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Abstract: This paper deals with subspace detection for range-
spread target in non-homogeneous clutter with unknown covari-
ance matrix where structured interference is presented in the re-
ceived data. Through exploiting the persymmetry of the clutter
covariance matrix, we propose two adaptive target detectors,
which are referred to as persymmetric subspace Rao to sup-
press interference and persymmetric subspace Wald to sup-
press interference (“PS-Rao-1” and “PS-Wald-1"), respectively.
The persymmetry-based design brings in the advantage of easy
implementation for small training sample support. The signal
flow analysis of the two detectors shows that the PS-Rao-I re-
jects interference and integrates signals successively through
separated matrix projection, while the PS-Wald-I jointly achieves
interference elimination and signal combination via oblique pro-
jection. In addition, both detectors are shown to be constant
false alarm rate detectors, significantly improving the detection
performance with other competing detectors under the condi-
tion of limited training.
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metric structure, Rao test, Wald test.
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1. Introduction

Range-spread target detection, especially with applica-
tion in large scale targets or high-resolution radar, has
been extensively studied in recent years [1—6]. To detect
a range-spread target, the clutter covariance matrix is
generally not known so that a set of training data free of
useful signal is used to estimate it. A common assump-
tion concerning training data is the homogeneous envi-
ronment, namely, the training data is with the same distri-
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bution as the clutter in the cell under test (CUT).
However, the homogeneous assumption is difficult to sa-
tisfy in practice due to terrain variations and system
factors, such as the presence of interference and array
configuration. Unlike the homogeneous environment, the
partially homogeneous environment (PHE), where both
the clutter in CUT and training data share the same cova-
riance matrix up to an unknown power scaling factor, is
more robust to power variation between test data and
training signals [7—10]. To detect a range-spread target in
the PHE, considerable research efforts have been de-
voted in [11-14].

Apart from the non-homogeneous scenario, the exist-
ence of interference caused by electronic countermeasure
systems or civil broadcasting system is a key factor af-
fecting the detection performance. It is therefore import-
ant to consider interference suppression in the design of
detectors. The structured interference modeled by a sub-
space to describe the multipath effect or uncertainty of
direction-of-arrival associated with the interference steer-
ing vector, has been intensively investigated in adaptive
detection [15—24]. Adaptive detection of a point-like tar-
get in the presence of subspace interference for PHE was
addressed in [15—16] under the criterion of generalized
likelihood ratio test (GLRT) and Wald, and was further
investigated within the framework of invariance theory in
[17]. When it comes to range-spread targets, the design of
GLRT and its two-step variation for partially homogene-
ous Gaussian noise plus subspace interference was con-
sidered in [18], and its relevant Rao detection was
provided in [19]. Extensions of [18] to the compound
Gaussian environment was made in [20].

A possible solution to decrease the training amount as-
sociated with adaptive detectors was reported in [25], by
exploiting the persymmetric structure of the disturbance
covariance matrix. Thereafter, many detection investiga-
tions concerning the persymmetry in the PHE have been
developed in [26—31]. Specifically, the authors of [26]
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proposed a persymmetric GLRT resorting to the two-step
method, and its corresponding performance assessment
was presented in [27]. Persymmetric Rao and persymme-
tric Wald detectors were established in [28] for point-like
targets in the PHE, and was extended to the detection of
range-spread targets in [29]. The persymmetric adaptive
cosine estimator (ACE) in the PHE was developed in
[30]. Meanwhile, adaptive signal detection in PHE and
persymmetric Gaussian disturbance was addressed in [31]
within the framework of invariance theory. Other exam-
ples of persymmetric detectors can be found in [32—45].

The persymmetric GLRT for detecting a range-spread
target in structured interference was considered in [46]. It
is given that the uniformly most powerful (UMP) test for
the detection problem in [46], due to the lack of informa-
tion on the signal/interference coordinates and the noise
covariance matrix. It is therefore of utmost importance to
investigate different detectors with various features,
among which, Rao and Wald test are most commonly
used as an alternative to GLRT with reduced computa-
tional complexity and sometimes better performance. As
far as we know, no previous work has conducted the ad-
aptive Rao and Wald detection of multi-rank subspace
signal in PHE to suppress interference.

