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Abstract: In a global positioning system (GPS) passive radar, a
high resolution requires a high sampling frequency, which in-
creases the computational load. Balancing the computational
load and the range resolution is challenging. This paper presents
a method to trade off the range resolution and the computation-
al load by experimentally determining the optimal sampling fre-
quency through an analysis of multiple sets of GPS satellite data
at different sampling frequencies. The test data are used to con-
struct a range resolution-sampling frequency trade-off model us-
ing least-squares estimation. The theoretical analysis shows that
the experimental data are the best fit using smoothing and nth-
order derivative splines. Using field GPS C/A code signal-based
GPS radar, the trade-off between the optimal sampling fre-
quency is determined to be in the 20 461.25-24 553.5 kHz
range, which supports a resolution of 43-48 m. Compared with
the conventional method, the CPU time is reduced by approxi-
mately 50%.
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1. Introduction

GPS is widely used [1], and GPS-based remote sensing
has been extensively studied in recent decades [2]. GPS
radar is a type of passive radar that offers such advan-
tages as not needing a specific radar transmitter, easy
concealment, low cost, and strong resistance to electro-
nic interference, and thus has been of great interest to the
remote sensing community. GPS passive radar systems
have been applied to monitoring sea surfaces [3,4], de-
tecting vegetation coverage [5], and measuring changes
in soil moisture [6] and snow thickness [7-9].

Resolution is an important factor in GPS passive
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radars. Conventional imaging approaches based on the
back-projection (BP) algorithm are limited by the signal
bandwidth. Therefore, many researchers have used the
high-bandwidth global navigation satellite system
(GNSS) signal as source of opportunity to improve the
range resolution [10—13]. However, increasing the band-
width signal or implementing bandwidth synthesis is un-
able to solve the problem of aliasing of the multitarget re-
flection signals of a pseudo-random code chip. To ad-
dress this issue, Zeng et al. [14] developed a method us-
ing the diff2 operator on the range compression signal to
identify multiple objects using a single pseudo-random
noise code chip. However, this method requires a high
sampling rate, which increases the computational load
and thus is a challenge in real-time GPS radar applica-
tions. Therefore, how to balance the range resolution and
the computational load is worth examining. Few studies
have examined this trade-off in the context of GNSS
radars.

As discussed in previous works, computational load is
a significant problem in real-time radar systems [15]. In
active radar systems, numerous studies have investigated
real-time radar imaging systems for different applica-
tions, such as real-time 3D radars, synthetic aperture
radar (SAR) motion error models, and drone detection
[16—18]. Several algorithms have also been developed for
specific functions within radar systems. For example, a
sparse passive radar imaging method was developed and
verified in [19]. In [20], an algorithm was developed that
provided an efficient framework to calculate the rough
terrain clutter within 0.019 8 s when using an Intel Xeon
CPU E5-2680 2.8-GHz supercomputer with 128 GB
RAM [20]. Furthermore, Salehi-barzegar et al. [21] pro-
posed the application of the nonuniform fast Fourier
transform to the diffraction tomography image recon-
struction method for 3D through-the-wall radar imaging.
This approach requires more than 9 s of CPU time when
using a 3.2-GHz AMD Quad-Core CPU with 48 GB
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RAM. Wang et al. proposed a deep radar object detec-
tion network that can effectively detect objects in radio
frequency (RF) images [22]. However, the data transmit-
ted by the satellite are very large and require several
hours to process. In addition, GNSS signals have a 100%
duty cycle, and the algorithms [19—22] are based on the
sparse characteristics of the signal. Thus they cannot be
applied in GNSS radar systems. Nevertheless, a few stud-
ies have examined real-time GNSS radar systems. Hence,
a breakthrough mathematical scheme is crucial for redu-
cing the sampling frequency with low range resolution
loss for GNSS real-time radar.

Unlike in previous works on the range resolution of
GNSS radars, in this paper, the computational load is exa-
mined, following which a trade-off model is developed
for optimising the range resolution and the sampling fre-
quency for real-time imaging. The main contributions of
this paper are summarised below.

(1) A range resolution —computational load trade-off
model is constructed for real-time imaging.

