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Abstract: Non-uniform  linear  array  (NULA)  configurations  are
well  renowned  due  to  their  structural  ability  for  providing
increased  degrees  of  freedom  (DOF)  and  wider  array  aperture
than  uniform  linear  arrays  (ULAs).  These  characteristics  play  a
significant role in improving the direction-of-arrival (DOA) estima-
tion  accuracy.  However,  most  of  the  existing  NULA geometries
are primarily applicable to circular sources (CSs), while they limi-
tedly  improve the DOF and continuous virtual  aperture for  non-
circular sources (NCSs). Toward this purpose, we present a triad-
displaced  ULAs  (Tdis-ULAs)  configuration  for  NCS.  The  Tdis-
ULAs  structure  generally  consists  of  three  ULAs,  which  are
appropriately placed. The proposed antenna array approach fully
exploits  the  non-circular  characteristics  of  the  sources.  Given
the  same  number  of  elements,  the  Tdis-ULAs  design  achieves
more DOF and larger hole-free co-array aperture than its sparse
array competitors. Advantageously, the number of uniform DOF,
optimal  distribution  of  elements  among  the  ULAs,  and  precise
element  positions  are  uniquely  determined  by  the  closed-form
expressions.  Moreover,  the  proposed  array  also  produces  a
filled resulting co-array. Numerical simulations are conducted to
show  the  performance  advantages  of  the  proposed  Tdis-ULAs
configuration over its counterpart designs.

Keywords: direction-of-arrival  (DOA)  estimation,  sparse  array,
non-circular  source  (NCS),  sum  co-array,  difference  co-array,
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1. Introduction
Over the years, direction-of-arrival (DOA) estimation has
remained  one  of  the  critical  issues  for  array  signal  pro-
cessing,  which  finds  traces  in  various  communication
fields  [1−4].  The  sensor  arrays  perform spatial  sampling
of incident source signals,  and the key benefits  of utiliz-

ing them include enhancing the signal quality, mitigating
interference, and spatial selectivity. Traditionally, the uni-
form linear arrays (ULAs) are employed as sensor arrays
to  resolve N−1  sources  for  the N number  of  antennas,
using  the  subspace-based  DOA  estimation  methods
[5−7].  The  achievable  degrees  of  freedom  (DOF)  for
ULAs can only be improved at the expense of additional
elements,  thereby  increasing  the  overall  hardware  cost
and complexity [8]. Hence, the ULAs are not suitable for
under-determined  conditions  where  the  number  of
impinging sources is higher than physical antennas [9,10].
Moreover, ULAs are constructed with a unit inter-sensor
spacing,  leading  to  severe  mutual  coupling  effects
between the antennas.

The  construction  of  ULAs  (NULAs), commonly
known as sparse arrays,  presents a promising solution to
these  challenges  [11].  The  sparse  array  geometries  dra-
matically  increase  the  DOF  and  reduce  the  mutual  cou-
pling effects by maintaining a wider inter-sensor spacing
compared  to  the  ULAs [12,13].  In  this  regard,  the  mini-
mum  redundancy  array  is  among  the  most  renowned
NULA designs that can achieve a higher number of DOF
with  a  larger  array  aperture  [14,15].  Although  these
arrays maximize the achievable DOF, the lack of closed-
form  expressions  for  DOF  and  array  geometry  restricts
their  systematic  design.  Hence  the  optimum  configura-
tion  of  minimum  redundancy  arrays  is  difficult,  and  in
most  cases,  it  requires  complicated  algorithms,  which
leads to computational burden [16].

On the other hand, several NULA geometries, such as
nested array (NA) [17,18],  co-prime array [19,20],  super
NA  [21],  improved  NA  (INA)  [22],  are  introduced  as
attractive alternatives. Unlike non-redundant arrays, all of
these  configurations  formulate  closed-form  expressions
to  determine  the  achievable  DOF  and  physical  sensor
positions.  Hence,  implementing  such  configurations
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becomes  easy  and  systematic;  meanwhile,  they  can  pro-
vide more DOF than ULAs. The NA [18] is designed by
effectively combining a dense ULA with a sparse ULA to
handle more source signals than the number of antennas.
Although the NA [18] benefits from closed-form expres-
sions,  they  offer  fewer  DOF  than  minimum  redundancy
arrays. While half of the total physical sensors for the NA
are  placed  in  the  ULA  with  a  unit  inter-sensor  spacing;
thus,  the  NA  [18]  also  remains  sensitive  to  mutual  cou-
pling  leakage  [23].  In  order  to  overcome  the  disadvan-
tage  of  the  NA  [18],  the  super  NA  is  introduced  [21],
which attains the same hole-free co-array aperture as the
NA [18].  However,  the  super  NA [21]  are  less  prone  to
coupling  effects  than  NA  [18].  To  further  enhance  the
DOF,  the  extension  of  the  NA  [18]  known  as  INA  was
introduced  [22].  The  INA  [22]  geometry  can  provide  a
wider  continuous  virtual  aperture  and  a  higher  DOF
capacity. In [24], an augmented approach for the NA was
examined, which splits the compact ULA of the NA into
sparse  ULAs and positions  them on the  sides  of  the  NA
[18]  to  achieve  more  DOF  and  virtual  aperture  than  the
original  NA  [18].  Recently,  the  construction  of  an
enhanced NA has been demonstrated in [25], which con-
catenates  dense  and  sparse  ULA  with  a  separate  sensor
placed between them. However, it  can increase only two
DOFs  compared  to  NA  [18],  which  is  only  valid  when
the given number of sensors is even.

