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Abstract: In order to solve the problem that the performance of
traditional localization methods for mixed near-field sources
(NFSs) and far-field sources (FFSs) degrades under impulsive
noise, a robust and novel localization method is proposed. After
eliminating the impacts of impulsive noise by the weighted out-
lier filter, the direction of arrivals (DOAs) of FFSs can be esti-
mated by multiple signal classification (MUSIC) spectral peaks
search. Based on the DOAs information of FFSs, the separation
of mixed sources can be performed. Finally, the estimation of
localizing parameters of NFSs can avoid two-dimension spectral
peaks search by decomposing steering vectors. The Cramer-
Rao bounds (CRB) for the unbiased estimations of DOA and
range under impulsive noise have been drawn. Simulation expe-
riments verify that the proposed method has advantages in pro-
bability of successful estimation (PSE) and root mean square
error (RMSE) compared with existing localization methods. It can
be concluded that the proposed method is effective and reliable
in the environment with low generalized signal to noise ratio
(GSNR), few snapshots, and strong impulse.
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1. Introduction

Since source localization is utilized broadly in radar,
microphone array, and other fields, the research of locali-
zation methods has attracted the attention of many scho-
lars [1]. Far-field source (FFS) can be regarded as plane
wave when received by uniform linear array (ULA). For
FFS, there is only one localizing parameter which is the
direction of arrival (DOA) [2—4]. The subspace process-
ing algorithms such as the multiple signal classification
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(MUSIC) algorithm [5,6] and the estimating signal
parameters via rotational invariance techniques (ESPRIT)
algorithm [7,8] are representative localization algorithms.
However, near-field source (NFS) should be regarded as
spherical wave. Both range and DOA need to be esti-
mated [9—14]. The above-mentioned traditional localiza-
tion methods are not suitable in the situation where FFSs
and NFSs exist simultaneously.

Major localization methods for mixed sources can be
divided into two categories. The first category of localiza-
tion methods does not perform separation. For example,
Liang et al. introduced high-order statistics (HOS) into
the localization for mixed sources, and proposed a two-
step MUSIC (TSMUSIC) algorithm [15]. The TSMUSIC
algorithm extracted the DOAs information of both NFSs
and FFSs to simplify the joint spectral peaks search.
However, the construction of fourth-order statistics (FOS)
led to excessive calculations. Jiang et al. proposed an effi-
cient mixed sources localization algorithm based on the
Root-MUSIC algorithm [16]. This method utilized root-
finding calculation, which had smaller computational
complexity compared to spectral peaks search. However,
when the DOAs of FFSs and NFSs are similar, the per-
formance of TSMUSIC and the algorithm in [16] deterio-
rates.

The second category of localization methods performs
sources classification. He et al. proposed the MUSIC-
based one-dimensional (1D) search (MBODS) algorithm
which used oblique projection technology to realize the
separation of mixed sources [17]. However, the perfor-
mance can be affected by the array aperture loss. A mixed-
order MUSIC (M-MUSIC) algorithm which used both
FOS and second-order statistics (SOS) was proposed in
[18]. This algorithm utilized MUSIC to obtain the DOAs
of FFSs and constructed a special FOS matrix to realize
the separation of the DOA and range. The second
category has the problems of array aperture loss or HOS
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which results in high computational complexity.

The above localization algorithms for mixed FFSs and
NFSs are all designed under Gaussian background noise.
However, in the actual environment, background noise is
not an ideal Gaussian distribution. It is more reasonable
to describe the background noise by symmetric alpha-sta-
ble (SaS) distribution with different characteristic expo-
nent [19,20]. Because SaS distribution does not own SOS
and HOS, traditional localization algorithms based on
HOS and SOS are not suitable for impulsive noise. Frac-
tional low-order covariance (FLOC) [21-23] and frac-
tional low-order moment (FLOM) [24,25] were proposed
for anti-impulsive noise interference. Qiu et al. proposed
a search-free phased FLOM based generalized ESPRIT
(SP-GESPRIT) method which introduced FLOC into the
GESPRIT algorithm to achieve good performance under
impulsive noise [13]. In scenarios where NFSs and FFSs
coexist, it is difficult to combine existing FLOM and
FLOC with HOS, which is widely used in the traditional
localization methods for mixed sources.