(i1) The least-squares method is used to fit the model,
and smoothing and polynomial functions are used to fit
the experimental data.

(ii1) The optimal sampling frequency for a GPS radar
passive system is determined and verified for various
scenarios.

The rest of the paper is organized as follows. The prin-
ciple and geometrical model of GPS passive radar ima-
ging are presented in Section 2. An adaptive search for
the sampling frequency and resolution is described in
Section 3. The reliability of the obtained results and
scope for future improvements are discussed in Section 4.
Section 5 presents the conclusions.

2. GPS passive radar imaging principle and
geometrical model

The experiment in this work is based on bistatic radar
[23,24]. In a GPS-SAR system (Fig. 1), the right and left
antennas receive the direct and reflected satellite signals,
respectively, and the data carried by these signals are
used to image the reflection area [25].
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Fig.1 GPS-SAR system model

The SAR imaging mode is used to obtain a pattern of
the scattering area. The advantage of this mode is that the
reflected and direct signals can be received simulta-
neously. That is, the GPS radar signals can be received us-
ing only a single receiver with two channels.

The main process in a GPS passive radar (Fig.2) com-
prises two steps: synchronisation and imaging. After re-
ceiving the direct and reflected signals, the receiver per-
forms the synchronisation process, that is, the direct sig-
nal is correlated with the carrier signal at the correspond-
ing frequency generated by the machine. Thereafter, car-
rier tracking and code tracking are performed. After syn-
chronisation, the code delay, the carrier phase, and the
navigation information of the signal are obtained. The BP
algorithm is the core algorithm of the imaging process
and is mainly used to match and filter the synchronised
direct signal and the unsynchronised reflection signal to
obtain the range-compressed signal [26—28]. Azimuth
compression is the correlation operation performed on
each sampling point along the azimuth domain resulting
from the range compression.

Synchronization

Direct signal ® corresponding frequency
carrier signal generated by the machine

Carrier Code
> tracking > tracking
Phase | [Code dela Doppler shift Navigation
Y pp information
Imaging

| Direct signal after synchronization ® reflected signal

Range
> compression >

¥ ¥

Phase difference
imaging of navigation
information
of two channels

Azimuth
compression

Difference between
direct signal and
reflected signal

Correct phase
Wrong phase

Fig.2 Imaging model

The main synchronisation procedure is the convolu-
tion of the direct signal with the corresponding frequency
carrier signal generated by the machine [29], where ¢,
represents the range domain, « represents the azimuth do-
main, 7 represents the delay between reflected signal and
direct signal, C (¢,,u) denotes the synchronisation signal,
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S (t,,p) is the direct signal, S (#,,) is the correspond-
ing frequency carrier signal generated by the machine,
and CF,[r,—7(w)] is the cross-correlation function
between the received signal and the local generated
pseudo-code. D, represents navigation data, w, repres-
ents Doppler frequency and the respective maximum
value is 50 Hz, ¢ represents carrier phase.

C(tns/l) = S(tns/l) ®Sref(tna/l) =
CFp [tn - T(/J)]Dp [tn - T(l't)] : [je(we/ltn + SO(H)] (1)

The main imaging operation is to match and filter the
direct and reflected signals after synchronisation, where
S, (t,i) denotes the imaging signal, s(t,u,x,y) is the
direct signal after synchronisation, and Sy, (1) is the
reflected signal after synchronisation. x, y represent the
coordinate position of target relative to receiver, ¢,, rep-
resents the carrier phase of the matched filtered signal,
Wy —wq represents Doppler frequency difference bet-
ween reflected and direct signals.

St 1) = 5,1, %,Y) ® S syne(t, 1) =
CF, [t - (r2(u, x,y) — T())]-
exp((@p(upx,y) + (Wsn — Wa)t,)) ()

3. Adaptive search for sampling frequency
and resolution

In this section, the sampling frequency that can trade off
range resolution and computational load is mathemati-
cally determined. Assuming M sampling points in each
range direction, the calculation of the range correlation
operation involves M x M multiplications and M(M — 1)
additions, yielding a total of M(2M — 1) operations.
Therefore, the diff2 operation entails 2M calculations.
The recovery of the generated carrier phase requires M
recovery factors and the calculation of M recovery pro-
cesses. Therefore, M(2M — 1) + 4M calculations are per-
formed for the range compression process. The computa-
tions performed for the GPS radar using the diff2-based
range compression scheme are shown in Table 1.