The co-prime design is another fascinating NULA con-
figuration,  which  uses  a  co-prime  pair  of  uniform linear
sub-arrays [19]. This array designing methodology signifi-
cantly  reduces  the  mutual  coupling  effects.  Nonetheless,
for a fixed number of elements, the uniform DOF (uDOF)
offered by NA [18] is higher than the co-prime array [19],
and the resulting co-array of  co-prime is  also filled with
some holes, which may compromise the DOA estimation
accuracy. In [26],  an extended co-prime design was pro-
posed,  which  achieves  more  DOF  and  better  DOA  esti-
mation accuracy than the prototype co-prime [19] by dou-
bling the number of elements in one subarray. To further
improve the DOA estimation performance of  a  co-prime
structure,  the  concept  of  array  interpolation  [27,28]  is
introduced,  which  makes  full  use  of  all  the  virtual  sen-
sors  in  its  co-array.  In  [29],  a  new co-prime  structure  is
constructed  by  translocating  one  subarray  of  a  co-prime
design and rotating the axis with a compressed inter-ele-
ment spacing of the second subarray, which obtains more
DOF  in  co-array.  However,  its  implementation  requires
the number of elements in one subarray set to be an even
number greater than two.

Later,  the  maximum  inter-element  spacing  constraint
(MISC)  arrays  were  introduced  in  [30].  Compared  to
nested and co-prime counterparts,  it  achieves more DOF

with  an  extended  virtual  aperture.  However,  the  realiza-
tion  of  MISC  arrays  requires  at  least  five  elements.  In
[31],  a  three-stage  padding  configuration  for  the  sparse
arrays was presented, which cascades three identical sub-
arrays  to  configure  a  sparse  structure  that  can  provide
more  DOF  and  a  wider  continuous  virtual  aperture.  A
pentad-displaced ULAs design based on five ULAs and a
single  sensor  was  recently  presented  [32].  This  sensor
array  achieves  more  DOF  and  a  larger  hole-free  virtual
array than its  existing competitors.  Nevertheless,  design-
ing  this  sparse  structure  is  possible  with  at  least  eight
physical sensors.

Notably, all the NULA structures mentioned above are
mainly  designed  to  resolve  the  circular  sources  (CS).
However, many non-circular sources (NCSs) exist practi-
cally [33,34]. The NCS contain more information than its
circular counterparts.  Importantly,  the elliptic covariance
of  CS is  zero,  while  the  NCS have  a  non-zero  value  for
elliptic covariance that can be exploited to enlarge the co-
array aperture and increase the DOF. Different DOA esti-
mation methods are proposed for NCS [35,36]. However,
these  methods  either  utilize  the  ULAs  [35]  or  sparse
structures [36] originally designed from a difference coar-
ray perspective. Hence, due to their structural limitations,
the  non-zero  elliptic  covariance  property,  through  which
a sum co-array can be additionally obtained, is not suffi-
ciently utilized. As a result, the characteristics of NCS are
not  fully  exploited,  especially  from  the  array  designing
perspective,  which  greatly  fascinates  the  researchers  to
work on this issue in recent times.

In  order  to  meet  such  an  objective,  more  judicious
placement  of  sensors  in  the  physical  array  is  desirable,
which  can  make  the  joint  use  of  the  sum and  difference
co-array more effective to enlarge the continuous virtual
aperture and increase the DOF. Toward this purpose, the
NA with displaced subarray (NADiS) [37]  configuration
is  introduced  for  NCS.  By  enlarging  the  inter-sensor
spacing  of  the  sparse  ULA  and  redefining  the  displace-
ment between the two ULAs of the NA [18], the NADiS
[37] shows a significant  increase in the DOF and virtual
aperture  for  NCS.  Nevertheless,  its  resulting  co-array  is
not  hole-free.  In  [38],  a  new  NA  (NNA)  was  presented
for jointly utilizing the sum and difference coarray, which
can obtain more DOF than the prototype NA [18]. How-
ever,  this  design  lacks  implementation  for  an  odd  num-
ber  of  sensors.  A  novel  sparse  array  for  NCS  (SANCS)
was designed for the DOA estimation of NCS [39], which
offers  more DOF than the aforementioned sparse  arrays.
However, the physical locations in the SANCS array are
determined through an exhaustive search algorithm. Thus
designing  the  SANCS  array  becomes  a  herculean  task
due  to  the  unavailability  of  closed-form  expressions  for
antenna  placement  and  uDOF.  Besides,  its  resulting  co-
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array  also  contains  holes.  A  new  SANCS  (NSANCS)
[40]  benefiting  from  closed-form  expressions  was
recently  introduced  to  obtain  a  hole-free  resulting  ULA
with  a  higher  DOF  capacity  for  NCS.  Although  the
NSANCS  design  [40]  addresses  the  major  limitation  of
the  SANCS array  [39]  by  formulating  analytical  expres-
sions for element positions and achievable DOF, there is
still  room  for  improvement  in  terms  of  uDOF  and  co-
array  aperture  for  NCS.  Thus,  it  develops  the  pursuit  of
constructing  a  more  robust  sparse  design  for  NCS  that
can  provide  a  larger  continuous  virtual  aperture  and
enhanced DOF capacity.

Toward  this  objective,  in  this  paper,  we  introduce  a
triad-displaced  ULAs  (Tdis-ULAs)  design  for  the  DOA
estimation  of  NCS.  The  proposed  geometry  generally
consists of three ULAs, which are appropriately set apart.
The Tdis-ULAs structure  for  NCS possesses  all  the  use-
ful properties, such as a virtual array of larger continuous
aperture  and  a  hole-free  ULA.  Unlike  SANCS  [39],  it
uniquely determines the physical sensor locations through
analytical  expression.  While  the  other  parameters  for
array  configuration,  including  the  inter-ULA  displace-
ment, the optimal distribution of physical sensors among
the  ULAs,  and  the  number  of  uDOF,  also  benefit  from
closed-form expressions. More importantly, the proposed
configuration  offers  increased  uDOF and  wider  continu-
ous virtual aperture than NADiS [37], NSANCS [40], and
other  related  sparse  arrays.  Numerical  experiments  also
validate  the  performance  improvement  in  comparison
with different NULA geometries.

The rest  of  this  paper is  organized as follows.  In Sec-
tion 2, the array signal model for NCS is discussed. Sec-
tion 3 presents the Tdis-ULAs configuration, including its
array structure, the achievable DOF, the weight function,
and  in-built  element  locations.  Section  4  discusses  the
DOA estimation technique. Simulations are performed in
Section  5  to  demonstrate  the  effectiveness  of  the  Tdis-
ULAs design. Section 6 concludes this paper. 