In this paper, we adopt Rao and Wald tests for sub-
space detection of range-spread target embedded in struc-
tured interference and non-homogeneous noise. The main
contributions are as follows:

(1) In order to relax the restrictions on the number of
training signal and ease the computational burden, we de-
vise two persymmetric subspace detectors with the help
of unitary transformation, namely the persymmetric sub-
space Rao detector and the persymmetric subspace Wald
detector in the case of subspace interference (referred to
as the “PS-Rao-1” and “PS-Wald-I"respectively), which
incorporate the persymmetric structure of the disturbance
covariance matrix in the design of the detectors.

(i1) Block diagram for the proposed detectors is presen-
ted to demonstrate the signal flow of each detector. Spe-
cifically, the PS-Rao-I projects the transformed signal in-
to the orthogonal complement of the interference sub-
space and the signal subspace successively, which leads
to separated interference rejection and signal integration
process. The PS-Wald-1, in contrast, projects the trans-
formed signal into the signal subspace along the interfer-
ence subspace via oblique projection, which achieves in-
terference elimination and signal combination simulta-
neously. Theoretical derivation shows that the two detec-
tors exhibit constant false alarm rate (CFAR) property
with respect to (w.r.t.) the unknown covariance matrix
and the power scaling factor.

(ii1) Numerical examples based on both simulated data

and real radar data are presented to demonstrate the ef-
fectivity and efficiency of the proposed methods.

The remainder of this paper is organized as follows.
Section 2 presents the data model. Section 3 contains the
derivation and discussion of the proposed tests. Numeri-
cal examples and experimental results are provided in
Section 4. The concluding remarks are summarized in
Section 5.

2. Problem statement

Consider a linear array with N uniformly-spaced sensors
receiving the echo signals reflected from a range-spread
target in PHE. Our task is to decide whether the target
which occupies L successive range cells, presents or not
in the range bin under test. Denote by x,€CV,
[=1,2,---,L the data collected from the /th range bin.
The detection problem can be formulated in terms of a
binary hypothesis test.

Under hypothesis H;, x; contains signal s;, interfe-
rence i; and noise n;. The signal and the interference are
supposed to lie in two independent subspaces Sp(H) and
Sp(G) spanned by full-column-rank matrices H =
[h,hy, - ,h,]€CY and G=[g,, g ,8]cC" ,
respectively, i.e., s, = HB, and i, = Gq,, with 8, € C" and
q; € C* being the unknown coordinates. By contrast, un-
der the null hypothesis Hy, x; =i, + n,.

In addition to the signal under test, we assume that a
signal-free training data set x,, € CV (k=1,2,---,K) that
does not contain the signal to be detected can be collec-
ted from adjacent range units. That is, x,; = n,; with n,;
denoting the noise component in the training set which
shares the same covariance structure as n;. Assume that
n,, are independently identically distributed (i.i.d) Gaus-
sian random vectors with zero mean and unknown covari-
ance matrix A. n; is modeled similarly but with covari-
ance matrix yA, where y > 0 stands for an unknown de-
terministic parameter, which determines the statistical
characteristic of the PHE.

