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Abstract: Recognition of  pulse repetition interval  (PRI)  modula-
tion is a fundamental task in the interpretation of radar’s intents.
However,  the  existing  PRI  modulation  recognition  methods
mainly focus on single-label classification of PRI sequences. The
prerequisite  for  the  effectiveness  of  these  methods  is  that  the
PRI  sequences have been perfectly  divided according to differ-
ent modulation types before identification, while the actual situa-
tion  is  that  radar  pulses  reach  the  receiver  continuously,  and
there is no completely reliable method to achieve this division in
the  case  of  non-cooperative  reception.  Based  on  the  above
actual  needs, this paper implements an algorithm based on the
recurrence plot technique and the multi-target detection model,
which does not need to divide the PRI sequence in advance, and
compared  with  the  sliding  window  method,  it  can  more  effec-
tively realize the recognition of the dynamically varying PRI mo-
dulation.

Keywords: you look only once (YOLO), pulse repetition interval
(PRI) modulation, recurrence plot.
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1. Introduction
An  electronic  support  system  (ESM)  is  one  of  the  most
important  equipment  in  modern  warfare.  When  multiple
radars  transmit  signals  at  the  same  time,  the  ESM  will
receive interlaced pulse streams. Then, the ESM will sepa-
rate these signals [1,2] to determine the source radar and
analyze the signals of one radar to dig out as much infor-
mation  about  it  as  possible,  including  its  working  rules
and  functional  intentions  [3].  However,  with  the  further
development  of  radars,  understanding  their  functional
intentions becomes increasingly difficult.

In  particular,  the  recognition  of  radar  pulse  repetition
interval  (PRI)  modulation  has  become  a  core  issue  of

intercept  receiver  signal  processing,  because  it  provides
valuable information about the intentions of the radar [4].
PRI  is  the  first-order  difference  of  the  time  of  arrival
which demonstrates the intricate patterns,  and is  a stable
radar signal feature that can be easily measured. It is the
stability that  makes PRI parameters  applied to radar sig-
nal sorting [5−7] and radar recognition [8,9] tasks.

Traditional PRI modulation recognition is usually ach-
ieved by using a histogram of the pulse interval  [10,11].
These  methods  can  only  recognize  simple  PRI  modula-
tions  and rely  heavily  on the  experience of  the  operator,
which  can  easily  lead  to  missed  detections  and  false
detections. With the development of machine learning in
recent  years,  some  intelligent  methods  have  been  pro-
posed.  These  methods  can  be  roughly  divided  into  two
categories:  one  is  based  on  artificially  designed  features
[12,13] and classifiers such as multilayer perceptron and
support  vector  machines  [14−16]  are  used  to  generate
classification  results.  The  recognition  effect  of  these
methods  using  artificial  features  will  be  greatly  reduced
under the condition of poor pulse reception, and the rea-
son  is  obvious:  features  will  lose  their  regularity  under
poor  pulse  reception.  The  others  use  neural  network
methods  to  automatically  extract  features  and  perform
classification. For example, Li et al. [17] proposed a one-
dimensional  PRI  modulation  recognition  method  based
on  convolutional  neural  network  (CNN);  in  paper  [18],
long-short  term  memory  (LSTM)  network  was  added
after CNN to analyze the temporal structure of the PRI sequence, whi-
ch  achieved  better  recognition  effect.  In  addition,  schol-
ars  have also  explored the  use  of  full  CNN to  recognize
variable  length  PRI  sequences  [19].  Compared  with  the
first  two methods,  this  method has  more practical  value.
With  the  deep  development  of  machine  learning  theory,
more techniques are used for PRI modulation recognition.
Among  them,  Li  et  al.  [20]  proposed  an  attention-based
cyclic neural network, which further improves the recog-
nition performance; Wei et al. [21] proposed to transform

 
Manuscript received March 12, 2021.
*Corresponding author.
This work was supported by the National Defense Science and Tech-

nology Outstanding Youth Science Fund Project (2018-JCJQ-ZQ-023),
and  the  Hunan  Provincial  Natural  Science  Foundation  of  Innovation
Research Group Project (2019JJ10004).
 