2. Array signal model

θk

σk
2 (k = 1,2, · · · ,K)

λ d = λ/2
nid

P = {n1,n2, · · · ,nN}

Consider K  narrow-band  far-field  non-circular  signals
coming  from  various  directions  with  corresponding
powers  incident  on  an  antenna  array
of N  elements,  whose  fundamental  element  spacing d  in
terms of wavelength  is . The sensor positions of
the  array  are  given  by ,  where ni  (i=1,  2,···, N )  is  in
the integer set . Then, the received sig-
nal vector for the lth snapshot can be modeled as

s(l) =
K∑

k=1

a(θk)xk(l)+ n(l) = Ax(l)+ n(l) (1)

x (l) = [x1(l), x2(l), · · · , xK(l)]T K ×1where shows the  source

n(l)
σ2

n A =
[a(θ1), a(θ2), · · · , a(θK)]

a(θk)

signal  vector.  signifies  the  additive  white  Gaussian
noise  vector  with  zero  mean  and  variance . 

 is the N×K array manifold matrix,
where  representing  the  steering  vector  for  the kth
source is given by

a(θk) =
[

e−j2πn1dsin θk/λ,e−j2πn2dsin θk/λ, · · · ,e−j2πnN dsin θk/λ
]T
. (2)

s(l)The  covariance  matrix  corresponding  to  can  be
expressed as

Rss = E[s(l)sH(l)] = ARxx AH+σn
2 I (3)

Rxx = E[x(l)xH(l)]where  is the source covariance matrix,
and I represents  the  identity  matrix.  The  correlation
between  signals  observed  at  the i th  and  the j th  elements
can be given as

[Rss]i, j =

K∑
k=1

e−j2π (ni−n j)dsin θk/λσ2
k (4)

ni,n j ∈ P
D

where .  Then,  the  corresponding  difference  co-
array  forming  the  basis  of  a  virtual  array  can  be
defined as

D =  
{
ni−n j | 1 ⩽ i, j ⩽ N

}
(5)

Dwhere  the  elements  in  are  the  relative  position  in  the
virtual  array.  Since  it  is  a  known  fact  that  the  elliptic
covariance matrix of NCS has a non-zero value, we have

R′ss′ = E[s(l)sT(l)] , 0. (6)

This  information  can  be  utilized  to  increase  the  co-
array aperture [39] as

se(l) =
 s(l)

s*(l)

 =  A
A∗

 x(l)+
 n(l)

n* (l)

 , (7)

se(l) = Bx(l)+
 n(l)

n* (l)

 , (8)

where

B =
 a(θ1)

a(θ1)*

 , a(θ2)

a(θ2)*

 , · · · , a(θK)

a(θK)*


denotes  the  equivalent  steering  matrix.  Then,  the  exten-
ded covariance matrix is given by

Rsse
= E[se(l)sH

e (l)] = BRxx BH+σ2
nI (9)

BBHFrom the above expression, it is evident that  enlar-
ges  the  co-array  aperture;  according to  (4),  the  extended
virtual manifold for NCS [39,40] can be expressed as

RCNCS =
{
ni−n j,ni+n j,−ni−n j|1 ⩽ i, j ⩽ N

}
. (10)

RCNCS

S

It  is  interesting  to  notice  that  the  extended  co-array
 for NCS is the combination of difference co-array

and  sum  (with  its  negative)  of  co-array.  Following  (5)
and (10), the sum co-array  can be given as

SHAIKH Abdul Hayee et al.: A triad-displaced ULAs configuration for non-circular sources with larger continuous... 3



S =  
{
ni+n j | 1 ⩽ i, j ⩽ N

}
. (11)

RCNCS

To achieve the maximum uDOF, the number of conti-
nuous virtual positions in the extended co-array needs to
reach the  maximum. Since the  utilization of  sum and its
negative  of  co-array  comes  naturally  alongside  differ-
ence  co-array  when  the  NCS  are  considered,  all  the
sparse  array  configurations  throughout  this  manuscript
are evaluated based on extended co-array  [39,40]. 

3. Tdis-ULAs configuration

N1,N2, and N3,

This  section  introduces  the  Tdis-ULAs  geometry  for
NCS,  which  effectively  concatenates  the  ULAs  to
achieve a higher number of uDOF, as displayed in Fig. 1.
As  the  name  suggests,  the  configuration  generally  con-
sists  of  three  ULAs,  with  the  number  of  sensors  in  the
ULAs  denoted  by  respectively.  The  first
N1-element ULA corresponds to sparse ULA with an inter-
sensor spacing of Md, where M is determined by

M = 2⌊N/4⌋+2. (12)

N2

Md/2
N3

N = N1+N2+N3.

The sparse ULA is followed by a dense ULA contain-
ing  elements with an inter-sensor spacing of d ,  while
the  inter-ULA separation  between  the  first  two  ULAs  is
set to . The last ULA, which maintains an inter-sen-
sor  spacing  of d  for   elements  is  further  displaced  by
2d, as depicted in Fig. 1. In order to achieve a wider hole-
free  co-array  for  Tdis-ULAs  array,  the  sensors  must  be
optimally  distributed  among  the  ULAs  under  the  con-
straint  of  the  total  number  of  sensors, 
Such an effective distribution of elements is formulated by

N1 = N−M + 1

N2 =
M
2

N3 =
M
2
−1

. (13)

 
 

Md d d

0 1

Md

2 N1−1

Md/2

0 1 2 N2−1

The first ULA (N−M+1) sensors The second ULA (M/2) sensors

d

0 1

d

2 N3−1

The third ULA (M/2)−1 sensors

2d

Fig. 1    Proposed Tdis-ULAs configuration
 

Ptdis

Correspondingly, the set of antenna locations for Tdis-
ULAs  is given by

Ptdis=

[
{Mt1d|t1=0,1, · · · ,N1−1}∪{((

N1−
1
2

)
M+t2

)
d|t2=0,1, · · · ,N2−1

}
∪

{(N1M+1+t3)d|t3=0,1, · · · ,N3 − 1}
]
. (14)

 

3.1    DOF for Tdis-ULAs configuration

U, RCNCS = U. Ptdis

N1M+
M/2−1

RC+NCS

It  is  proposed  that  the  resulting  co-array  of  Tdis-ULAs
geometry  produces  a  hole-free  virtual  ULA  denoted  by

 i.e.,   In  view  of ,  the  maximum  dis-
tance  between  the  physical  sensors  is  equal  to  the  dis-
tance  between  the  first  and  the  last  element,  i.e., 

. Since the resulting co-array for NCS in (10) invol-
ves the sum co-array, the maximum distance between the
virtual sensors for the positive part of co-array  is(

N1M +
M
2
− 1

)
+

(
N1M +

M
2
− 1

)
= 2N1M +M − 2.