The problem of interest at hand can be formulated as
the hypothesis test below:

{ Hy: X =GQ+N, Xy = Ng 0
H,:X=HB+GQ+N,Xy = N¢
where
X =[x),x5,+,x,] € CYF, ()
N =[n;,n,, - ,n;] € C", 3)
Xy = [0, X0, 2, ] € CVE, 4)
N =[n,1,n,5, -+ ,m, ] € CVK, Q)
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B= [ﬂl»ﬂb"' ’ﬁL] € CVXL’ (6)

and

Q: [ql’qZ"" ’qL] ECSXL' (7)

Considering the spatial structure of the uniform linear
array, h,(i=1,2,---,r) and g,(i=1,2,---,s) satisfy a per-
symmetric property, i.e., h; = Jyh; and g, = Jyg;, where
Jn € CV stands for the exchange matrix with the unit ele-
ments residing on the counter diagonal and all other ele-
ments being zero, and * denotes the conjugate operator. It
is straightforward to show that the covariance matrix A is
persymmetric, which can be defined as follows:

AZJNA*JN~ (8)

According to the persymmetric property, we can con-
struct a unitary matrix to transform complex matrix A to
a real one. Such a unitary matrix is given by [26]

1
— .IN/Z '.IN/z , Niseven
V2| e =3I
T= 1 I(N—])/2 0 J(N—I)/Z
— 0 V2 0 , Nisodd
Vit 0 -
Jw-1/2 JJ -2
©)

with I, being the n-dimensional identity matrix. By ex-

ploiting the transformation matrix 7' to the data under

test, we can readily express the problem of interest as
H():YZGPQ+NP,YK=N],K (10)
H:Y=H,B+G,0+N, Yy=N, ’

Recall that both n,, and n, are i.i.d Gaussian random
vectors with zero mean, they follow the properties of per-
symmetric Hermitian matrices that N, ~ CN(0,yR) and
N,x ~ CN(0, R) where

P
R = TAT" (11)

represents a real symmetric matrix, and (-)" denotes con-
jugate transpose. From a practical view, we know that R
is unavailable, and we can get its maximum likelihood es-
timation (MLE) by

— 1 &
R,= ?"\(E Zyky,'f] (12)
k=1
where R(-) denotes the real part of a matrix, and y; is the

kth column of Y.

3. Persymmetric Rao and Wald detector in
subspace interference

We now consider the target detection problem in the pre-
sence of subspace interference in the PHE, and develop
the corresponding PS-Rao-I and PS-Wald-I detector.

3.1 PS-Rao-I detector design
First, we denote @ the parameter vector given by
0=101,01T, (13)

where 0, =vec(B) and O, = [y,vec’(Q), vec'(R)] are

called by the interesting parameter and nuisance parame-

ter, with vec(-) being the vectorization operation.
According to [47], we can construct the Rao detection as

dlnf,[" dln f,

fRao = I
R 76, 6150[ (@9)]o, 6, 56: |, 4

(14)

where @0 is the MLE of @ under Hy. f; represents the
joint probability density functions (PDF) of Y and Yy un-
der H; given by

exp{—tr(R'ZZ"/y)—tr(R"' M)}
nN(KJrL),yNL det (R)K+L
where Z2Y-S,A,S,%[H,,G,],A=[B",Q"]", and
M =YY} is the sample covariance matrix. Then, de-

note by I(@) the Fisher information matrix that can be
described as

__([8mfi(¥)][8Infi(Y)
G o

H(X,Yg) =

(15)

Taking the derivative of the logarithm of (15) with re-
spect to B and B* leads to

5lnﬁ(Y,YK) _ Hp-1 T

T =vec(Z"R'H,)" [y, (17)
and

3lnﬁ(Y, Yy) _ Hp-1

“vecB) - vec(H,R™'Z)/y. (18)

Note that I(@) can be generally partitioned as

Io.06) Io6(O)
Ioo(©) Ioo®) | (19)

Substituting (17) and (18), into (16), yields,

1) =

Io,0,(0) = E[vec(H'R™'Z /y)vec"(H'R"Z" )] =
E{(I,® H'R ")vec(Z) - [(I, ® H'R ")vec(Z")]"}/y* =
(IL®H R'H,)/y. (20)

Likewise, it is straightforward to verify that I ¢ (@) is
a null matrix, which then results in

' @)o,0, =I5, =yI.®H,R'H,)™". 21

Inserting (17), (18) and (21) into (14), and setting
B =0,,; leads to the PS-Rao-I test for given vy, Q and R,

ps-Rao-1 = VeCT[(Y - GpQ)HR_] Hp]T'
|10 (HERH,)™" |- vec[(HYR™' (Y -G, Q)| /y =
t[(Y-G,0)"R"H,(H'R"H,)"-
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H,R'(Y-G,Q)/y (22)

where tr(-) denotes the trace of a matrix.