Table 1 Computation in imaging processing

Imaging step Times of multiplication Times of addition/subtraction Total
Range correlation operator MxM MM-1) MQ2M-1)
Secondary order differentiation operator 0 2M 2M
Generating reply factor in carrier phase recovery 0 M M
Recover process in carrier phase recovery 0 M M

Total operations -

- MQRM~ 1)+ 4M

The results presented in Table 1 show that the compu-
tational time increases exponentially with the sampling
frequency. The objective of this work is to determine the
sampling frequency that balances range resolution and the
computational time. Introducing the diff2 operator makes
the resolution more sensitive to the sampling frequency
[14]. That is, a small change in the sampling frequency
may produce a large change in the resolution. Therefore,
a model, called the resolution-sampling frequency model,
is constructed to relate the resolution to the sampling fre-
quency and then used to determine the optimal sam-
pling frequency. The objective is to achieve a relatively
high resolution at a relatively low computational load.

{Rrange = afsampling: f;ampling < 0

)
Rrange = b, fsampling > 0

where R, represents the range resolution, Nymping IT€P-
resents the sampling frequency, fumpine T€presents
sampling frequency, O represents the optimal sampling
frequency, and a and b are constants. The range resolu-
tion is proportional to the sampling frequency when the

sampling frequency is less than or equal to O; otherwise,
the range resolution has no effect on the sampling fre-
quency. The resolution-sampling frequency model is ana-
lysed to find the optimal trade-off between the resolution
and the computational load.

Fig. 3 illustrates the process for optimising the sam-
pling frequency. First, an imaging experiment is per-
formed to obtain the range resolution results at different
sampling frequencies. Second, the test data are fitted. A
better fit is obtained with a smoothing function than a
polynomial function; hence, a smoothing function is used
in the next step. The fitted resolution-sampling frequency
curve is analysed to determine the optimal sampling fre-
quency. The results are then verified by comparing them
against dataset.

The imaging results show numerous bright, striped
bars. The range resolution is calculated by using (4),
where Ry, represents the range resolution, Ngmpine the
number of sampling points, and # the number of imaged
bright, striped bars. In this work, the imaging range sig-
nal has a main lobe width of 3 dB.
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Third, the resolution-sampling frequency curve is fit
using the least-squares method. The curve-fitting tool in
Matlab can be used to fit, both linearly and nonlinearly,
various complex models [30]. As mentioned earlier, reso-
lution increases with sampling frequency, but only up to a
certain threshold, meaning that the resolution-sampling
frequency curve is nonlinear. The two main nonlinear
curve-fitting methods are the least-squares and spline in-
terpolation methods. The least-squares method requires a
curve to pass through every discrete test point, which is
only practicable when extremely accurate function val-
ues are available; otherwise, a spline can be effectively
constructed by interpolation. Because the accuracy of the
experimental data is unknown, the spline interpolation

method is used in this work.
The most widely used spline interpolation methods are

the smoothing spline and the nth-order derivative spline.
A variable p is considered in the smoothing spline me-
thod, presented in the next formula, to ensure that the fit-
ted value is as close as possible to the experimental value
[31]. However, the most suitable smoothing functions
will be given through compromise [32]. The terms [x;,y,]
represent the data, ¢ the error, and pe€(0,---,1) the
smoothing parameter.

4 yi— f(x) ’ ¢ o ()
F. :”Z(T) +U=p) [(F70O)d 35)
i=1 ! xi

where F|; represents the smoothing function.

The nth-order derivative spline formula is defined in
segments. A third-derivative spline is considered here as

an example. The spline curve S(x) is defined in five seg-
ments, and its equation is given [33] as follows:

Si(x) = pi(x—x) + pa(x—x)* + ps(x—x)’+
pa(x—x) +ps(x—x)+ps, i=0,1,---,n=1. (6)

The spline algorithm is used to calculate the coeffi-
cients for each spline equation to yield a specific expres-
sion for the fitted curve.