In this paper, weighted outlier filter is introduced to the
SOS-based algorithm to locate mixed sources under
impulsive noise. The proposed method uses weighted
outlier filter to deal with impulsive noise. Then the DOAs
of FFSs can be estimated by the MUSIC algorithm. The
orthogonality between steering vectors of different
sources can be used to separate NFSs and FFSs. Finally,
direction vectors which only contain DOAs information
of NFSs can be used to perform DOAs estimation. Based
on the DOA estimations of NFSs, the estimations of
range are obtained through 1D spectral peaks search. The
main contributions are as follows: (i) The weighted out-
lier filter is proposed to effectively suppress the impul-
sive noise. (ii)) While ensuring the positioning accuracy,
the proposed method relatively reduces the computa-
tional complexity, because there are no construction of
extra matrices nor HOS while separating the DOA and
range of NFS. (iii) The derivation of Cramer-Rao bounds
(CRB) for mixed sources under SoS distribution back-
ground noise is proved.

This paper is organized as follows. The signal model
and SaS distribution are described in Section 2. In Sec-
tion 3, the proposed localization method for mixed
sources under impulsive noise and the computational
complexity are derived. In Section 4, the corresponding
CRB is derived. In Section 5, simulation experiments are
designed, and experimental conditions are given in detail.
In Section 6, conclusions are drawn.

2. Signal model

There is a symmetric ULA which comprises 2L+ 1 sen-

sors with spacing d. There are B narrowband sources
which are deterministic unknown sequence with zero
means and wavelength A imping on the ULA. Sources are
statistically independent of each other. To avoid phase
ambiguity, it is assumed that spacing d < 4/4 and the
number of sensors meets 2L+ 1> B. The number of
sources B can be used directly as prior knowledge by
using the method in [26,27]. For analysis convenience,
the 1th to B,th sources are FFSs, and the (B,+1)th to Bth
sources are NFSs.

For the #(r=1,2,---,T)th snapshot, the data received
by the /(I=-L,---,0,---,L)th sensor has the following
expression:

B
(0= ) 5,0 (1) (1)
b=1

where s,(f) is the envelope function of the bth source,
n,(¢) is the impulsive noise received by the /th sensor, 7/,
is the propagation delay of the bth source reaching the
Oth and the Ith sensor as shown in Fig. 1, and w, is the
circular frequency of sources.

Si(0)

Fig. 1

ULA configuration

When the bth source is NFS, —w,7,;, has the following
expression:

a\ sin@
—wor,,,,=2nrb( 1+(—’) —2d,( b)—l)-/rl )
Iy p

where d, =1d, 6, is the DOA of the bth source, and r,
denotes the distance from the bth source to the Oth sen-
sor. —w,T;, can be expanded through the Fresnel approxi-
mation:

—WoTip = Kyl +ByI° 3

where k, = —2msin8,d/ A, B, = ncos*6,d*[ (Ar,).
When the bth source is FFS, —w,7,, can be simplified
as

—W()TI,], = K],l. (4)
x(¢) is expressed in the following form:
x(t) = Apsp() + Aysy(t) + n(?), Q)
where

x(0) = [x_(O), X1 (D), -+, x (D] € CPHXL(6)
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n(t) = [n—L(t)’ n—L+l(t)’ e ’nL(t)]T € C(2L+I)X1’ (7)

sF(t) = [sl(t)» SZ(t)’ T, sB.(t)]T € CBIXI, (8)
AF = [a(gl)’ a(92)a e 9a(931 )] € CQLH)XBI 5 (9)
a(eb) — [eijxl,’eijxlﬁl o éLK},]T’ (10)

sy(®) = [55,1(), $p42(2), -+ ,sp()]" € CPPX, (11)

Ay = [a(08,+l7rB,+l)aa(083+l7rBz+l)'" s
(05, rp)] € COH 05 (12)

a(eb’ rb) — [é(*LK/ﬁ»LZﬁ,,)’ ei(*LKb*Lzﬁn*l)’ e ej(LKI)+L2ﬁI))]T. (1 3)

n(t) = my(t) + ji(t) is the /th entry of n(r) and it is
independent of the sources. 7,(f) and 7,(f) represent the
real and imaginary parts of n(f), respectively. It is
assumed that both 7,(¢) and 7,(¢) follow the SaS distribu-
tion [28], so the characteristic function of 7,(¢) and 7,(t)
can be expressed as

@(u) = exp {jou —ylul"} (14)

where a(0 < @ <2) is the characteristic exponent, which
determines the probability density function (PDF),
0(—00 < § <o) is the location parameter which is the
symmetry point of the PDF, and y(y > 0) is the disper-
sion parameter which indicates the width of distribution.
With the increase of @, the tail of the PDF will become
smaller. When a =2, the SaS distribution degenerates to
the Gaussian distribution. In this paper, background noise
conforms to the standard SaS distribution(6 =0, y = 1).