Next, we need to estimate Q in (22). By taking the de-
rivative of the logarithm of (15) with B =0,,, with re-
spect to O, we have, for given R, the estimate of Q

— —H—  _ —H—
0=,6,)G,Y (23)
where G, = R"'G, and Y = R"'Y .

Inserting (23) into (22) outputs the PS-Rao-I test for
given vy and R

tPS-Rao-Iztr(YHpg Pﬁppé l7)/?’ (24)
where H, = R"'?H,.

Substituting @ into (15) with B = 0,,, and ignoring the
PDF of Yy yields

SHiY,Yy) =
exp {—tr [R-l Y-G,0)(Y-G,0) /y]}
N det (R)
exp {—tr(YH Pgﬁ l_/)}

25
mNLyNL det (R)” (23)

By taking the derivative of the logarithm of (25) with
respect to y and equating it to zeros results in the MLE of
v for given R under H, as

9o = tr(¥ P Y)/NL. (26)

Inserting (26) into (24) and neglecting the constant
items leads to the PS-Rao-I test for given R:

—H —
(Y P; Py P.Y)

Ips -Rao-1 = T — (27)

tr(Y PLY)
G,

Replacing R with the MLE according to (12), we have
the persymmetric Rao detector in subspace interference

tr(?“PépP;,pPép?) ||P;,”P$”7||§
Ips . Rao-1 = =

r(Y'PL Y) 1P Y1

where G, = E;,WG,,, H,= ﬁ;‘/zH, Y= ﬁ;‘/zY, and || - ||
denotes the Frobenius norm.
3.2 PS-Wald-I detector design

We now consider the Wald test for the detection problem
described in (10). According to [48], we can express the
Wald test as

fwaa = (0, = 0,)[I"'(O)]6,6,17(6,-6,)  (29)
where E,I denotes the MLE of @, under hypothesis H;,

@, is the value of @, under H,, and {[1’1(5.)]9”9, )t
stands for the Schur complement of I _g_evaluated at 0,

To derive the PS-Wald-I test, we need the MLE of B
and y. To obtain the MLE of B, we start by deriving the
MLE of A, which can be obtained by nulling the deriva-
tive of In fi(Y) with respect to A, for given R:

A=(S"R'S,)'SUR'Y. (30)
Define
c, C
s ;cHp-1 1 11 12
C=(S,R'S,) —[ G, G, } 3D
Given that
H'R'H, H'R'G
H p-1 — p P )4 p
SpR SP_[ G;IR—al Gi;[R—le ] (32)

According to the theorem about the inverse of a parti-
tioned matrix, we have

Cl= HER’IH,,—

33
H'R"G,(G"R"'G,)" G"RH,, 33)
and
C,=-C,H'R"'G,(G'R"'G,)". (34)
As a result,
B=C,H'R'Y+C,G'R'Y =
C.[H'R'Y-H'R'G,(G'R"'G,)'G'R'Y] =
—H — _]—H LS
(H,P-H,'H,P-Y. (35)

Substituting (21) and (35) into (29) outputs the PS-
Wald-I test, which can be represented as
—H — —H _
twag = vecH ((H, P H,)'H, PLY)
—H — —H —
(I, H!R'H,)vec(H, Pgan)lep P%p Y)/y=
—H — —H —_ —H—
tr(Y PgﬂH,,(HI,Pé,Hp) 'H,H,
—H J— — —
(HPPEFH,,) alPgﬂY)/y:

—H —
tr(Y P%p@ Py, Vv (36)
where
I T pL T -1 pL
Plecp _H,,(HPPEPH,,) prap (37)

is the oblique projection matrix onto the subspace Sp(ﬁ,,)
along the subspace Sp(ap).