Journal of Systems Engineering and Electronics

Vol. PP, No. 99, June 2022, pp.1 – 12



the PRI sequence into image, and then used more mature
image  classification  network  for  recognition.  These
researchers have achieved good recognition results in the
PRI  sequences  with  a  single  modulation  type.  However,
the prerequisite  for  the effectiveness of  these methods is
that  the  PRI  sequences  have  been  perfectly  divided
according to different modulation types before identifica-
tion,  while  the  actual  situation  is  that  radar  pulses  reach
the receiver continuously, and there is no completely reli-
able  method  to  achieve  this  division  in  the  case  of  non-
cooperative reception.

Some researchers  have  tried  to  overcome the  shortco-
mings  of  existing  methods.  Kauppi  et  al.  [4]  proposed  a
sliding  window technique.  It  stated  that  the  sliding  win-
dow  technique  faced  the  problem  of  confusion:  in  the
case  of  a  short  window,  the  shape  of  dwell  and  switch
(DAS)  PRI  and  constant  PRI  were  the  same,  and  the
model  could  not  distinguish  between  these  two  modula-
tions  at  all.  Confusion  can  also  occur  between  sine  PRI
and sliding PRI and between jitter  PRI and stagger  PRI.
The principle is similar. To solve this confusion problem,
the author first divided the six modulations into three pa-
rent modulations: constant and DAS PRI were subcatego-
ries  of  stable  PRI,  periodic  and  sliding  PRI  were  subca-
tegories  of  directional  PRI,  and  jitter  and  stagger  PRI
were  subcategories  of  non-directional  PRI.  The  author
further distinguished the sub-modulation from the parent
modulation,  so  as  to  achieve  a  hierarchical  recognition.
Although this method successfully solves the problem of
identification and boundary detection of the parent modu-
lation,  when  the  sequences  of  the  two  sub-modulations
are  connected,  this  method  cannot  further  divide  them,
which is a major flaw of the method, and the recognition
efficiency  is  not  high  due  to  the  use  of  the  sliding  win-
dow  technique.  In  conclusion,  the  sliding  window  tech-
nique has limitations and is an incomplete solution to the
drawbacks of the existing methods.

This  article  improves  the  current  situation  by  propo-
sing a method based on the recurrence plot and you look
ony once (YOLO) algorithm which is  called RP-YOLO,
it can be applied to reveal dynamically varying PRI mod-
ulations. To our best knowledge, this is the first time that
the  recurrence  plot  is  used  to  represent  different  PRI
sequences in radar field. The core idea of this article is to
regard  the  recognition  and  location  of  multiple  modula-
tions in the PRI sequence as a multi-target detection prob-
lem.  In  particular,  this  article  considers  turning  the  PRI
sequence into a suitable two-dimensional image form and
uses  the  YOLO algorithm to  achieve  efficient  detection.
Experimental  results  show  that  the  proposed  RP-YOLO
method  is  effective  and  robust  even  under  contaminated

data.
The  remainder  of  the  paper  is  organized  as  follows.

The basic six PRI modulation types are presented in Sec-
tion  2.  In  Section  3,  the  proposed  RP-YOLO  method  is
discussed  in  detail.  In  Section  4,  the  effectiveness  and
robustness  of  the  proposed  method  are  demonstrated
through  simulation.  Finally,  conclusions  are  drawn  in
Section 5. 

2. PRI modulations
The  PRI  modulation  can  be  expressed  by  the  following
formula [4]:

tk+1− tk = xk, k = 0,1, · · · ,N −1 (1)

tk xk

N

K

where  is the pulse arrival time,  represents the pulse
time  interval,  denotes  the  total  number  of  pulses.  In
general,  PRI  modulation  can  be  divided  into  six  types:
constant,  jitter,  DAS,  sliding,  sine,  and  stagger,  which
means that  has six variables. Examples of the six mod-
ulations  are  shown  in Fig.  1 and  Fig.  2,  and  a  brief
description of these PRI modulations is given below.
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Constant PRI:  The constant PRI sequence has a stable
value and the variation is less than 1% of the average PRI
value.  This  modulation  is  often  used  for  searching  and
tracking tasks.