3. Proposed algorithm

This section introduces the detailed principle of the pro-
posed algorithm, and the computational complexity analy-
sis of the proposed algorithm is also carried out.

3.1 Method of anti-impulsive noise

The absolute value of x(f) can be expressed as ¥(¢) =
[X_0(8), X1 (1), -+, % (D]". After taking x(7) as the input
of filter with the length of window 27, +1, the (I,4)th
element Z(I,3) of the outlier matrix Z is given by

2(1,) = psmedian(|%(@) - m(,9)|.| %@+ D - m(@.g+ 1),
|5(g+27) - m(1.9))) (15)

where

I=1+L+1
qzt_Tl
I=-L,--,L ’

t=T,+1,--- 2N+1-T,

median(-) means taking the median value, m(l,g)=
mediank,(g), (X,(g+1),--- ,%(q+2T,)), and p; is the
threshold value. When |%(1)—m(,§)| < Z(1,), the Ith

entry of filtered data y(§) = [y-(@)y-11(@), " »
y1(§)]" can be expressed as
Yi(g) = x,(2). (16)
When |%(t) - m(l,g)| > Z(1.9),
y(@) = m" (L h™ (L, §)x, (1) - %, (1) (17)
Where h(l_a EI) = mean(.%](q), X’l(q + 1)’ ) i/(q + 2T1))7

mean(-) represents the average of the elements which are
less than the median value of -, and p, and p, are weight-
ing factors (p; <1, p, <1,p;+p,=1).

After being preprocessed by the weighted outlier filter,
the impulsive noise component of the received data is
smoothed.

3.2 DOA estimation of FFS
The covariance matrix R, has the following expression:
R, =E{y(@y"@) = Ry + Ry +0*I (18)

where R represents the covariance matrix of FFSs, Ry
represents the covariance matrix of NFSs, and ¢ is the
power of additive background noise preprocessed by the
weighted outlier filter.

The eigen-decomposition of covariance matrix R, is
shown as

R =UV.U'+U,V,U.. (19)

In (19), U, € C?*Y*% is made of the B eigenvectors
belonging to B larger eigenvalues; U, € CPLxCL+1-5) g
made of the 2L +1 — B eigenvectors belonging to remain-
ing 2L+ 1- B smaller eigenvalues; diagonal matrix V|
consists of the B larger eigenvalues; diagonal matrix V,
is made of the remaining smaller 2L + 1 — B eigenvalues.

Since the range parameter of the FFS is co, the DOAs
information of FFSs can be estimated from the following
spectral function:

£ = |a"©OU,U"a@6)| " (20)
where 6 € [-90°, 90°]

3.3 Sources classification and parameter
estimation of NFS

On the basis of the DOA estimations of FFSs 8,(b =
1,2,---,B)), the power of the bth source is obtained by
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utilizing the orthogonality between the different steering
vectors:

o} = (a"@)R"a@)) 1)

where ‘L’ denotes the pseudo inverse operator. R, can
be expressed as

R, = Apdiag(c7,05, - ,05)A} (22)
where A = [a(él),a(éz),m ,a(éB,)]. Then the estimation
of Ry can be obtained by

Ry=R,-R;. (23)
It can be seen from (23) that Ry does not contain the

information of FFSs. An effective classification method
is realized. The eigen-decomposition of Ry is shown as

RN = UN,s VN,s U}I;/Iv + UNJ' VN»" Ugn (24)

In (24), Uy, € CPL0xB-B) is made of the B— B, eigen-
vectors belonging to B-B; larger -eigenvalues;
Uy, € COLs*CHI=88) ¢ made of the 2L+1-B+B,
eigenvectors belonging to remaining 2L+ 1-B+ B,
smaller eigenvalues; diagonal matrix V), consists of the
B — B, larger eigenvalues; diagonal matrix Vy,, is made of
the remaining smaller 2L+ 1—- B+ B, eigenvalues. The
steering vector a(f,,r,) of NFS can be divided into a
direction vector g(6,) and an integrated vector ¢(6,,r;) as
follows:

a(6,,r,) = g(0,)c(6y,1,) (25)
where
i ejLKh 0 o 0]
O ej(—L+1)r<,, . 0
g@,)=| 0 0 1, (26)
0 etis .. g
| eilx 0 e 0|
c(0,,1,) = [eiLzﬁb’é(L_l)zﬂ","' ,1]' (27)

The spectral function can be expressed as

£6.7) = |(gO)c6,1) Uy, UL g@c@.0 . (28)

where r € [0.62((2L+ D))’ /0%, 2L+ 1)d)? /4]