Substituting A into (15), and nulling its derivative with
respect to y result in the MLE of y for given R under H, as

51 =u(¥ PLY)/NL (38)
where S, = R™'2S,, Pt =I - Ps . and
ng = Pﬁplap + PEﬂlﬁﬂ . (39)
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Replacing R by its MLE calculated as (12), inserting
(38) into (36), and neglecting the constant items leads to
the persymmetric Wald detector in the subspace interfe-
rence condition given by

H,|G,

—_~ —~ ~112
w(PPY - P ¥) |Prys, ¥

QT _p-12
where S, = RS,
3.3 Discussions

In the following, we investigate the signal operation and
CFAR property of the proposed detectors.
The signal flow of the proposed PS-Rao-I and PS-

Ips - wald-1 = = = ) £ (40) . - .
tr(YH PLY) | PLY Wald-I detectors is shown in Fig. 1, where the red lines
’ S Ml indicate the signal flow for matrix projection.
G ~
—G-—)- T —%» Quasiwhitening —=
- Py
X Y Y ‘l’ Gy
—> T —> Quasiwhitening > PG, l > |2 => ()" —l
H H, H ) Py ,P(j,i
— 17— Quasiwhitening . > Pﬂp s ] —=>®@— Lps-Rao-1
l i P”/)\(;/);/ 2
_’PHV\&V > |||z l
J\ PSIJN ~ -
L. Ps,, > |12 > (4) >R lpsraot

Fig. 1 Block diagram of PS-Ra

(1) Numerator of Test Statistic: The numerator of both
tests represents the energy of the transformed signal after
subspace projection which, unlike their interference-free
counterparts, differs from each other. Specifically, the PS-
Rao-I projects the transformed signal ¥ successively into
the orthogonal complement of the quasi-whitened inter-
ference subspace (via Pg ) which rejects the interference,
and the quasi-whitened spignal subspace (via Py ) which
combines the signal. The PS-Wald-I, on the other hand,
projects Y into the transformed signal subspace along the
transformed interference subspace via oblique projection
matrixP;,plap , which achieves interference elimination
and signal combination simultaneously.

(i1) Denominator of Test Statistic: The denominator of
the two detectors also differs from each other. The PS-
Rao-I test computes the denominator from the trans-
formed signal after projection into the orthogonal com-
plement of the quasi-whitened interference subspace,
which does not contain the interference and therefore cor-
responds to the calculation of y under H, situation, while
the PS-Wald-I test computes the denominator from the
transformed signal after projection into the orthogonal
complement of the quasi-whitened noise plus interfer-
ence subspace, which cancels both the signal and the in-
terference, and in consequence corresponds to the calcu-
lation of y under H, situation.

It is worth highlighting that both detectors (the PS-Rao-
I and the PS-Wald-I) are CFAR w.r.t. the covariance ma-
trix R and y. The CFARness of the PS-Rao-I test can be
proved in a manner similar to [19]. For brevity, we will

o-1 and PS-Wald-I detector.

not explore it in this article.

The CFAR property of the PS-Wald-I detector is in-
vestigated and discussed in the following. Since the
CFAR property will not be affected by the trace operator,
we first rewrite (40) as

tr(¥))
Ips . wald-1 = —tr(?’;) (41)
where
Y = yY?FHp(H;‘FHp)"H?R"FIp~
(H;‘FHP)"HEFYO, (42)
q’z = ')/[Y(])-IR_I YO_
YER'S,(SUR'S,) " SURY, |, 43)
F=R'"FR"
_ 44
{Gp — R*l/ZGp ( )
with
F=R'-R,'G,(G'R,'G,'G'R,".  (45)

It is observed that the ratio of ¥, to ¥, cancels their
dependence on vy, which suggests the CFARness of the
PS-Wald-I detector with respect to y under hypothesis
H,.