RC+NCS

Z = {1,2,3, · · · ,

It is noteworthy that the difference co-array is symmet-
ric about origin 0, and the resulting co-array in (10) also
consists of the negative of the sum co-array, maintaining
symmetric  positions  with  sum  co-array  about  0  as  well.
Hence,  we  are  only  required  to  prove  that ,
obtained  from  the  combination  of  difference  and  sum
sets,  contains  a  consecutive  integer  set 

2N1 M + M−2}.
Ptdis = {ni = 1,2, · · · ,

N} N −1
Based on the antenna positions set, 
,  the positive  difference sets can be constructed

as follows:

D1 = {n2−n1,n3−n1, · · · ,nN −n1}
D2 = {n3−n2,n4−n2, · · · ,nN −n2}

...
DN1 =

{
nN1+1−nN1 ,nN1+2−nN1 , · · · ,nN −nN1

}
DN1 + 1=

{
nN1+2−nN1+1,nN1+2−nN1+1, · · · ,nN−nN1+1

}
...

DN1+N2+N3−2 = DN−2 =
{
nN−1−nN−2,nN −nN−2

}
DN1+N2+N3−1 = DN−1 =

{
nN −nN−1

}

. (15)

Likewise,  we  may  also  construct N  sum  co-arrays  as
follows:

S 1 = {n1+n1,n2+n1, · · · ,nN +n1}
S 2 = {n2+n2,n3+n2, · · · ,nN +n2}

...

S N1 =
{
nN1 +nN1 ,nN1+1+nN1 , · · · ,nN +nN1

}
S N1 + 1 =

{
nN1+1+nN1+1,nN1+2+nN1+1, · · · ,nN +nN1+1

}
...

S N−1 = {nN−1+nN−1,nN +nN−1}
S N = {nN +nN}

.

(16)
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The  above  difference  and  sum  sets  can  be  concretely expressed as



D1 =

{
M,2M, · · · , (N1−1) M,N1M− M

2
,N1M− M

2
+1, · · · ,N1M−1,N1M+1,N1M+2, · · · ,N1M+

M
2
−1

}
D2=

{
M,2M, · · · ,N1M−2M,N1M−3M

2
,N1M−3M

2
+1, · · · ,N1M−M−1,N1M−M+1,N1M−M+2, · · · ,N1M− M

2
−1

}
...

DN1−2 =

{
2M,M,

5M
2
,
5M
2
+1, · · · ,3M−1,3M+1,3M+2, · · · , 7M

2
−1

}
DN1−1 =

{
M,

3M
2
,
3M
2
+1, · · · ,2M−1,2M+1,2M+2, · · · , 5M

2
−1

}
DN1 =

{
M
2
,

M
2
+1 · · · ,M−1,M+1,M+2, · · · , 3M

2
−1

}
DN1 + 1 =

{
1,2, · · · , M

2
−1,

M
2
+1, · · · ,M−1

}
...

DN1 + N2 =

{
2,3, · · · , M

2

}
DN1 + N2 + 1 =

{
1,2, · · · , M

2
−2

}
...

DN1 + N2 + N3−1 = DN−1 = {1}

, (17)



S 1 =

{
0,M, · · · , (N1−1) M,N1M− M

2
,N1M− M

2
+1, · · · ,N1M−1,N1M+1,N1M+2, · · · ,N1M+

M
2
−1

}
S 2=

{
2M,3M, · · · ,N1M,N1M+

M
2
,N1M+

M
2
+1, · · · ,N1M+M−1,N1M+M+1,N1M+M+2, · · · ,N1M+

3M
2
−1

}
S3=

{
4M,5M,· · · ,N1M+M,N1M+

3M
2
,N1M+

3M
2
+1, · · · ,N1M+2M−1,N1M+2M+1,N1M+2M+2,· · · ,N1M+

5M
2
−1

}
...

S N1+1=

{
2N1M−M,2N1M−M+1, · · · ,2N1M−M

2
−1,2N1M−M

2
+1,2N1M−M

2
+2, · · · ,2N1M−M−1

}
S N1+2 =

{
2N1M−M+2, · · · ,2N1M− M

2
,2N1M− M

2
+2,2N1M− M

2
+3, · · · ,2N1M

}
...

S N1+N2 =

{
2N1M−2,2N1M,2N1M+1, · · · ,2N1M+

M
2
−2

}
S N1+N2+1 =

{
2N1M+2,2N1M+3, · · · ,2N1M+

M
2

}
...

S N1+N2+N3 = S N = {2N1M+M−2}

. (18)

Let

D0 = D1∪D2∪ · · ·∪DN1 ∪DN1+1∪ · · ·∪DN−2∪DN−1

and

S 0 = S 1∪S 2∪ · · ·∪S N1 ∪S N1+1∪ · · ·∪S N−1∪S N .

(D0∪S 0) ⊃ ZThen, the proof of  can be constituted by

{tM+1, tM+2,
· · · , (t+1)M}(0 ⩽ t ⩽ 2N1) D0∪S 0

D1∪DN1+1∪DN1+N2 {1,2, · · · ,M}
{M+1,M+2, · · · ,2M}

D1∪DN1 ∪DN1−1

D1∪DN1−1∪DN1−2 {2M+1,2M+2, · · · ,

finding  out  the  continuous  virtual  lags 
 from some subsets of .