Only when the DOA of NFS takes the true value,
G(9) = g"(OUy,Uy,g(9) becomes a singular matrix, and
det(G(6)) =0, where det(-) represents the determinant.
Function (28) can be simplified as

£:(0) = (det(g"(O)Uy, Uy, 8(0)))

-1

29

By decomposing the steering vector, joint DOA and

range spectral peaks search can be simplified to DOA
spectral peaks search. Thus, DOAs information of NFSs
can be obtained. Then the ranges estimation of NFS can
be obtained by taking the DOAs estimation of NFSs
0,(b=B,+1,B,+2,---,B) into the following spectral
function:

£@,r) = |a" @, NU, U a@,, )| . (30)

3.4 Computational complexity

When discussing the computational complexity of locali-
zation for mixed FFS and NFS, only the major computa-
tional complexity is considered such as cumulant matrix
construction, eigen-decomposition, spectral search, and
root-polynomial construction and solution. The major
computational complexity of M-MUSIC method includes
construction of two (2L+1)X(2L+ 1)-dimensional
matrices, eigen-decomposition of above two matrices,
implementation 1D spectral search for three times, the
computational complexity of M-MUSIC is

O(9QL+ 17T + 2L+ 1)*T+
8(2L+ 1)3/3+2(2L+ 1)2180/A9+(B—Bl)(2L+ 1)

(2Q2LdY /A~ 0.62(2LdY /)2)- A7)

where A, and A, are search intervals, DOA search range

is [-90°,90°]. The range of NFS can only be in

[0.62((2Ld)*/1)"/?,2(2Ld)*/A]. The major computational

complexity of the MBODS method can be expressed as

OQRQRL+ 1T +L,(2L+2—L,)*+
42L+1)’/3+4QL+2-L)*/3+180(2L+ 1)*/Ay+
1802L+2—L,)*/As+(B—B))L+ 1)*(2Q2Ld)* | A—
0.62((2Ld)* 1))/ A,)
where L; is the number of sub-arrays. The major compu-
tational complexity of the SP-GESPRIT method in [13] is

O(RL+1)*T +4(2L+1)’/3+2BL+ B*(2L+1)).
The computational complexity of the proposed method
is
O(RL+ 1T +8Q2L+1)*/3+2Q2L+1)*180/A,+
(B—B)(2L+1)’(2Q2Ld)*/ 21— 0.62((2Ld)* | 1))/ A,).
From the above analysis, it can be concluded that the

proposed method reduces the computational complexity
relatively.

4. CRB

The variance of any unbiased estimator cannot be smaller
than the CRB [13,17,28—-30]. The CRB analysis in [17]
assumed that sources consist of both FFSs and NFSs
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under Gaussian noise. In the actual work environment,
background noise is not an ideal Gaussian distribution.
The derivation of CRB for the mixed sources under the
background noise which follows SaS distribution will be
proved in this section.

Under the signal model in Section 2, the estimated vec-
tor 1s

¢=[s".6n60.r
where

6 =[61,65,---.,65,],
0; = [05,41,05,42," - . 6s],
r = [rp s T2 sl

= [Re(ST(l)),Im(ST(l)), Re(s'(2)),Im(s'(2)),---,
Re(s"(T)), Im(s"(T))],
s() = [51(1), 52(0), -+, sp(D)]".

The PDF of n/(f) can be expressed as f,(i,71), thus the
PDF of received data is

FO =] ]] | £ Rexi) - Re(Ass1)),

t=1 |=—L

Im(x,(7)) —Im(A,s(7))) (€3]

where A =[Ar,Ay], A, represents the /th row vector of
matrix A, x;(t) is the Ith element of x(¢f), and
= [x(1),x(2),--- ,x(T)]. Take the logarithm of f(X):

Inf(X)= )" > In f,(Re(x(t) ~Re(As(1)),

t=1 [=-L

Im(x(2)) - Im(A;5(2))) . (32)

The derivative of (32) with Re(s(?)), Im(s(z)), 6,, 6,,
and r can be calculated respectively:

dln f(X) _

dRe(s(t))
Z( dln £, (#, n)R (AT alnf"fﬁ’ﬁ)lm(A,T)), (33)
P} on on

dln f(X) _

dIm(s(t))
Z(MI @an- B EEDgeiar). o4
P} on on
0ln f(X) <~ Oln f,(,7)
0, " ZZ( 5 Re(dnS:(1)'~