4. Experimental study

Experimental data were collected at the Hong Kong Poly-
technic University using the equipment shown in Fig. 4
[14], namely a GPS receiver, two antennas (to receive the
direct and reflected signals), and a GPS receiver RF front-
end. The right-side elliptically polarised direct antenna
receives the direct signal, and the left-side elliptically po-
larised surveillance antenna receives the reflected signal.
GPS-SAR was realised by circularly moving the surveil-
lance antenna at a uniform velocity of approximately
1°/s. The experimental data were obtained using a GPS
C/A code signal with an L1 band.
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Rotational ! Surveillance
movement j § antenna

(a) Direct and surveillance antennas

Compter GPS receiver RF front end
software -
for GPS

~ receiver RF

front end

.

(b) GPS L1 C/A code signal receiver RF front end
Fig. 4 Experimental equipment [14]

The target object for detection, namely a reflection
plate placed on a slope with no obstructions nearby, is
shown in Fig. 5. Raw data were collected for 1 min. The
experiment had two components: optimising the sampling
frequency and verifying the result.
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The imaging algorithm was applied in a Matlab environ-
ment on a machine with a 3.2-GHz Intel Core(TM) i7-
8700 CPU and 32 GB RAM.

4.1 Determination of optimal sampling frequency

The first step in optimising the sampling frequency is
imaging. Fig. 6 shows the range-compressed signal at
different sampling frequencies obtained from Satellite 15
using the diff2 operator. The bright, striped bar in Fig. 6
is the most reflective component in the range sample.

XlOl}

8
3400
3500 6
3600

4
3700
3800 2
3900

200 220 240

Range sample
(b) 8 184.5 kHz sampling frequency

Azimuth sample

><10]7

3350 |

8
3400

6

4
3550 2
3600

620 640 660 680 700
Range sample

(d) 24 553.5 kHz sampling frequency

Azimuth sample
W w
W ~
S O
S S

><10‘7
3350
8
3400
= 6
£
% 3450
L=
=
£ 3500 !
<
2
3550

1050 1100 1150
Range sample

(f) 40 922.5 kHz sampling frequency



ZHANG Zhuxian et al.: Range resolution and sampling frequency trade-off for GPS passive radar 33

X]O”

3900 8
2 6
(=N
g
8 3950
=
=1
E 4
N
<

4000 )

1340

1280 1300 1320 1360

Range sample
(g) 49 107 kHz sampling frequency

><10]7
3880
8
3900
2 6
o
£ 3920
g
£ 3940 4
N
<
3960 2

3980
1740 1760
Range sample

1720 1780 1 800

(h) 65 476 kHz sampling frequency

Fig. 6 Range compressed signal indifferent sampling frequency from Satellite 15

Table 2 summarises relationship between the sam-
pling frequency and the resolution and shows that the opti-
mal sampling frequency ranges from 16 369 kHz to
32 738 kHz. Although the optimal sampling frequency
can also be estimated as 1-2 times the sampling fre-
quency of the front receiver, a mathematical analysis is
performed to accurately determine the optimal sampling
frequency.

Table 2 Range resolution results from Satellite 15

Sampling frequency/kHz Number of samples Resolution/m
4092.25 4 293.24
8 184.50 6 219.93
16 369.00 4 73.31
24 553.50 4 48.87
32738.00 6 54.98
40 922.50 6 43.98
49 107.00 7 42.76
65 476.00 10 45.82

Fig.7 shows the correlation between the resolution and
the sampling frequency obtained using a fifth-order deri-
vative spline. The black dots denote the experiment data,
and the blue line is the fitting curve, the formula for
which is given in the following:

,(0) = —2.052x 107 (x = x)° +5.225 X 107 (x — x,)—
5.104x 107" (x = x,)° +2.378 X 107%(x — x,)*—

0.052 52(x—x,)+485.9, i=0,1,---.n—1. (7)
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Fig. 7 Fifth-order derivative spline fitting curve from Satellite 15

The parameters of the fitting curve for the range reso-
lution-sampling frequency model are as follows: coeffi-
cient of determination (R-square) = 0.973 9, root-mean-
squared error (RMSE) = 8.591, and adjusted R-square =
0.969 6.