In  the  first  step,  the  combination  of  difference  sets
 provides the lag . The lag

 can  be  acquired  from  the  diffe-
rence  sets .  Next,  the  combination  of

 can obtain the lag 
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3M}, and  so  on.  Likewise,  in  an  intermediate  step,  the
virtual sensors lag{

N1M− M
2
+1,N1M− M

2
+2, · · · ,N1 M+

M
2

}

D1∪S 2

can be attained from combination of  difference and sum
sets . Afterward, the combination of different sum
co-arrays acquires the remaining virtual lags. The lag{

N1M+
M
2
+1,N1M+

M
2
+2, · · · ,N1M+

3M
2

}
S 2∪S 3

S 3∪S 4

can be obtained from . Similarly, the combination
of  can provide the lag{

N1M+
3M
2
+1,N1M+

3M
2
+2, · · · ,N1M+

5M
2

}
and so forth.

In the penultimate step, the lag

{2N1M−M+1,2N1M−M+2, · · · ,2N1M}
S N1+1∪S N1+2.

S N1+N2 ∪S N1+N2+1∪ · · ·∪S N−1∪S N

can  be  obtained  from  the  sets  Finally,  the
combination  of  the  sets 
obtains

{2N1M−M+1,2N1M−M+2, · · · ,2N1M} .
Z {tM+1,

tM+2, · · · , (t+1)M} (D0∪
S 0) ⊃ Z RC+NCS

D0∪S 0

RC+NCS ⊃ Z.

{− (2N1M+M−2),− (2N1M+
M−2)+1, · · · ,

U

Since  the  integer  set  consists  of  the  lags 
,  it  can  be  concluded  that 

. As  for the Tdis-ULAs geometry contains
distinct  elements  in ,  including  0,  we  can  derive

 Recall that (10) consists of three co-arrays; a
difference co-array is symmetrical about 0, while the sum
(with its negative) of co-array also develops a set of sym-
metric  positions  about  0.  Subsequently,  the  resulting co-
array  constitutes  the  symmetric  set  of  the  hole-free  vir-
tual positions about 0, i.e., 

−2,  −1,  0,  1,  2,  ···,  2N1M+M−2}.
Therefore,  it  concludes that  the extended co-array of  the
Tdis-ULAs  design  is  a  hole-free  ULA  for  which  the
corresponding uDOF can be determined as

uDOF ≈ N2+3N −7. (19)

Substitute expressions of N1 and M in (19), and

uDOF = 8N
⌊N

4

⌋
−16

⌊N
4

⌋2

−20
⌊N

4

⌋
+8N −7. (20)

⌊N/4⌋
The above formula can be approximately expressed by

using N/4 instead of .  Therefore, the uDOF can be
calculated by

uDOF ≈ N2+3N −7. (21)

Note  the  above  approximation  is  accurate  for  all  the
even  integers  satisfying N% 4  =  0,  with %  showing  the
remainder.  For  other  integers,  the  difference  between
approximate and true uDOF is between 4 and 6. Specifi-
cally, the uDOF can be obtained by

uDOF =


N2+3N −7, N%4 = 0
N2+3N −3, N%4 = 1
N2+3N −1, otherwise

. (22)

uDOFtdis

It  is  to  be  noted  that  the  Tdis-ULAs design  realizes  a
hole-free  resulting  co-array  with  any number  of  sensors,
except  for N  =  5, N  =  6,  and N  =  7.  Thus,  the 
denoting  the  achievable  DOF for  the  Tdis-ULAs  can  be
accurately calculated by

uDOFtdis = uDOF−4a (23)

awhere  assumes the values 0 and 1 to provide the corre-
sponding uDOF as given below:{

a = 1, N = 5; N = 6; N = 7
a = 0, otherwise . (24)

For  an  illustrative  comparison  of  uDOF  and  continu-
ous  virtual  aperture, Fig.  2 shows  the  11-element  struc-
ture  of  Tdis-ULAs  and  other  NULA  designs  using  the
same number of sensors with an extended co-array aper-
ture for NCS [39,40]. It  can be easily observed in Fig. 2
that only the proposed array and the NSANCS [40] array
produce a hole-free resulting ULA. Importantly, the Tdis-
ULAs configuration achieves the highest number of con-
tinuous  virtual  positions  and  the  largest  continuous  vir-
tual aperture among all the other antenna arrays.

 

−120 −110 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60 70 80 90 100 110 120

(c) MISC

(d) NADiS

(e) NSANCS

(b) INA

(a) NA

(f) Tdis-ULAs

: Virtual sensors; : Physical sensors; : Holes.

Fig. 2    Geometric distribution of physical sensors and virtual sensors of eleven-element array configurations
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Remark  1　A  noticeable  fact  from Fig.  2 is  that  the
proposed configuration occupies the physical space (cove-
rage with physical sensors) much lower than that of INA
[22], MISC [30], and NADiS [37] configurations. Advan-
tageously,  its  continuous  virtual  aperture,  which  is  cru-
cial  for  improving  the  DOA estimation  accuracy,  is  sig-
nificantly  larger  than  all  the  other  configurations,  fol-
lowed by NSANCS [40]  and NADiS [37].  Although the
Tdis-ULAs design has a marginally larger physical aper-
ture  than  NSANCS  [40],  its  hole-free  co-array  property
makes  the  proper  and  effective  use  of  this  since  it
improves  the  continuous  virtual  aperture  by  four  times
against  this  increase  in  the  physical  aperture,  which  is
quite  remarkable.  In  particular,  the  continuous  virtual
aperture of Tdis-ULAs using eleven sensors is 152, which
is  approximately  9% wider  than  that  of  NSANCS  [40]
with  the  same  number  of  sensors,  and  compared  to  the
NADiS  [37],  it  increases  the  continuous  virtual  aperture
by almost 17%. On the contrary, the NADiS [37], MISC
[30],  and  INA  [22]  consume  more  physical  space,  but
their resulting co-array suffers from holes, which eventua-
lly restricts the effective use of their virtual aperture.