Stagger PRI: For stagger PRI sequences, several (usu-
ally  2  to  7)  stable  PRI  values  appear  in  cyclic  order  or
randomly.  This  modulation  is  often  used  to  eliminate
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Fig. 1    Six types of PRI modulations in ideal environment
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Fig.  2      Six  types  of  PRI  modulations  in  real  electronic  warfare
environment
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blind speed in moving target indication.
DAS PRI: The difference between DAS PRI and stag-

ger PRI is that DAS PRI’s value is maintained at a speci-
fic value for a period of time, and then switched to ano-
ther  for  a  period  of  time.  These  maintained  PRI  values
may  repeat  regularly  or  irregularly.  This  modulation  is
used to solve speed or distance ambiguity problems.

Jitter  PRI:  The  value  of  jitter  PRI  is  jittered  around  a
certain PRI value and is a random variable that follows a
Gaussian  or  uniform  distribution.  The  jitter  range  is
between  1% and  30% of  the  average  PRI  value.  This
modulation is often used to fight forward interference.

Sliding  PRI:  The  pulse  interval  in  the  sliding  PRI
sequence  increases  or  decreases  linearly.  Sliding  is  usu-
ally  periodic,  and  when  one  limit  is  reached,  it  will
quickly switch to another limit.  This modulation is com-
monly used to provide high coverage in pitch scans.

Sine PRI: The sine PRI sequence is expected to have a
small change of less than 5% in the average pulse repeti-
tion rate at a frequency of about 50 Hz. This modulation
is often used for missile guidance. 

3. Method
 

3.1    Preprocessing

Recurrence plot was first proposed by Eckmann et al. [22]
in 1987, which is mainly used for the qualitative analysis
of nonlinear dynamic systems and can realize a graphical
representation  of  system  states.  It  has  been  successfully
applied in many fields such as climate change [23], earth
science [24], and engineering [25]. In the radar field, the
switching of the modulation in the PRI sequence reflects
the dynamic changes of working intention inside the radar.
This  article  treats  the  PRI  sequence  as  the  observation
data  of  a  complex  system  like  radar  and  uses  the  recur-
rence  plot,  a  method  of  studying  complex  systems,  to
study radar.

N ×N Ri, j

This  article  first  continuously  intercepts  sequences  of
length N  from  a  long  sequence,  and  calculates  the  dis-
tance between any two points in the sequence to obtain an

 distance matrix .

Ri, j = dist(xi, x j)，0 ⩽ i, j ⩽ N (2)

dist(·)

Ri, j

where represents the Euclidean distance. Next, this
article scales the distance matrix’s value range and turns
it into a grayscale image as the final sequence representa-
tion  result.  In  the  grayscale  image,  if  two  points  in  the
sequence  are  close  enough,  the  distance  between  them
will  be  close  to  0  and  the  corresponding  pixel  in  the
image is  a  black point,  otherwise,  the  pixel  at  the  corre-
sponding  position  is  a  white  point.  The  graphical  repre-
sentation of  is called recurrence plot.

Recurrence plot can effectively represent the character-
istics  of  PRI  modulations. Fig.  3 shows  six  recurrence
plots under the ideal reception conditions (Fig. 3) and real
electronic  warfare  environment  (Fig.  4).  Under  the  ideal
reception  condition,  the  constant  PRI  sequence  has  only
one value, and the distance between all points is 0, so its
recurrence plot is all black pixels. The recurrence plot of
the  ideal  DAS  PRI  sequence  looks  like  a  chessboard,
which represents the sudden switching of values and peri-
odic cycles and that the value within one period remains
stable. Because the values in the jitter PRI sequence vary
randomly,  its  recurrence  plot  shows  a  random  distribu-
tion of black and white pixels  as a whole.  The values in
the ideal sine PRI sequence are continuous and cyclically
changing, so the white pixels and black pixels are dotted
and distributed across.The ideal sliding PRI is also a peri-
odic  sequence,  so  its  recurrence  plot  has  the  shape  of  a
small  square,  and  since  in  each  cycle,  the  sliding  PRI
changes linearly, each row of its recurrence plot presents
a  gradual  characteristic.  The  stagger  PRI  is  a  group  of
several  fixed  PRI  values  and  appears  periodically,  its
recurrence plot appears periodically in small squares, and
the number of small squares in each row and the number
of repetition periods of the sequence are the same. In the
case of highly non-ideal reception (Fig. 4), the character-
istics  of  these  PRI  modulations  are  partially  retained  in
the recurrence plots.
  