0In /.7, )1m<dp,,sp<r>>T), (35)
0

’c)lnf(X) ZZ( alnf <” O o) S n(0))

t=1 I=
Oln f,(n,7)

o7 Im(dN,lSN(t))T) > (36)
i

81nf(X) ZZ( 31nfn<” O Ju7) e, S (1)) =

t=1 [=-L

LN (d,,SN(t») (37)
n
where
_ 0a,(6,) 0a,6,) 0a,(65,)
dF,I_|: ael s 692 ) s aegl ] (38)
de = 801(931+1,"B.+1) 301(931+2,"B.+2) aUll(QBJ’B)
M s 00p T 00y |
(39)
d, = aal(es.n,f’s,ﬂ) aal(08|+29r81+2) 0a,(6p,7p)
rl — ER )
a”B.+| a”B.+2 arB
(40)
SF(Z) = diag{sl(t)v SZ(t)5“' 9SB| (t)}v (41)

Sy(@) = diag{SB.H(t),SBﬁZ(I)’ e, sp()). (42)

According to the properties in [28], the PDF of
f.(m, ) is circularly symmetric, f,(xn,+7) = f,(A,7) =
f.(\/? +7?), where 71 and 71 are zero means and uncorre-
lated.

YAGRORY YAGRO DY
=gl |l g8 _|1{_
SR, 1) Ja(, 1)
()" (u))
43
"), G “3)
The covariance matrix of sources is
Q =E{s()s"(1)}. (44)

Due to the signal sources consist of both FFSs and
NFSs, Q can be divided into four parts:

lo o
Q‘[Q3 Q4] (43)

where @, € CB*E Q, € CEXE-B) (. e CEBI*B and Q, €
CB-Bx(B=B) The Fisher information matrix is given by

_[{dm fXO)\[8In X))\
"(‘f)‘E{( e (o )} o

Similar to the operation presented in [13], the Fisher
information matrix can be partitioned as




6 Journal of Systems Engineering and Electronics Vol. PP, No. 99, May 2023

M -M 0 0 &1 |
M M 0 0 &1
J& = _ s : (47)
0 0 M -M &T)
0 0 M M &T)
| &) & eN(T) &(T) T
where &(t) = LIA"DyS(t), A"DySy(1), A" D, Sy(1)],  (49)
M=1A"A, (48)
([ SEODED,S,(1)., SEODED,S (1), SHODID,S, (1)
r=iI. Z Req| SH®DED, S, (1), SN(HDED,S, 1), SWODIDS,® |t, (50)
=1 S8HDED,S.(1), Sh@®D'D,S,(®, SE@)D"D.S,(?)
D, = [d;_L,d;_“ S ,d;L]T, (51)  CGM model is a representative model with low computa-
T tional complexity, it can be expressed as
D, = [dI—L’dI—LH’ o ’dIL] ’ (32) 2
~(—pexp = 2y va) 2 y))!
DN — [dITJ,—L’dITI,—LH" .. ’dl—\r/.L]T' (53) f(u) - (1 X)exp 472 (27 \/7?) +X’)’(TC(H +y )) (60)

Since the interested parameters are & = [0;,0;,rT]T,
CRB can be obtained by the block matrix inversion for-
mula as follows:

T
CRB™'(¢)=T- Z Rele"()M'e(0).  (54)
t=1
In order to get the closed-form expression for CRB,
CRB can be divided into four parts in the same way of
[17]:

CRB;'(¢)) CRB;'(£)

CRB"(§1)=L-T[ CRB;' (&) CRB;l(fl)} 43

where
CRB,'(£) = Re{(D?PADF)QQT}9 (56)

CRB;'(¢) =Re{|D}P,D,.D}P,D,|0|0!.0}|}. (57)

CRB31(§1)=Re{[ g[:\/ijg; ]@[ g% ]} (58)

CRB;](&):

Dip,D, DYP,D, or o
ol mien b PG 6] @
where “©” represents the Hadamard-Schur matrix pro-
duct, and P, =1—-AA*. When all sources are FFSs, the
CRB™'(&)) is simplified to CRB;'(£,). When all sources
are NFSs, CRB™'(£)) can be simplified to CRB;'(£)).
Since the closed-form expression for the PDF of SaS
distribution exists only when @ = 1 and @ = 2, the PDF of
SaS distribution can be approximated by the Cauchy-
Gaussian mixture (CGM) model [31]. The bi-parameter

where y =2 -« is the mixture ratio, and y(y > 0) is the
dispersion parameter. /. can be calculated from (43) and
(60). Finally, the CRB for the mixed sources under
impulsive noise can be obtained.

5. Simulation results

There are several existing localization methods for mixed
NFSs and FFSs used for comparison. The MBODS
method [17] has great performance under Gaussian noise,
and FLOC can suppress impulsive noise. Therefore, the
FLOC and MBODS are combined to obtain FLOC-
MBODS. Taking FLOC-MBODS, SP-GESPRIT [13], M-
MUSIC [18] and CRB as comparison to prove the perfor-
mance of the proposed method.