In the following, we show the CFARness of (41) with
respect to R under Hy. Let U2[G,;,,G, ] be a unitary
matrix, with G, =GP(G;'GP)" and G;'lép// = On_gyxs -
Define
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YU é UH YO
Fy 2 U'FU
U s (46)
Hyy,=U"H,
Ry, 2 U"RU
After some matrix manipulation, we can express ¥, as
Y = ’leIjF_‘UﬁU(HSFUHUU)qH?]R; .
Hyy(H}FyHyy) ' HyFyYy =
YY) Ry, Hy(HY Ry Hy) ' HyR ' Hyy -
(HyRy, H,)'HyR,,Y, (47)
= [t =" = [T =TT -,
where Y, = [Yl Yz] , Hy= [H1 Hz] and R, =
[Ell,ﬁlz;iﬂ,ﬁzz]. The dimensions of ?2, Ezz and Ez
are (N—s)XL, (N—s)xX(N-s) and (N —s)Xr, respect-
ively. It can be verified that under H,
Yy ~ CNOy_yr Iy-y), (48)
and
Ry ~CW(K. I_). (49)
Let V= [Ez / /,ﬁu] be a unitary matrix, with
ﬁz// = [_12(312{}_12)71 and [_Izﬂlﬁz// = O(N—s—r)xr- Define
Y,y £ VY,
Ryy 2 V'R,V . (50)
E, = V'H,
¥, can be reformulated as
¥, =YL R, E\(E"R;} E)) HYR, Hy
(E'R;} E\) " E'R), Yoy (51)

It can be verified that under H,

sz ~ CN(O(N—S)XL,IN—s)’ (52)
RZZV ~ CW(KﬁlN*S)7 (53)
and
1
E, = " 54
: |: 0(N—r—s)><r ] ( )

which suggests that both Y}, R;),E, and E'R;) E, are
independent of R under hypothesis Hy.

Let V2[Hy,,Hy,] be a unitary matrix, with
Hl']// = FIU(FIEH(])_I and HUJ_HI'/// = 0(N—r)><r- By imple-
menting unitary transformation on Hy and R;', ¥, can
be reformulated as

¥, = yViL R\ E(E'R,),E)) ' ENR,E,

(EYR,E) EYRy, Yoy (55)
where Ryy = VER;V and
1
E, = " . 56
? [ 0(N—r)><r :| ( )

It follows that EYR;y E, is independent of R. Gather-
ing the above information, we can conclude that ¥ is in-
dependent of R.

We then proceed to show the statistical independence

of ¥, on R.Let U’ £ [S‘p/ /S 1u] be a unitary matrix, with
S, = S',,(S';ISP)’I, S';ILSP// = Ov_,_gx(rss)- By implement-
ing unitary transformation on Hy and R;.Jl, ¥, can be re-
formulated as

—H—1—
¥, =y[Y,R Y,-
Y R, Es(E{R)Es)"'E{R, Yy ] (57)
where Y, = UMY, Ry, = UMRU’, and

E;2U"S, = [ L } . (58)
O(Nfrfx)x(rJrs)
It can be verified that under hypothesis H,
Yy ~ CN(Oysr, Iy), (59)
Ry ~CW(K.,Iy). (60)

On the basis of the above derivation, we can conclude
that ¥, is independent of R under hypothesis H,. There-
fore, the CFARness of the PS-Wald-I follows.

4. Numerical results

We now consider the target detection problem in the pres-
ence of subspace interference in the PHE, and develop
the corresponding PS-Rao-I and PS-Wald-I detector.