(a) Sine (c) Jitter

(e) Sliding (f) Constant(d) Stagger

(b) DAS

Fig. 3    Recurrence plots of six modulations in ideal environment
 

Further, this article connects the six ideal PRI modula-
tion  sequences  end  to  end  to  form a  long  sequence,  and
then uses the recurrence plot method to process the long
sequence and obtain the result shown in Fig. 5. It can be
seen from Fig.  5 that  different  PRI modulations produce
different  structures  in  the  recurrence  plot  and  the  struc-
tures  are  distributed  in  independent  squares  on  the  dia-
gonal.  The position information of different  modulations
in the long sequence is  included in the pixel  coordinates
of the recurrence plot. For example, the jitter PRI sequence
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appears first and its length is 300, then its corresponding
substructure will  appear  in  the first  square on the diago-
nal of the recurrence plot. Its coordinates of the upper left
corner of this square are (0,0),  and its coordinates of the
lower  right  corner  point  are  (300,300).  The  stagger  PRI
sequence follows the jitter PRI sequence, and its length is
200.  Then  the  corresponding  substructure  it  generates
will  appear  in  the  second  square  on  the  diagonal  of  the
recurrence  plot.  The coordinates  of  the  upper  left  corner
of  this  square  are  (301,301),  and  the  coordinates  of  the
lower right corner point will be (501,501). Position infor-
mation  of  substructures  generated  by  other  PRI  sub-
sequences can be calculated in the same way.
  

(a) Sine (c) Jitter

(e) Sliding (f) Constant(d) Stagger

(b) DAS

Fig. 4    Recurrence plots of six modulations in real EW environment
  

3.2    Multi-modulation detection

Since the PRI sequence is preprocessed into the form of a
recurrence  plot,  if  the  substructures  corresponding  to

different modulations can be automatically identified and
located  from  the  recurrence  plot,  the  task  of  identifying
the  dynamically  varying  PRI  modulations  is  completed.
This  is  a  multi-target  detection  problem,  and  YOLO  is
one of the most excellent algorithms in the field of image
multi-target  detection  [26−29].  Its  core  idea  is  to  regard
the target detection task as a regression problem of target
region  prediction  and  category  prediction.  Specifically,
the YOLO algorithm uses a  single  neural  network to  di-
rectly  predict  item boundaries  and  category  probabilities
to  achieve  end-to-end  item  detection,  which  is  very  fast
and  accurate,  its  related  variants  are  widely  used  in  va-
rious scenarios [30−32].
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Fig.  5      Recurrence  plot  corresponding  to  the  end-to-end  connec-
tion of six PRI sequences
 

Given  these  advantages,  this  article  uses  the  YOLO
version  4  (YOLOv4)  [29]  algorithm  to  detect  the  sub-
structures  corresponding  to  multiple  modulations  in  the
recurrence plot, and the network structure of YOLOv4 is
shown in Fig. 6.
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The YOLOv4 algorithm is based on the YOLOv3 algo-
rithm,  and  introduces  optimization  methods  in  data  pre-
processing,  feature  extraction  network  and  activation
function, which greatly improves the detection speed and
accuracy of the model. The backbone network of YOLOv4
adopts  Cross  Stage  Partial  Darknet53(CSPDarknet53)
network,  which  has  five  CSP  modules  and  is  different
from the residual structure in Darknet53. The CSP mod-
ule  divides  the  feature  mapping  of  the  basic  layer  into
two parts, and then combines the cross stage structure to
reduce the amount of calculation and ensure the accuracy.
In order  to prevent  the loss of  pooled information,  CSP-
Darknet53 network still adopts the full CNN method to ex-
tract features by convolution instead of pooling. YOLOv4
only  uses  the  mish  activation  function  in  the  backbone
network, and the rest uses leaky relu activation function.

The  spatial  pyramid  pooling  (SPP)  layer  concatenates
the pooled feature maps from different core sizes as out-
put.  It  is  found that it  is  more effective in increasing the
receptive  field  of  the  backbone  network  and  separating
the most important contextual features than simply using
the maximum pool of the single core size.

Deep  features  contain  global  semantic  information,
while  shallow features  contain  local  feature  information.
In  order  to  promote  the  flow of  information and shorten
the information path between shallow and deep features,
YOLOv4 introduces the path aggregation network (PANet)
to repeatedly fuse and extract the three feature layers, and
finally  generate  three  feature  layers,  which  are  13×13,
26×26, 52×52 to detect large targets, medium targets and

small targets respectively. 