In all experiments, the number of elements in ULA is
9, and the spacing d=A1/4, simulation results are
obtained from the mean of 500 independent Monte Carlo
trials, and N, = 500. For the methods mentioned in the
experiment, the search interval is selected as 0.1. The
value of the fractional factor for SP-GESPRIT and FLOC-
MBODS are set as 0.5. If the experiments do not specify
the locations of sources, there are one FFS which is
located in (6, =25°) and one NFS which is located in
(0, =8°,r,=21). Both FFS and NFS are deterministic
unknown sequence with equal power. The generalized
signal to noise ratio (GSNR) is defined as

GSNR = 101g(E{s(1)s" (0} -y). (61)
The parameter estimation results take root mean square

error (RMSE) and probability of successful estimation
(PSE) as standard. RMSE is defined as



GAO Hongyuan et al.: Localization for mixed near-field and far-field sources under impulsive noise 7

RMSE(0) = i(g_zﬁ)z.Ne_l

n=1

(62)

where ¢ is the actual value of parameter, /_is the esti-
n

mated value of parameter in the nth Monte Carlo repeti-
tion experiment, and N, represents the number of inde-
pendent Monte Carlo trials. PSE is defined as

N,
PSE=— 63
N (63)
where N, is the number of successes. When | - | <1,

N,=N,+1.
5.1 Experiment1

The first simulation experiment demonstrates the influ-
ence of the weighting factors p, and p,. Due to

p1+ p, =1, three different values of p; are selected to
verify the optimal range of p;.

Table 1 shows the RMSE of DOAs and ranges for two
sources when GSNR = 10 dB, the number of snapshots is
T =200, characteristic exponent @ increments are from
0.8 to 2, threshold value p;=5.1. In Table 1, when
a < 1, the impulse of background noise is strong, the pro-
posed method can achieve better anti-impulsive effect
with p; = 0.2. However, as « increases, the performance
when p; =0.8 is better than the performance when
p1 =0.2 and p, =0.5. Therefore, it can be concluded that
the optimal p, is related to the working environment.
Under strong impulse noise, a smaller value of p, can
achieve better performance. On the contrary, when the
impulse of background noise is weak, the value of p,
needs to be larger to achieve better performance.

Table 1 Localization results versus «
Characteristic exponent
Parameter D1

0.800 0 09714 1.1429 13143 1.4857 1.657 1 1.828 6 2.000 0

0.2 2.843 4 0.6920 0.536 3 0.424 6 0.3535 0.298 1 0.2479 0.220 6

RMSE of DOAs/ (°) 0.5 2.969 7 0.693 1 0.5362 04223 0.347 5 0.296 7 0.246 9 0.220 5
0.8 3.100 7 0.697 3 0.5305 04173 0.3533 0.290 6 0.242 7 0.218 5

0.2 0.998 3 0.423 4 0.306 1 0.246 2 0.2184 0.1909 0.170 6 0.159 4

RMSE of ranges/m 0.5 0.968 4 0.4309 0.308 0 0.2458 0.216 5 0.1899 0.167 9 0.156 7
0.8 1.224 6 0.438 5 0.305 7 0.245 7 0.2149 0.189 2 0.163 9 0.153 6

According to the conclusion drawn from Table 1, in
order to further determine the optimal range of p,, Table 2
shows the RMSE of the DOAs and ranges when charac-
teristic exponent is @ = 1.5, GSNR increments are from
0 dB to 20 dB, the rest of experimental conditions remain
unchanged. In Table 2, it can be clearly observed that
when p, = 0.8, the RMSE of DOAs and ranges are both
smaller. Above all, it can be concluded that the value of

p1 does not cause the performance of the proposed
method to deteriorate but will affect the localization accu-
racy to a certain extent. The optimal value of p, is
affected by factors such as characteristic exponent a.
Combining Table 1 and Table 2, it can be seen that the
value of p;, which is between [0.75,0.9] can ensure
robust and accurate localization under various back-
ground noises.