4.1 Simulation results

We now present numerical examples to verify our analy-
sis and compare the proposed persymmetric detectors. In
the following simulations, we set N =8, L=4. Let A be
an exponentially correlated covariance matrix with one-
lag correlation coefficient p =0.9, i.e., the (i, j)th ele-
ment of the noise covariance matrix A is set to p~. In
this paper, we define the signal to noise ratio (SNR) and
the interference to noise ratio (INR) as

SNR = tr(B"H"A"'HB), (61)
INR = tr(Q"G"A™'GQ). (62)
Column vectors of H and G are respectively given by
1 . .
hi = _[l’e*ﬂﬂf,’ T 5eijznﬁ(N71)]T,i = 172»' 1 (63)
VN
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= L “imgi L., e itmgiN=INT

g W[l,e ,o0,€ 1,i=1,2,---,s. (64)

In the following, we conduct simulations for the sub-
space interference condition under matched assumptions.
A total of 100/Pfa Monte Carlo (MC) trials are used to
obtain the simulated performance, where Pfa is the false
alarm probability. If not otherwise specified, Pfa =103,
vy=05,r=3, s=2, =009, ,=0.1, ,=0.11, g, =
—0.09, and g, = —0.08 throughout the paper. For the sake
of comparison, we also provide the performance of the
Rao, Wald, 2S-Rao and 2S-Wald tests. Precisely, for the
problem in (1), the Rao test and the 2S-Rao test are re-
spectively given by [16]

—H =
fraos = (X PP=PLX)/ T, (65)

bs-rao-1 = (X" PP P X) /tr(X"PEX).  (66)

Adopting similar derivation procedure proposed in
Subsection 3.2 for the problem in (1), results in the Wald
test and the 2S-Wald test given below

_H -
Twald-1 = tr(X PgéP;néX)/)A’l (67)
IZS-Wald-I = tr(XHPgléPI?'@X)/tr(XHPg) (68)
where
X=R, "X
X=R "X - (69)
X=M"2X
ﬁ _ §61/2H
H-R°H - (10)
H=H"H
(=} _ ﬁal/zG
G=R'"G (71)
G=M"12G

are the square-root matrix of ﬁo and R 1, respectively,

Ry = M'(I, + PXX"P%/9)M"" / (K+L), (72

R = M"(Iy+ P:XX"PL/3)M"*[(K+L).  (73)

9o and ¥, are the unique positive solutions of the fol-
lowing equation:

NL N A
- — =0 74
K+L ;/lk,ﬁx 74

where r = min(N, L), x denotes the unknown, A, and A,
are the kth nonzero eigenvalue of fHPéf and fHP.S%Y ,
respectively.

The detection probability (Pd) versus SNR is shown in
Fig. 2. The INR is set to be 20 dB. As can be seen from
Fig. 2, the proposed PS-Rao-I and PS-Wald-I outperform
their conventional counterparts under the condition of
limited training support. Specifically, for K =9 , the con-
ventional Rao-I, Wald-I, 2S-Rao-I and 2S-Wald-I detec-
tors, show performance degradation, while the proposed
PS-Rao-I and PS-Wald-I keep being at a higher detection
probability. In particular, PS-Rao-I show a better detec-
tion performance than PS-Wald-I at low SNR, which cor-
responds well to the fact that the Rao test is originally
proposed as a weak signal approximation for the GLRT
[49]. With the increase of K, the performance gap
between the proposed detectors and the traditional ones
becomes smaller. It is also observed from Fig. 2 that the
Pd of the Rao test is not a monotonically increasing func-
tion of the SNR, which is consistent with that in [19]. The
receiver operating characteristic (ROC) curves of the
above mentioned detectors are presented in Fig. 3, where
we set K =9, SNR =20dB, and INR =20 dB. It can be
seen that the results observed from Fig. 3 are consistent
with those in Fig. 2.
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Fig. 4 displays the performance of the detectors under
different INRs. It is seen that the probability of detection
of the detectors in Fig. 4 are not affected by the change of
the INR, suggesting that these detectors can effectively
reject the directional interference.
Fig. 5 depicts the detection thresholds and Pd of PS-
Rao-I and PS-Wald-1 under different y. The results in
Fig. 5 (a) show that the detection thresholds do not vary