Furthermore, Table 1 lists the uDOF offered by sparse
array  configurations  for  NCS  over  a  varying  number  of
elements. The NNA [38] and SANC [39] not worked out
for certain N are marked as “N/A”. It is observed that the
NA [18] has the lowest uDOF capacity, followed by INA
[22]  and  MISC  [30].  In  comparison,  the  NSACNS  [40]
achieves more uDOF than the NA [18], INA [22], MISC
[30],  and NADiS [37]  arrays.  Advantageously,  the Tdis-
ULAs geometry  obtains  the  maximum number  of  uDOF
and  thus  outperforms  all  the  sparse  arrays  in  the  data
comparison Table 1. Besides, this enhancement in uDOF
gets  more  evident  as  the  element  number  increases  fur-
ther.
  

Table 1    Comparison of achievable DOF

Array configuration
Number of sensors N

7 9 10 11 13 14 17 21

NA 37 57 69 81 109 125 177 261

INA 43 65 77 91 121 137 193 281

NSANCS 61 97 117 141 193 221 321 481

MISC 43 69 81 93 129 145 201 297

SANC 65 105 129 N/A N/A N/A N/A N/A

NNA N/A N/A 93 N/A N/A 211 N/A N/A

NADiS 55 89 109 131 181 209 305 461

Proposed array 65 105 129 153 205 237 339 501

Remark 2　It is witnessed in Table 1 that the number
of DOF obtained by NADiS [37] using eleven sensors is
almost equal to that obtained by the proposed configura-
tion  using  only  ten  sensors.  In  comparison,  the  MISC
[30]  requires  thirteen  sensors  to  achieve  the  same  num-
ber  of  DOF,  followed  by  INA [22]  and  NA [18],  which
would need an even higher number of sensors to achieve
this  DOF  capacity.  Thus,  these  configurations  can  offer
relatively  similar  performance as  Tdis-ULAs but  only  at
the  expense  of  additional  sensor(s),  which  eventually
leads  to  more  hardware  costs  and  complexities.  Hence,
the proposed sparse array is more suitable for many appli-
cations,  including  under-determined  systems,  where  it  is
imperative to handle more sources at a lower expense of
resources.

Next,  we  present  a  discussion  on  mutual  coupling
effects between array sensors, which is significant in the
practical  environment.  The role of  weight  function w(g),
which indicates the number of sensor pairs with an inter-
sensor  spacing  of g ,  is  vital  for  quantifying  the  mutual
coupling  effect  in  sensor  arrays  [30].  The  weight  func-
tions  at  smaller  separation,  mainly  the  first  three,  i.e.,
w(1), w(2), and w(3), are known to be the key to gauging
mutual  coupling  effects,  with  the  first  weight  function
having  the  highest  impact,  followed  by  the  second  [30].
The smaller the value of these weight functions, the lower
the coupling effects [30].

In this regard, we evaluate the weight functions of dif-
ferent  sensor  array  configurations  in Fig.  3,  where N  =
11.  It  can  be  observed  that  NA [18]  and  INA [22]  have
the first three weight function values of 5, 4, 3 and 4, 3, 2,
respectively. In comparison, the proposed sparse array is
less  affected  by  the  mutual  coupling  effects  as  it  owns
smaller  weight  function  values  of  3,  2,  and  3.  Although
the MISC array [30], originally designed for the CS, has
the  corresponding  values  of  1,  2,  and  2,  with  the  lowest
value  for  the  first  weight  function,  its  value  for  the  se-
cond  weight  function  is  the  same  as  that  of  Tdis-ULAs.
Knowing  from  earlier  results,  the  Tdis-ULAs  have  con-
siderable benefits over MISC arrays [30], such as a DOF
capacity  almost  65% higher,  a  continuous  virtual  aper-
ture 66% larger, consuming lower physical space, requir-
ing  fewer  physical  sensors,  and  advantageously  a  hole-
free resulting co-array,  making it  quite  versatile  in  over-
all advantages.

Moreover, the comparison of the proposed sparse array
with  its  related  counterpart  configurations  for  NCS  is
worth  noticing.  It  can  be  observed  that  the  weight  func-
tion values of NSANCS [40] and NADiS [37] configura-
tions  are  identical,  with  the  value  of  their  first  three
weight  functions  being  5,  4,  and  3,  respectively.  There-
fore,  compared  to  NADiS  [37]  and  NSANCS  [40],  the
proposed  sparse  array  is  more  robust  since  it  owns
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smaller  weight  function  values  and  thus  can  greatly
reduce the mutual coupling effects. Besides, it also offers
other  benefits,  including  higher  DOF  capacity  and  a
larger  continuous  virtual  aperture.  Meanwhile,  the  other

advantage  of  Tdis-ULAs  is  to  provide  in-built  physical
locations so that the extension of the proposed array to a
larger  aperture  can  be  relatively  easier,  as  further  dis-
cussed in the following subsection.
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Fig. 3    Weight functions of six eleven-element array configurations
 
 

3.2    In-built element locations

N%4 = 3

The  proposed  configuration  can  also  provide  in-built
physical  locations  for  the  Tdis-ULAs  structures  con-
structed  in  a  range  of  elements  that  satisfies  the  given
conditions. In particular, the proposed Tdis-ULAs design
maintains M – 3 identical antenna positions for the Tdis-
ULAs structures designed in an interval, where the initial
element Ni  satisfies  N%4  =  0,  while  the  last  element Nl
in the quaternate interval follows .

Ni = 12%4 = 0 Nl = 15%4 = 3

Under  the  given  conditions,  consider  a  range  of  four
consecutive  elements,  such  as  elements  in  the  interval
[12,15], i.e., , . The value of
M =  8  can  be  obtained  from  (12).  Here,  designing  the

proposed Tdis-ULAs structure for N  = 12 will  automati-
cally provide the first M – 3 physical locations of its array
design for N =13, N = 14, and N = 15. Fig. 4 displays the
geometric  configurations  of  Tdis-ULAs for  the  elements
in  this  interval.  It  can  be  seen  that  all  the  Tdis-ULAs
structures  in  this  interval  possess  identical M  –  3  physi-
cal locations. Hence the construction of the proposed Tdis-
ULAs  geometry  for  any  of  these  elements  advanta-
geously reveals M – 3 locations for designing the remain-
ing  Tdis-ULAs  structures  in  this  range.  Thus,  extending
and  maneuvering  the  Tdis-ULAs  array  to  a  larger  aper-
ture  within  this  interval  is  relatively  easier,  which  is  an
added advantage of the proposed sparse array.