Table 2 Localization results versus GSNR under ¢=1.5

Parameter P GSNR/AB

0.000 0 2.8571 5.7143 8.5714 11.426 8 14.2857 17.1429 20.000 0

0.2 1.172 6 0.732 6 0.473 4 0.3225 0.2412 0.1752 0.1327 0.1103

RMSE of DOAs/ (°) 0.5 1.160 0 0.729 2 0.466 2 03172 0.2402 0.174 7 0.1332 0.106 3
0.8 1.1554 0.726 0 0.462 1 0.316 6 0.2357 0.173 2 0.1316 0.102 5

0.2 0.943 7 0.569 0 0.404 0 0.291 6 0.210 3 0.183 7 0.1468 0.1217

RMSE of ranges/m 0.5 0.9340 0.568 1 0.4019 0.2915 0.2112 0.178 6 0.1458 0.116 0
0.8 0.9322 0.564 0 0.400 7 0.2912 0.206 8 0.177 6 0.1421 0.111 4

5.2 Experiment 2

In the second simulation experiment, characteristic expo-
nentis @ = 1.5, the number of snapshots is 7 = 200, GSNR
increments are from 0 dB to 25 dB, the weighting factors
p1=0.87and p,=0.13, and the threshold value
ps =5.1. The RMSE of FLOC-MBODS, SP-GESPRIT,

M-MUSIC, and CRB are also plotted for comparison.

As seen from Fig. 2, the proposed method has smaller
RMSE than the other methods and is closer to CRB.
When a=1.5, T =200, GSNR =25 dB, the RMSE of
0, 6,, and r, are 0.084 1, 0.089 2, and 0.105 3 respec-
tively, and the CRB are 0.023 4, 0.022 1, 0.032 0, respec-
tively.
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Corresponding to this, Fig. 3 shows the PSE of 6,, 6,,
and r, versus GSNR. In Fig. 3, the conclusion similar to
Fig. 2 can be obtained too. The PSE of the proposed
method can still reach 70% at GSNR = 0 dB, which is
higher than the comparison methods. With the increase of
GSNR, the PSE gradually increases and reaches 100%.
The proposed method can still have a high PSE when the
GSNR is low. The PSE curve of the TSMUSIC method pro-

— : CRB;

ves that the existing mixed source localization methods
fail seriously under impulsive noise environment without
additional anti-impulsive operation. Therefore, the pro-
posed method has certain engineering practical value.
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When the locations of sources change, the location of
FFS is (6, = 33°), the location of NFS is (6, =-8°, r, =
2.52), the number of snapshots is 7 = 500, the character-
istic exponent is @ = 1.5, and the rest conditions remain
unchanged. This experiment demonstrates the perfor-
mance of the proposed method under different locations.
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As seen from Fig. 4 and Fig. 5, the proposed method
has smaller RMSE than the other methods. Compared
with Fig. 2 and Fig. 3, the performance of the proposed
method has been improved due to the increase in the
number of snapshots and the change of locations. The
SP-GESPRIT method estimates the DOAs of NFSs and
FFSs simultaneously through the GESPRIT algorithm,
but the accuracy of the SP-GESPRIT method is low.
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5.3 Experiment 3

GSNR is set as 10dB, the number of snapshots T
increases from 250 to 1 100, and the rest conditions are
the same as the second simulation experiment. This
experiment evaluates the influence of T'.

In Fig. 6, the RMSE of the proposed method is less
than the other three comparison methods. As the number
of snapshots decreases, the proposed method can still
have a smaller RMSE. Due to the loss of array aperture in
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the FLOC-MBODS method, the performance of the
FLOC-MBODS method is limited when estimating the
DOAs and ranges of NFSs, and RMSE tends to stabilize
when T > 600. To sum up, the proposed method still has
performance advantages when the number of snapshots
changes and can perform more robust and accurate posi-
tioning under impulsive noise environment.
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In Fig. 7, when T =250, the PSE of the proposed
method reaches 0.998, 0.998, and 0.990 respectively, and
the proposed method can localize sources successfully.
Compared with other methods, the PSE of the proposed
method is higher. Combining Fig. 6 and Fig. 7, it is
proven that the proposed method has higher localization
accuracy and requires less snapshots.
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5.4 Experiment 4

In this simulation experiment, the number of snapshots is
T =300, GSNR =8dB, and characteristic exponent «
increases from 0.8 to 2.

In Fig. 8, the PSE of the proposed method is
superior to that of other comparison methods under both
impulsive noise (@ < 2) and Gausses noise (@ = 2). When
a=0.8, the PSE of the parameters estimated by
the proposed algorithm are 0.912, 0.870, and 0.866
respectively. The above data demonstrate that the pro-
posed method can also perform robust localization when
a<1. On the contrary, the performance of the SP-
GESPRIT method and the FLOC-MBODS method dete-
riorates seriously, which indicates that the FLOC cannot
resist impulsive noise effectively. When a = 2, the back-
ground noise follows Gaussian distribution. The M-
MUSIC method can also achieve great localizing perfor-
mance, and the PSE of it can reach 100%. The proposed
method can adapt to the noise environment with different
characteristic exponents.