4. Experiment
To  verify  the  effectiveness  and  superiority  of  the  RP-
YOLO  method,  this  article  conducts  sufficient  contrast
experiments.  Synthetic  data  generation  and  evaluation
metrics are described in Subsection 4.1. Then Subsection
4.2  and  Subsection  4.3  respectively  discuss  the  advan-
tages  of  recurrence  plot  preprocessing  and  the  effective-
ness and rapidity of the proposed RP-YOLO method. 

4.1    Experiment description
 

4.1.1    Synthetic data generation

The PRI sequences of this paper are all generated accord-
ing  to  parameters  in Table  1.  From a  statistical  point  of
view,  the  various  PRI  modulations  overlap  numerically.
In  real  world  situations,  the  receiving quality  of  the  PRI
sequence  is  affected  by  some  electromagnetic  factors.
For  example,  the  noise  of  the  measurement  circuit  and
environmental  noise  will  introduce  measurement  errors.
The  improper  design  of  the  pulse  sorter  will  introduce
spurious pulses. Factors such as the azimuth relationship,
the system in which the receiver processes the signals that
arrive at the same time, and the errors caused by the sig-
nal sorting will cause the pulses obtained by the score to
be  lost.  This  article  assumes  that  in  actual  situations,  at
most  50% of  pulses  will  be  lost,  at  most  40% of  pulses
are spurious, and that there would be slight measurement
uncertainty during normal system operation.

 
 

Table 1    Description of the sequences

Method
Parameter

Deviation of the
average PRI

Number of
bursts

Length of the burst
in pulse

Number of
periods

PRI
Missing pulse’

s rate
Spurious pulse’

s rate
Measure noisy standard

deviation (us)
Jitter 5%−40% − − −

100−200 0%−50% 0%−40% 0−3

Sliding 1:10 − − 3−10

Sine 5%−20% − − 3−10
DAS − 2−8 20−200 −

Stagger − 2−64 − 20−40
 

A  good  method  should  be  robust  enough  to  correctly
identify the modulation of the sequence contaminated by
non-ideal electromagnetic factors.

To consider the individual influence of these factors on
classification  effect,  this  article  designs  three  basic  non-
ideal  situations,  namely,  measuring  noise  scene  only,
missing pulses scene only and spurious pulses scene only.
In  the  case  of  measuring  noise,  the  mean  value  of  the
measured noise  is  0,  the  standard deviation is  from 0 μs
to 3 μs, and the simulation step length is 0.3 μs. The pulse
is  randomly  lost  in  the  case  of  missing  pulses,  and  the
PRI value of a pulse after  the missing pulse becomes its

own value  plus  the  PRI  value  of  the  missing  pulse.  The
ratio  of  missing  pulses  ranges  from  0% to  50% with  a
simulation step size of 5%. In the case of spurious pulses,
spurious  pulses  are  randomly  inserted  between  two
pulses,  and  the  PRI  value  corresponding  to  the  inserted
pulse is split into two values. The rate of spurious pulses
ranges from 0% to 40% with a simulation step size of 4%.

To  further  study  the  comprehensive  influence  of  the
three electromagnetic factors on classification effect, and
to get closer to the real reception situation, this article sets
up  eleven  hybrid  non-ideal  reception  scenes  in Table  2.
From scene 1 to scene 11, the receiving environment gets

6 Journal of Systems Engineering and Electronics Vol. PP, No. 99, June 2022



worse  and worse,  and  the  challenge  to  the  robustness  of
the models is increasing.
  

Table 2    Parameters of 11 hybrid scenes

Scene
Measuring noise/

μs
Spurious pulse/

%
Missing pulse/

%

1 0.0 0 0

2 0.3 5 4

3 0.6 10 8

4 0.9 15 12

5 1.2 20 16

6 1.5 25 20

7 1.8 30 24

8 2.1 35 28

9 2.4 40 32

10 2.7 45 36

11 3.0 50 40
  

4.1.2    Evaluation metrics

Accuracy  is  a  traditional  evaluation  metric  of  classifica-
tion model, which calculates the ratio of correctly classi-
fied  sequence  samples.  However,  in  this  paper,  different
segments of PRI sequences are labeled differently, so the
calculation method of accuracy needs to be adjusted. For
convenience, the label of the PRI segment is assigned to
all  the  pulses  in  the  segment,  and  the  label  of  unlabeled
segments  are  set  to  0.  That  is,  each  pulse  gets  a  label.
Then, the recognition accuracies for the sequence with a
single modulation type and the sequence with multi-mod-
ulation types are calculated as follows.