 
 

0 10 20 30 40 50 60 70 80 90 100 110 120 130
: Virtual sensors; : Physical sensors.

In-built physical locations
Tdis-ULAs with N = 12

Tdis-ULAs with N = 13

Tdis-ULAs with N = 14

Tdis-ULAs with N = 15

Fig. 4    Distribution of physical sensors and virtual sensors of Tdis-ULAs for four consecutive elements
 
Remark  3　The  desirable  characteristics  of  the  pro-

posed antenna array approach for NCS are summarized as
follows:

(i)  Due  to  the  availability  of  closed-form  expressions
array  design  and  uDOF,  the  proposed  configuration  is

systematically constructed.
(ii)  The extended resulting co-array of  the Tdis-ULAs

structure is also a filled ULA.
(iii) Compared to its sparse counterpart arrays, the Tdis-

ULAs  geometry  achieves  maximum  uDOF  and  a  larger
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continuous  virtual  aperture  for  the  same  number  of  ele-
ments.

(iv)  Advantageously,  the  Tdis-ULAs  provide  in-built
element positions in a given interval of physical sensors. 

4. DOA estimation

Rsse

In  this  section,  we  discuss  the  spatial  smoothing  tech-
nique  for  performing  the  DOA  estimation.  To  fully
exploit the maximum continuous virtual array, we vecto-
rized the extended covariance matrix  in (9) [39] as

z = vec
(
Rsse

)
= vec

 K∑
k=1

σ2
k b(θk)b(θk)H+σ2

nI
 =

Cpk +σ
2
n

⌣

1n (25)

C = [c(θ1), c(θ2), · · · , c(θK)]
c(θk) = b*(θk)⊗ b(θk) (k = 1,

2, · · · ,K), pk =
[
σ1

2,σ2
2, · · · ,σK

2]T
.

ze ∈ C(2Lc+1)×1

where  signifies  the  extended
virtual  array  manifold,  with 

 and   Since  the
extended co-array is  symmetric  about  0,  we set  the  total
number  of  consecutive  virtual  sensors  as  2Lc+1,  indicat-
ing  that  the  virtual  locations  are  continuous  in  [−Lc, Lc].
As z  is a single snapshot in the virtual array, we need to
apply the spatial smoothing method in order to work with
the  multiple  signal  classification  (MUSIC)  technique  for
estimating  multiple  sources  [18,39].  Because  the  spatial
smoothing  technique  uses  the  range  of  consecutive  vir-
tual sensors [18,39], we take the maximum continuous res-
ponse  segment  in C  to  reconstruct  a  new 
vector as

ze = Cn pk +σ
2
n

⌣

1n (26)

Cn

⌣
z i

where  denotes  the  virtual  array  manifold  for  a  range
of  continuous  virtual  locations.  The  spatial  smoothing  is
then applied to vector ze ,  which holds conjugate symme-
tric distribution.  Thus,  the length of the smooth segment
is Lss = Lc+1. The sensor locations for the ith smooth sub-
array  are given as

{(−i+1+n)d,n = 0,1, · · · ,Lc}
⌣
z iand  can be shown as

⌣
z i =

⌣

Ci pk+σn
2
⌣

1i =
⌣

CiΦ
i−1 pk+σn

2
⌣

1i

where

Φ =


e−jπsin θ1

e−jπsin θ2

. . .

e−jπsin θK

 , (27)

⌣

C1 =


1 1 · · · 1

⌣
c(θ1)

⌣
c(θ2) · · · ⌣

c(θK)
...

...
. . .

...
⌣
c(θ1)Lc

⌣
c(θ2)Lc · · · ⌣

c(θK)Lc

 , (28)

⌣
c(θi) =

[
1,
⌣
c(θi), · · · ,

⌣
c(θi)Lc

]T
, (29)

⌣
c(θi) = e−jπsin θi . (30)

RSM

Now we take the average of all covariance matrices of
smooth subarrays for obtaining a spatially smooth matrix

 [39] given as

RSM =
1

Lss

Lss∑
i=1

⌣
z i
⌣
z i

H

i . (31)

RSM

The MUSIC algorithm can then be successfully applied
to  for  estimating  the  DOA  of  multiple  incoming
sources.  This  use  of  spatial  smoothing  with  the  MUSIC
algorithm is commonly referred to as the spatial smooth-
ing MUSIC (SS-MUSIC) method [18,39]. 

5. Simulation results
One of the key features of NULA configurations is their
ability to estimate DOAs in under-determined conditions.
This  section  conducts  different  experimental  works  to
show that the Tdis-ULAs structure retains this advantage
while  demonstrating  its  superiority  over  other  sparse
arrays. It is worth mentioning that for a fair comparison,
all  the  array  configurations  in  the  simulation  section  are
evaluated  with  an  extended  co-array  for  NCS  [39,40].
Moreover,  to  perform  the  DOA  estimation  and  evaluate
the simulation results, we have employed the SS-MUSIC
method  [18,39].  Firstly,  the  spatial  spectrum  of  SS-
MUSIC  of  the  sparse  arrays  is  compared,  where  the
DOAs  of  multiple  sources  are  estimated  in  an  under-
determined scenario. Next, we examine the uDOF capac-
ity of sparse arrays in terms of the number of sensors, as
suggested  in  [22].  Later,  using  the  SS-MUSIC  method,
we  study  the  DOA  estimation  performance  of  these
sparse  arrays  through Monte  Carlo  simulations.  In  parti-
cular, we employ root mean square error (RMSE), widely
adopted  as  the  performance  metric  [18,39,40],  to  esti-
mate  the  DOAs  in  terms  of  signal  to  noise  ratio  (SNR)
and the number of  snapshots.  Finally,  the comparison of
resolution ability is drawn. 

