the SNR reaches 27 dB, except for a few E2 and
E3 recognition errors, the overall recognition accuracy
exceeds 99.4%, which indicates that the proposed method
can realize high-precision recognition for emitters.

4.2.3 Comparative analysis to the baseline methods
under different emitter numbers on the real dataset

This experiment evaluates the recognition accuracy of the
proposed method and the comparison methods under dif-
ferent number of emitters. The experimental results are
shown in Fig.17. Except for the RFFsNet-SEI method,

the identification performance of all methods decreases
significantly with the increase of the number of emitters.
The RFFs-SVM method is better than the BiSpectral-
CNN method and the VMD-KNN method, but far behind
the RFFsNet-SEI method, the MDFFIL method, and the
DRN method, which also shows the effectiveness of the
proposed method.
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Fig. 17 Identification accuracy versus different number of emitters

Meanwhile, we can see that the accuracy of all data-
driven methods seams declining obviously when the
number of emitters exceeds four. The reason is that the
identification accuracy in the experiment is calculated by
the average value of multiple emitters. If an emitter with
low identification accuracy exists in the test dataset, and
the individual difference between the selected one and the
rest emitters in the test dataset is very small, the newly
selected emitter will decrease the recognition accuracy of
all tested emitters. It ultimately leads to a significant
decline in terms of identification accuracy.

Moreover, we can also see from Fig.17 that when the
number of emitters exceeds four, recognition accuracy of
the RFFsNet-SEI method is the best. The identification
accuracy of the RFFsNet-SEI method achieves 82.3% or
99.7% when identifying 8 PAs or 2 PAs, respectively.
However, the identification accuracy of the other model-
driven methods fluctuates within 40%—92.5% when the
number of emitters ranges from 2 to 8. Regardless of the
number of emitters, the MApEn method is the worst.
There are two reasons for the phenomenon. On the one
hand, MApEn cannot utilize enough steady-state informa-
tion to identify emitters because each sample is formed
from 64 I-Q data points. On the other hand, since the
sampling rate of data acquisition system is not high
enough, which makes the transient information of
received signals cannot be exploited by MApEn. Mean-
while, according to the results of Fig.17, we can see that
the MFFDEL-SEI method has poor accuracy on the real
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dataset, which implies that the data-driven method with
good recognition accuracy on the simulation dataset can-
not be directly extended to the real dataset.

Besides, as far as the RFFsNet-SEI method, the CNN-
1D method, and the DRN method are concerned, when
the number of transmitters exceeds four, the identifica-
tion accuracy of the CNN-1D method is the worst and the
RFFsNet-SEI method has the best identification accuracy,
which shows the effectiveness of the proposed method.

4.3 Computational time analysis

In this experiment, the computational complexity of all
SEI methods is evaluated on the real dataset. We firstly
fix the selected number of IFMs according to the identifi-
cation accuracy 4., and prediction speed (FPS) between
RFFsNet-SEI and VMD-KNN method, comparisons of
which are shown in Table 8. The 1st entry and the 2nd
entry in brackets is the FPS and recognition accuracy,
respectively.

Table 8 Identification accuracy and prediction speed comparisons
versus different number of IFMs

Number of IMFs RFFSNET-SEI VMD-KNN
2 (6 002, 78.7%) (99, 56.7%)
3 (5 875,79.1%) (91, 59.2%)
4 (5 645,79.7%) (84, 61.5%)
5 (5 284, 79.4%) (79, 60.9%)

It shows from Table 8 that the highest identification

accuracy of the RFFsNet-SEI method is achieved when
four IMFs are used. Therefore, four IFMs are chosen to
evaluate the computational time complexity of RFFsNet-
SEI and VMD-KNN methods in this paper. In this case,
the proposed method consumes just about 1/67 of the pre-
diction time required by the VMD-KNN method.

Based on above settings, we compare the identifica-
tion accuracy, prediction speed, computational comple-
xity for model-driven methods, and the number of parame-
ters for data-driven methods, which are listed in Table 9.
It can be seen from Table 6 that the identification speeds
of data-driven SEI methods are much faster than those of
model-driven SEI methods. That is because the latter (i.e.
model-driven SEI methods) require complex feature
extraction process, while the former directly extract fea-
tures from [-Q data. Meanwhile, as far as the recognition
accuracy is concerned, the data-driven methods perform
SEI by learning the distribution of data sets, which have
stronger adaptability to the environment compared with
the model-driven methods. Thus the recognition accu-
racy of data-driven methods is better than that of model-
driven methods. According to the results of Table 9, we
can see that although the RFFsNet-SEI method is not the
best in terms of prediction speed and amount of computa-
tion, it has optimal identification accuracy with nice FPS.
Combined with the results of Fig.12 and Fig.17, our pro-
posed method is the optimal choice for all compared SEI
methods.

Table 9 Comparison in terms of prediction speed, accuracy, network size, and complexity of different methods

o RFFS-SVM  VMD-KNN MAPEN MDFFIL BISPECTRAL-CNN CNN-1D DRN  MFFDEL-SEI RFFSNET-SEI
Criterion [11] [13] [14] [17] [18] [19] [20] [22] (Proposed)
FPS 171 84 144 413 372 35643 8969 1073 5645
A% 64.0 61.5 13.3 73.7 453 79.6 72.3 76.6 79.7
MFLOPs - - - 14318 77536 54 1684 2160 2627
Parameters - - - 719066 1246314 28112 105884 258856 26730

5. Conclusions

In this paper, an accelerated emitter identification
approach is proposed based on the hybrid driven scheme.
A new RFF-embedding framework is designed for SEI as
an alternative to the traditional method based on fixed-
RFF, which not only has a high identification accuracy,
but also achieves fast efficiency. The experimental results
illustrate that the new mechanism exploiting the exper-
tise RFFs and other subtle features of the received signal
outperformsthestate-of-the-artmanually-designedmethods.
The identification accuracy, adaptive capability of envi-
ronment, and prediction speed of the proposed method
have also been validated quantitatively. One of our future

works will practically implement the RFFsNet-SEI on the
embedding platform like FPGAs or software defined
radio (SDR) platforms. Another potential future work
includes analyzing other RFFs (besides these RFFs
adopted in this paper) to distinguish more PA devices and
introducing the generative adversarial network to solve
the small sample problem in SEI. The source codes of
RFFsNet-SEI and supporting datasets are available at
https://github.com/ fanrongca/RFFsNet-SEI.
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