Sequence with single modulation type:

accssm =
1
N

N∑
i=0

I(ŷi = yi) (3)

Sequence with multi-modulation types:

accsmm =
1

N ×M

N∑
i=1

M∑
j=1

I
(
ŷ j

i = y j
i

)
(4)

N
ŷi

yi

ŷ j
i

M

In (3)  and (4),  is  the number of  samples in the test
set.  represents the predicted label of the sequence with
a  single  modulation  type,  and  represents  the  corre-
sponding  true  label.  represents  the  predicted  label  of
the jth pulse of the ith sequence that has multiple modula-
tion  types.  is  the  number  of  pulses  for  the i th  testing
PRI sequence. 

4.2    Comparison of feature extraction capabilities

In order to compare the performance between preproces-
sing  the  PRI  sequence  with  recurrence  plot  and  directly

sending  the  PRI  sequence  into  deep  network,  three
advanced PRI modulation recognition methods are imple-
mented in this paper.
　(i) CNN: A one-dimensional PRI modulation recog-

nition method based on CNN [17].
　(ii) CNN-LSTM: A network with LSTM unit added

to the back of CNN, which can deal with the timing char-
acteristics of the PRI sequence [18].
　(iii)  RP-Darknet53:  The  recurrence  plot  method  is

used to preprocess the PRI sequence as the input of Dark-
net53 network, and a softmax layer is added to the Dark-
net53 network [28].

This  section  produces  sequences  samples  that  have
only  one  single  modulation  segment  with  a  correspon-
ding  label,  and  these  samples  are  designed  to  train  the
above three models. Further, we set the training dataset to
contain only six of the 11 hybrid scenes, which are scene 1,
scene 3, scene 5, scene 7, scene 9 and scene 11, and there
are 1 000  training  samples  for  each  modulation  in  each
scene. The test dataset includes three basic non-ideal situ-
ations  and  11  hybrid  non-ideal  situations,  and  there  are
500 testing samples for each modulation in each scene.

Fig. 7 shows the comparison results of the recognition
accuracy. Generally speaking, these three models are not
sensitive  to  three  independent  non-ideal  factors,  and  all
have  good  environmental  adaptability  because  they  still
maintain relatively considerable recognition performance
in  a  receiving  environment  that  does  not  appear  in  the
training  data  set.  However,  it  can  be  observed  that  the
decline of the recognition accuracy of the CNN model is
more obvious.  At  the  same time,  CNN and CNN-LSTM
models  are  sensitive  to  a  mixture  of  three  electromag-
netic factors. The recognition accuracy of these two mod-
els  drops  below 65% under  highly  non-ideal  conditions.
However,  the  recurrence  plot-Darknet53  classifier  has
achieved  ideal  results  both  in  single  non-ideal  situations
and  in  hybrid  non-ideal  situations,  and  the  recognition
rate  is  consistently  above  0.9.  This  can  be  attributed  to
the  stable  expression  of  PRI  sequences  in  various  data
receiving  environments  by  recurrence  plot.  Compared
with  the  CNN  classifier,  the  CNN-LSTM  classifier
achieves better recognition results, which shows that the timing
information  of  the  PRI  sequence  can  provide  effective
recognition basis. The CNN classifier can only extract the
structural  features of the sequence,  and when the receiv-
ing  environment  deteriorates,  the  ontology  structure  of
different  PRI  modulations  becomes  difficult  to  distin-
guish,  and that  leads to the failure of  the CNN classifier
to achieve better recognition results. 
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Fig. 7    Recognition accuracy in four non-ideal situations
 

In  summary,  although  the  PRI  sequence  can  be  di-
rectly sent to the network to achieve considerable recog-
nition results, its performance is poor compared with the
model  using  recurrence  plot  when  running  into  highly
non-ideal situations. 