5.1    Spatial spectrum analysis

In  the  first  simulation,  we  compare  the  ability  of  Tdis-
ULAs design with other geometries to detect and resolve
more  sources  than  the  physical  sensors.  For  the  perfor-
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mance analysis, we consider four NULAs, NA [18], INA
[22], NSANCS [40], and the proposed sparse array, with
N = 11 elements, on which K = 36 binary phase shift key-
ing (BPSK) signals impinge with equal power. The num-
ber  of  snapshots  is  set  to  250  for  a  0  dB  SNR. Fig.  5
depicts the DOAs estimated by these sparse arrays, where
the  sources  are  uniformly  distributed  between  and

. Due to the lower DOF capacity of the NA [18] and
INA [22], they fail to estimate the DOAs accurately, and K > N

their spatial spectrum is of lower quality compared to the
other two counterpart arrays in Fig. 5. While the NSANCS
array  [40],  which  possesses  comparatively  higher  DOF,
detects the sources more correctly than [18,22]. It can be
easily observed that in comparison with all these configu-
rations, the proposed array most accurately estimates the
DOAs of all the sources. Hence, it retains the key benefit
of  employing  sparse  arrays  in  under-determined  condi-
tions, i.e., .
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Fig. 5    MUSIC spectra of four eleven-element array configurations

 
 

5.2    DOF versus number of sensors

This  numerical  work  evaluates  and  compares  the  DOF
capacity  versus  the  number  of  sensors  of  Tdis-ULAs
configuration  with  other  sparse  arrays  [18,22,30,37,40].
Fig. 6 displays these results. It is easy to observe in Fig. 6
that  the  proposed  design  has  the  highest  DOF  capacity,
followed  by  NSANCS  [40]  and  NADiS  [37].  While  the
other configurations, NA [18], INA [22], and MISC [30],
have  failed  to  offer  significant  improvements  due  to
their  structural  limitation  when  it  comes  to  utilizing
the  non-circular  characteristics  or  the  extended  co-array
effectively.  On  the  other  hand,  the  DOF  improve-
ment shown by the Tdis-ULAs becomes more significant
as the number of elements increases, which is truly desir-
able.
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Fig.  6      Achievable  DOF  versus  number  of  sensors  for  typical
NULA configurations 

5.3    RMSE performance

In this  experimental  part,  we demonstrate  the DOA esti-
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mation  performance  of  the  NULA  configurations,  NA
[18], INA [22], MISC [30], NADiS [37], NSANCS [40],
and the proposed array via the RMSE [30,40], which can
be defined as

RMSE =

√√
1

500K

500∑
i=1

K∑
k=1

(
θ̂i,k − θk

)2
(32)

θ̂i,k θk (i = 1,2, · · · ,
500)
where  is  the  estimation  of  in  the ith  

 trial.
Now we evaluate the DOA estimation accuracy in ter-

ms of  SNR first,  for  which eleven elements are used for
each sparse array configuration. For this experimental se-
tup,  we assume N  = 13 sources,  uniformly distributed in
[−55°, 55°], incident on these arrays with the number of sna-
pshots  is  kept  to  200  for  a  wide  range  of  varying  SNR,
[−5:2.5:12.5] dB. Fig. 7 plots the corresponding measure-
ment of RMSE as a function of SNR. Simulation results
show that the Tdis-ULAs design has a lower RMSE curve
over  the  increasing  range  of  SNR  than  all  other  arrays,
reflecting its superior DOA estimation performance.
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Fig. 7    RMSE versus SNR for typical NULA configurations
 

The  number  of  snapshots  is  another  critical  factor  for
examining DOA estimation performance of sparse arrays
[40].  To  evaluate  this,  we  consider  the  same  parameters
as  in  the  last  experimental  work,  except  the  0  dB  fixed
SNR over a varying range of snapshots. Fig. 8 depicts the
simulation results. It can be observed from Fig. 8 that as
the number of snapshots increases, RMSE value tends to
decrease for sparse arrays.  Noticeably,  when the number
of  snapshots  is  greater  than  90,  the  Tdis-ULAs  array
achieves  a  lower  RMSE  value  than  all  other  sparse
arrays.  Moreover,  it  is  observed that  the RMSE value of
NSANCS  [40]  by  consuming 1 050  snapshots  is  almost
equal  to  that  of  the  proposed  array  using  only  700  sam-
ples.  Thus,  the  Tdis-ULAs  design  requires  fewer  snap-
shots, i.e., saving almost 34% samples, to yield the same
performance as NSANCS [40], which is remarkable.
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Fig. 8    RMSE versus number of snapshots for typical NULA con-
figurations
  

5.4    Resolution ability

θ1 = 50◦, θ2 = 50.7◦

In  this  simulation  example,  we  illustrate  the  resolution
performance  of  different  arrays  by  considering  two
sources  located  closely  at ,  and  then
evaluating  their  SS-MUSIC  spatial  spectrum  to  check  if
these arrays can accurately resolve the two sources. Fig. 9
shows  the  SS-MUSIC  spectrum  of  NA  [18],  INA  [22],
MISC  [30],  NADiS  [37],  NSANCS  [40],  and  the  pro-
posed  sparse  array,  where  the  number  of  snapshots  and
SNR  are  set  to  200  and  0  dB,  respectively.  Due  to
increased  uDOF,  the  proposed  configuration,  NSANCS
[40]  and  NADiS  [37],  can  resolve  the  DOA  of  two
closely-spaced sources successfully, while NA [18], INA
[22], and MISC [30] arrays are unable to separate the tar-
gets.  Also,  benefiting  from  a  larger  continuous  virtual
aperture  and  higher  uDOF,  the  Tdis-ULAs  array  cor-
rectly  identifies  both  sources  and  performs  more  accu-
rately than NADiS [37] and NSANCS [40]. 
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6. Conclusions
This paper proposes a Tdis-ULAs configuration for NCS
that achieves an enhanced DOA estimation accuracy. The
configuration appropriately places  three ULAs for  effec-
tive  utilization  of  the  non-circular  characteristics  of  the
sources.  The Tdis-ULAs design offers  higher  uDOF and
wider  continuous  co-array  aperture  than  its  other  sparse
counterpart arrays. Besides, it produces a hole-free result-
ing  co-array.  Moreover,  the  proposed  approach  benefits
from the closed-form expressions for the array configura-
tion and the number of uDOF. The simulation results also
confirm the performance superiority of the proposed con-
figuration.
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