Pd

b &

with the change of the power scaling factor, which is con-
sistent with CFAR analysis presented in Subsection 3.3.
It is seen from Fig. 5(b) that all detectors exhibit de-
creased probability of detection while increasing . In this
case, the PS-Rao-I and PS-Wald-I can still exhibit a bet-
ter performance than the other conventional counterparts.
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On the other hand, we also compare the proposed de-
tector with GLRT-based detectors that utilize persym-
metry [38] (referred to as PS-GLRT-IP) and [46] (re-
ferred to as PS-GLRT-I). The simulation result is shown
in Fig. 6. For smaller sample support, PS-GLRT-I shows
the best detection performance and the proposed PS-Rao-I
show better detection performance than PS-Wald-I and
PS-GLRT-IP at low SNR. As K increases, the proposed
PS-Rao-I shows a better detection performance at most
SNR region, especially for low SNR. In addition, the per-
formance gap between the PS-Wald-I and PS-GLRT-IP
and the PS-GLRT-I becomes rather small. Comparing
with the GLRT-based persymmetric detectors, the PS-
Wald-I does not have a greater advantage in detection
probability for small sample support and high SNR.
However, it has the advantage of reducing the computa-
tional burden as it only needs to estimate the unknown
parameters under H, hypothesis.
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Fig. 6 Probability of detection versus SNR when N=8, L=4, y=1.5,
r=3, s=2, Pfa=10" and INR=20 dB

4.2 Experimental Results

In the following we evaluate the performance of the pro-

posed detectors using measured data collected by an air-
borne radar in China. The real data contains 89 538
pulses and 280 range cells. Due to the limited amount of
real data, we set N =8 and Pfa=10"2. Range cells 10—
11 of the real data are chosen as the primary data, and
range cells adjacent to the primary data are regarded as
the training data, i.e., range cells 4—7 and 12-16 for
K =9, and range cells 4-7 and 12—17 for K = 10. Fig. 7
shows fitting results of the clutter amplitude for the
primary data with the Rayleigh distribution. It is obvi-
ously seen that the real data is not Gaussian clutter.
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Fig. 7  Fitting results of the clutter amplitude of the primary data
with the Rayleigh distribution

Then, the detection performance of the proposed de-
tector is assessed. Without loss of generality, we insert a
range-spread target signal with r = 3 into range cells 10—
11. An interference with s = 1, and INR =20 dB are sup-
posed in the primary data. The SNR and INR are respect-
ively defined as

SNR=Y"" o, /0 (75)

INR= " o /07, (76)
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with o2 being the average clutter power.

The number of MC trials for calculating the probabi-
lity of false alarm is 10 000 and the number of MC trials
for calculating the probability of detection is 5 000. Fig. 8
shows the probability of detection versus SNR for the ex-
perimental dataset for cases of K =9 and K =10. It is
seen that PS-Wald-I achieves a significantly better per-
formance than 2S-Rao-I, 2S-Wald-I, Rao-I and Wald-I,
and is slightly worse than PS-Rao-I at low SNR, which
coincides with the results in Fig. 2.
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Fig. 8 Probability of detection versus SNR for experimental data-
set when N=8, L=2, r=3, s=1, Pfa=10" and INR=20 dB

5. Conclusions

In this paper, we investigate range-spread target detec-
tion in subspace interference and non-homogeneous noise
with small training support. With the help of unitary
transformation, two detectors are designed, namely the
PS-Rao-I and PS-Wald-I, which incorporate the persym-
metric structure of the disturbance covariance matrix into
the detector design. The block diagrams for the proposed
detectors are presented to demonstrate the signal flow of
each detector. In particular, the PS-Rao-I rejects interfer-

ence and integrate signal successively through sepa-
rated matrix projection, while the PS-Wald-I achieves in-
terference elimination and signal combination simulta-
neously via oblique projection. Both detectors are shown
to be CFAR with respect to the unknown covariance ma-
trix and the power scaling factor. Numerical examples
and experimental results indicate that the proposed de-
tectors can achieve a better detection performance than
the existing ones in training-limited situations.
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