4.3    RP-YOLO framework
 

4.3.1    RP-YOLO implementation and identification
results

The  experiment  in  this  section  verifies  the  ability  of  the
proposed  RP-YOLO  method  to  recognize  dynamically
varying RPI modulations. For the model to learn the char-
acteristics  of  different  modulations  in  a  balanced  way,
each  sequence  in  the  training  data  set  contains  all  six
kinds  of  PRI  modulations.  The  pulse  length  involved  in
each modulation is random, but not less than 100, and the
total length of the sequence in the data set is 2 000. While
in the test sub-data, each sequence contains random types
of  modulation sequences  (not  less  than one and not  mo-
re  than  six),  and  the  number  of  pulses  involved  in  each
modulation is also random. Also to verify the generaliza-
tion ability of the model in different receiving situations,
the  training  data  set  contains  only  six  of  eleven  hybrid

non-ideal scenes, namely scene 1, scene 3, scene 5, scene
7, scene 9 and scene 11, each with 1 000 pieces of training
data. The test data set includes 11 hybrid non-ideal scenes
with 500 pieces of test data in each scene.

Fig.  8 shows  four  recognition  results  in  four  scenes,
namely scene 1, scene 4, scene 9, and scene 11. Each sub-
picture  is  divided  into  two  pictures.  The  ordinate  of  the
upper  picture  represents  the  value  of  the  PRI  sequence,
and the ordinate of the lower picture represents the classi-
fication result. In scene 1, where the sequence is ideal, the
RP-YOLO method accurately identifies the categories of
the six PRI modulations, and the transitions between diffe-
rent modulations are obvious, indicating that each modu-
lation is precisely located. In the remaining three scenes,
the  sequences  are  damaged  to  different  degrees,  and  the
RP-YOLO  method  can  still  identify  different  categories
of  modulation,  but  the  identified  boundary  is  blurred.
There  are  undetected  fragments  and  partially  incorrectly
detected  fragments  in  the  head  and  tail  of  the  sub-
sequences. In scene 11, a highly non-ideal receiving envi-
ronment  causes  an  entire  segment  recognition  error  to
occur.  However,  overall,  the  RP-YOLO  method  per-
forms well in these four test sequences. 
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4.3.2    Comparative experiment with other methods

A robust method should be able to identify correctly even
the  pulse  sequencesare  damaged.  Denoted  with  a  prefix
sliding window (SL),  CNN and CNN-LSTM models  are
added  with  appropriate  sliding  windows  to  form models
that  can  continuously  identify  PRI  modulation  types  on
pulse  sequence  [4],  and  their  performance  is  compared
with  the  method  proposed  in  this  paper,  which  is  repre-
sented as RP-YOLOv3 and RP-YOLOv4. Since the sliding
window method is essentially a single-label classification
model of PRI sequence, its performance is affected by the
performance  of  CNN  and  CNN-LSTM  models  them-
selves: on the one hand, the input length of the two mod-
els  should  be  consistent  with  the  length  of  the  sliding
window;  on  the  other  hand,  the  longer  the  length  of  the
input  sequence,  the  more  information  the  model  can
extract,  and  the  more  accurate  the  recognition  will  be.
Therefore,  the  minimum  length  of  each  PRI  modulation
type  in  the  PRI  sequence  will  have  a  significant  impact
on the performance of the sliding window methods. This
paper  simulates  two  cases:  one  is  that  the  number  of
pulses of each PRI modulation type is at least 200 and the
corresponding  sliding  window  width  is  set  to  200;  in
another  case,  the number of  pulses of  each PRI modula-
tion type is at least 400, and the corresponding sliding window

length is set to 400.
The results are depicted in Fig. 9. As can be seen from

the  two  figures,  the  performance  of  the  sliding  window
method  based  on  the  CNN  model  has  been  greatly
improved in the second case, and the recognition perfor-
mance of the sliding window method based on the CNN-
LSTM  model  has  been  slightly  improved,  while  the
recognition  performance  of  RP-YOLO  series  methods
remains basically unchanged. This shows that  the longer
the minimum length of each PRI modulation type is,  the
better the recognition performance of the sliding window
method will be. When the length reaches a certain value,
the  recognition  performance  will  tend  to  be  stable.  In
addition,  the  recognition  performance  of  the  RP-YOLO
series  method  is  always  better  than  that  of  the  sliding
window series  method,  and  remains  stable  in  two  cases,
indicating that it is not sensitive to the minimum length of
each RPI modulation type in PRI sequences. The perfor-
mance  of  the  RP-YOLO  method  based  on  YOLOv4  is
partially improved than that of YOLOv3, and the perfor-
mance is more stable in different situations.