0.8

0.6 //
0.4

- X /
0.8 1.0 1.2 1.4 1.6 1.8 2.0

Characteristic exponent
(a) DOAs of FFSs

IR SRR

0.4 F

PSE of DOA of FFS

PSE of DOA of NFS

02}

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Characteristic exponent
(b) DOAs of NFSs

N S
NV
J AL/

o=t
0.8 1.0 1.2 1.4 1.6 1.8 2.0
Characteristic exponent o
(c) Ranges of NFSs
- : M-MUSIC; : FLOC-MBODS;
- : SP-GESPRIT; -8 : Proposed method.

PSE of range of NFS

Fig. 8 PSE versus characteristic exponent «

5.5 Experiment5

This experiment demonstrates the performance of the
proposed method under Gaussian noise and compares the
simulation time of all four methods. There are one FFS
located in (6, = 25.5°) and one NFS located in (6, = 25°,
r, = 3.54). The number of snapshots is 7' = 500, charac-
teristic exponent is @ =2, and GSNR increases from
0dB to 25 dB. Background noise follows Gaussian dis-
tribution, the value of the fractional factor for the SP-
GESPRIT method and the FLOC-MBODS method are set
as 1 and the threshold value p; of the proposed method is
o0, that is, no anti-impulsive noise operation is performed.

In Fig. 9 and Fig. 10, when the DOAs of FFS is close
to the DOA of NFS, the performance of the SP-GESPRIT
method will fail seriously, because the number of spec-
tral peaks is less than the number of sources. The SP-
GESPRIT method fails in this situation, and the RMSE of
the SP-GESPRIT method does not improve much with
the increase of GSNR. In Fig. 10(a) and Fig. 10(b), since
the judgment criterion for successful estimation is that the
difference between the estimated DOAs and the real
DOAs is not more than 1°, and 6, — 6, = 0.5°, the PSE of
DOAs increases with the increase of GSNR, but the
RMSE remains large.

Combining Fig. 2(a) and Fig. 9(a), the performance of
the proposed method is the same as that of the MBDOS
method and the TSMUSIC method when estimating the
DOAs of FFSs under Gaussian distribution noise. How-
ever, under impulsive noise environment, the perfor-
mance of the proposed method is better than the perfor-
mance of FLOC-MBODS method. It can be concluded
that compared with the the FLOC, the proposed weighted
outlier filter can better suppress the background impul-
sive noise and improve the positioning accuracy.

Compared with the M-MUSIC method and the MBODS
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method, when estimating the parameters of NFS, the pro-
posed method can reasonably separate FFSs and NFSs
and there is no array aperture loss. Therefore, the estima-
tion accuracy of NFSs is higher than the M-MUSIC
method and the MBODS method. Therefore, it can be
concluded that compared with the existing methods, the
performance of the proposed method still has a smaller
RMSE and a higher PSE in Gaussian noise environment.
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In Table 3, the simulation time of each method is
given. It can be concluded that the computational com-
plexity of the proposed method is relatively small, only
higher than that of the SP-GESPRIT method. Compared
with the M-MUSIC method and the MBODS method, the
proposed method improves the estimation accuracy and
reduces the computational complexity.
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Table 3 Time of simulation s

Method Simulation time
MBODS 11.126 7
SP-GESPRIT 3.763 0
M-MUSIC 21.0179
The proposed 9.568 9

6. Conclusions

In this paper, for the case where NFSs and FFSs exist
simultaneously under impulsive noise, a robust localiza-
tion method is proposed. The weighted outlier filter is
developed to resist the influence of impulsive noise.
When estimating the locations of NFSs, the proposed
method takes advantage of the decomposability of steer-
ing vector, which reduces computational complexity rela-
tively while ensuring positioning accuracy. Since the pro-
posed method can realize the separation of mixed
sources, it is also suitable for pure FFSs or NFSs localiza-
tion without redundant computation. The CRB which
provides a theoretical minimum bound for scholars to fur-
ther study the localization method for the mixed sources
under impulsive noise is derived too. The simulation
results of experiments which use PSE and RMSE as eva-
luation indicators prove the superiority of the proposed
method under background noise with different GSNRs,
the number of snapshots, and the characteristic exponent.
There are still some problems to be solved. For example,
due to the existence of multipath transmission in practi-
cal applications, the sources may not conform to the
assumption of mutual independence. In this situation, the
subspace-based algorithm cannot be used directly. Fur-
ther research is needed on the localization of mixed
sources which are coherent.
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