Fig. 8 shows the result obtained using a smoothing
spline. The black dots denote the experimental data, and
the blue line is the fitting curve, the formula for which is
given in the following:

Fo= PZ (y_f—i(x)) +(1+p) fN(f(’”) ) d,

p=1.941010" (®)

where F, is the smoothing function from Satellite 15.
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Fig. 8 Smoothing spline fitting curve from Satellite 15

The parameters for the fitted results are as follows:
R-square = 0.995 5, RMSE = 3.951, and adjusted R-
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square = 0.993 6.

The fifth-order derivative spline has more deviations
than the smoothing spline does. Smoothing splines tend
to be more suitable than nth-order derivative spines for
theoretically analysing GPS-SAR data. Therefore, the
smoothing spline fitting curve is used in the remainder of
this work. The computational time for the range compres-
sion process is M(2M — 1) + 4M, that is, the number of
computations is M(2M — 1) + 4M times the sampling fre-
quency.

Fig. 8 shows the optimal sampling frequency over the
8 184.5-24 553.5 kHz range. Next, by excluding the 0—
2 x 10° kHz range, derivatives are calculated to deter-
mine the inflection point. The result in Fig. 9 indicates
that 21 670 kHz is the optimal sampling frequency.
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Fig. 9 Differentiation result from Satellite 15
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Compared with the traditional imaging approach, in
which a sampling frequency of 32 738 kHz is used, the
optimal sampling frequency determined in this work
(21 670 kHz) eliminates nearly one third of the com-
putations and requires only half the CPU time. Specifi-
cally, the CPU time is reduced by approximately 50% on
a machine running a 3.2-GHz Intel Core(TM) i7-870 0
CPU and 32 GB RAM.

4.2 Verification of optimization result

To verify the optimisation, experimental data are obtained
from Satellite 29. Fig. 10 shows the diffraction pattern
results. The magnified image of the area around the
brightest illuminated pixel are zoomed in Fig. 10. In
Fig. 11, the abscissa range is the same as in Fig. 10, but
the difference in the sampling rate changes the corres-
ponding coordinates and resolution of the sampling
points.

The relationship between the sampling frequency and
the resolution for the data obtained from Satellite 29
is presented in Table 3, which indicates that the optimal
sampling frequency ranges from 20 461.25 kHz to
24 553.5 kHz. Thus, the data obtained from Satellite 29
verify the optimal sampling frequency derived from the
fitting curve.
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Fig. 10 Diffraction pattern results from Satellite 29
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Fig. 11 Imaging results from Satellite 29

Ranging result comparison with 3 dB main lobe width

from Satellite 29

Sampling frequency/kHz ~ Number of samples Resolution/m

8 184.50 5 183.27
16 369.00 4 73.31
18 005.90 3 49.98
20461.25 3 43.98
24 553.50 4 48.87
32738.00 5 45.82

5. Conclusions and future work

In this paper, the trade-off between the sampling fre-
quency and resolution obtained using the diff2 operator
was investigated. The relationship between the resolution
and sampling frequency is determined using least-squares
estimation and a smoothing function. Using field GPS
C/A code signal data, the optimal sampling frequency is
determined to be in the 20 461.25-24 553.5 kHz range,
which supports a range resolution of 43—48 m. Compared
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with the conventional method, the CPU time is reduced
by nearly 50%. The experimental results show that the
proposed method can be applied to various types of data
obtained from different GPS satellite signals.

In future studies, the proposed adaptive method will be
applied to realize other objectives in different environ-
ments. For real-time imaging, because the receiver move-
ment in SAR imaging is slow (approximately 1°/s), the
sampling frequency can be further decreased with azi-
muth compression, which in turn will decrease the com-
putational load. Compressive sensing, commonly used to
improve system efficiency, might be suitable for the azi-
muth compression of GPS passive radar systems.
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