The experiment in this section runs on a desktop com-
puter  with  an  Intel  Core  i7-8 700 3.20  GHz  CPU  and  a
Geforce RTX 2 080 Ti GPU. The offline training time of
the  four  networks  is  shown  in Table  3,  and  the  average
time  for  each  method  to  identify  and  process  a  sample
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Fig. 8    Detection results of the proposed method on PRI sequence with dynamic changes in modulation
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with a length of 4 000 pulses is shown in Table 4. In terms
of  offline  complexity,  although  the  RP-YOLO  method
has  a  longer  training  time  than  CNN  and  CNN-LSTM
models, its environment adaptability is stronger, and once
the training is completed,  it  can be kept running without
retraining.  And  the  processing  time  of  RP-YOLO  series
methods  is  within  the  acceptable  range,  so  when  facing
the  actual  use  environment,  the  method  proposed  in  this
article is practical. In summary, the RP-YOLO method is
relatively  balanced  in  training  complexity  and  recogni-
tion performance.
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Fig.  9      Recognition  performance  with  different  sliding  window
sizes
  

Table 3    Offline training time of different methods

Parameter
Method

SL-CNN SL-LSTM RP-YOLOv3 RP-YOLOv4

Training time /s 1 446 1 143 15 116 12 809

Training round 100 85 85 80
  

Table 4    Processing time of different methods

Parameter
Method

SL-CNN SL-LSTM RP-YOLOv3 RP-YOLOv4

Single sample
processing time/s

0.08 0.95 0.18 0.13
  

4.3.3    Analysis of the influence of network parameters

In the target detection network based on priori anchor, the
rationality of the priori anchor setting is very important to
the  performance  of  the  final  result.  This  article  uses  the
K-means clustering algorithm to obtain nine sets of gen-
eral  priori  anchors  that  are  suitable  for  general  scenes.
Because all targets appear in the shape of a square in the
recurrence  plot,  the  width  and  height  of  the  a  priori
anchor in this paper should be the same. In the end, this
article calculates the parameters of the nine priori anchors
as  (10,10),  (16,16),  (23,23),  (30,30),  (62,62),  (70,70),
(116,116),  (198,198)  and  (373,373).  These  anchors  are
assigned to  three  scale  feature  maps in  the  order  of  area
from  small  to  large.  The  feature  map  with  a  large  scale
uses the anchor frame with a small scale to calculate the
coordinates  and  size  information  of  the  three  prediction
frames of each grid.

In this paper, 50 rounds of training are conducted using
the  above  priori  anchors  and  the  priori  anchors  of  coco
dataset  respectively.  The curve  of  training loss  is  shown
in Fig. 10. It can be seen that the priori anchors clustered by the
K-means  algorithm  is  more  suitable  for  the  data  in  this
paper,  and  the  priori  anchors  used  in  the  coco  dataset  is
mainly for the detection of general targets in nature, and
its training loss converges to a larger value, which shows
that  the  priori  anchors  obtained  by  the  K-means  algo-
rithm is more effective.
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Fig. 10    Training loss curve of using different priori anchors 

5. Conclusions
A  new  PRI  modulation  recognition  method  named  RP-
YOLO  is  proposed  in  this  paper.  In  the  RP-YOLO  me-
thod, the recurrence plot is introduced into the representa-
tion of PRI sequences for the first time, and the problem
of  recognizing  dynamically  varying  PRI  modulations  is
creatively transformed into a multi-target detection prob-
lem. The RP-YOLO method can identify and locate various
PRI modulations under highly non-ideal receiving condi-
tions more effectively than the sliding window methods.
Although this paper uses the recurrence plot technique to
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achieve the graphical representation of PRI sequences to
adapt to the YOLO model, it is still meaningful to imple-
ment  a  variant  of  the  YOLO model  that  can  handle  PRI
sequences  directly.  The  further  work  is  to  extract  the
modulation parameters of different modulations, which is
of great significance for the quantitative analysis of radar
working modes.
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