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Abstract: Rolling element bearings are machine components
used to allow circular movement and hence deliver forces
between components of machines used in diverse areas of in-
dustry. The likelihood of failure has the propensity of increasing
under prolonged operation and varying working conditions.
Hence, the accurate fault severity categorization of bearings is
vital in diagnosing faults that arise in rotating machinery. The
variability and complexity of the recorded vibration signals pose
a great hurdle to distinguishing unique characteristic fault fea-
tures. In this paper, the efficacy and the leverage of a pre-trained
convolutional neural network (CNN) is harnessed in the imple-
mentation of a robust fault classification model. In the absence
of sufficient data, this method has a high-performance rate. Ini-
tially, a modified VGG16 architecture is used to extract discri-
minating features from new samples and serves as input to a
classifier. The raw vibration data are strategically segmented and
transformed into two representations which are trained sepa-
rately and jointly. The proposed approach is carried out on bear-
ing vibration data and shows high-performance results. In addi-
tion to successfully implementing a robust fault classification
model, a prognostic framework is developed by constructing a
health indicator (HI) under varying operating conditions for a
given fault condition.
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1. Introduction

During the operating life of a machine, its parts undergo
various degrees of stress under varying conditions. In ro-
tating machinery, bearings are used in the rotor and shaft
of the rotor as a form of support and energy conversion.
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The likelihood of fault emanating from continuous opera-
tion increases with time. Machine vibration or noise
levels, whether excessive or not, are affected by bearings
in certain aspects [1]. It has been estimated that, about
half of the faults that occur in rotating machinery origi-
nate from a rolling bearing failure [2] which poses a great
hindrance to the safety and reliability of such machinery.
Therefore, to guard against a sudden breakdown in such
an equipment leading to huge losses, it is necessary to put
in place a mechanism to effectively detect faults when
they occur and monitor their degeneracy.

Diagnosis and monitoring of progressive bearing dete-
rioration in rotating machinery by means of vibration mea-
surements have been in use for some time and have be-
come more economical and reliable in recent years [3—5].
Understanding the vibration signals is fundamental to ef-
fective fault detection and diagnostics. Therefore, three
approaches mainly used over the years have been the ana-
lysis of vibration signals in time, frequency and time-fre-
quency domains. In time domain representation of vibra-
tion signals, higher amplitudes beyond a normal level in-
dicates the inception of a fault [5]. Traditional methods
relying on the extraction of statistical features have been
extensively studied over the past 20 years [6—8]. Tech-
niques such as time synchronous averaging [9], autore-
gressive modeling [10], and blind source separation [11]
have been explored in research with appreciable ac-
curacies and associated challenges. However, it has been
realized from the review of recent studies [12] that, time
domain analysis has the ability to only indicate the pres-
ence of bearing faults but not the location of the fault.
Consequently, researchers developed a couple of fre-
quency domain techniques in analyzing vibration signals
in bearings. Prominent among these techniques are the
use of envelope analysis [13] and frequency domain fea-
ture engineering [14]. In similar studies, Tsao et al. [15]
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proposed an empirical mode decomposition method for
selecting appropriate intrinsic mode functions (IMFs) for
envelope analysis. However, due to the frequent varia-
tion in the operating speed of rotating machines, their vi-
bration signals become nonstationary [16]. This gave rise
to extensive research in processing vibration signals in
the time-frequency domain for fault diagnosis in such ma-
chinery. Considerable among these techniques include the
short-time Fourier transform [17], wavelet analysis [18],
empirical mode decomposition [19], and Hilbert-Huang
transform [20]. These approaches have achieved some
level of success. However, bereft of prior knowledge, it
becomes increasingly difficult to choose the features to
extract. This has led to fault diagnosis of bearings using
intelligent techniques as it provides intuitive diagnosis out-
comes in the absence of extensive prior knowledge [21].

The advancement of machine learning (ML) and deep
learning (DL) has propelled research in their application
in machine health diagnosis by automatic extraction of
features. The performance of these methods is highly de-
pendent on the accessibility of immense data which must
comprise healthy and all possible fault conditions. This is
highly unlikely as machines are operated in their normal
conditions, hence, there is large data represented by nor-
mal operating condition with little or none for faulty
ones. For this reason, varied faults are simulated in the
laboratory on bearings to collect ample labeled data ana-
logous to real time operating conditions. This makes it
possible to formulate an intelligent diagnosis framework
for the identification of potential faults that can occur in a
bearing during its operating life.

A considerable amount of research has been done to
ascertain the capabilities of ML and DL in processing and
identifying the state of health of machinery [22,23]. A
convolutional neural network (CNN) model developed by
Janssens et al. [24] was directly applied on frequency
spectrum of the raw vibration signal. This achieved ap-
preciable results in the absence of expert knowledge.
Shao et al. [25] proposed a feature learning method for
machinery fault diagnosis using autoencoders by first
adopting the maximum correntropy in designing the loss
function and later maximizing the main parameters of the
autoencoders using the artificial fish swarm algorithm. In
subsequent studies, the automatic learning ability of in-
depth features by denoising autoencoders was harnessed
to develop an enhanced noise reduction model for the dia-
gnosis of faults by Meng et al. [26] through the combina-
tion of L1 and L2 regularization which enhanced the
sparsity of training hyperparameters. Kong et al. [27]
presented deep autoencoders (DAEs) multi-ensemble ap-
proach for bearing fault diagnosis by assembling a couple
of DAEs with various activation function to extract dif-
ferent features during training which are grouped togeth-

er and the final result is achieved by majority voting. The
method proposed in [27] decreases in performance when
the operating condition is not known.

Even though most of the developed DL models have
achieved better performance, they are likely not to gene-
ralize well in their application in real life situations due to
the few datasets that are used to train these models from
scratch and also there is a great disparity between environ-
mental and varying operating conditions. An approach
being explored to deal with these issues is transfer learn-
ing which applies a model trained in a given task to per-
form related task in another domain [28]. Guo et al. [29]
proposed a deep convolutional transfer learning network
(DCTLN) which comprised condition recognition and do-
main adaptation modules both constructed using a 1-D
CNN for machine fault diagnosis. Similarly, Zhao et al.
[28] developed a multi-scale CNN (MSCNN) using a
dilated convolution to achieve differential features and re-
duced the complexity by utilizing global average pooling.
To achieve a higher diagnosis performance, Wang et al.
[30] presented a multi-scale deep intra-class adaptation
by modifying a pre-trained model for extracting features
at a low level, and subsequently analyzing them using a
multiple scale feature learner as inputs to a classifier
made up of high level features.

However, to achieve a robust and high-performance
model, this research considers three input formats of vi-
bration signals and develops a diagnosis model using a
transferlearningapproach. Inaddition, thisresearchalsodel-
ves into prognostics which is essential in a complete prog-
nostics and health monitoring (PHM) framework. Ongo-
ing research has either focused on the diagnosis of bear-
ing faults through classification models or estimation of
remaining useful life (RUL). However, these two appro-
aches use separate datasets, hence these two stages (dia-
gnosis and prognostics) are conducted disparately [4,31].

To overcome this bottleneck, a deep convolutional
neural network (DCNN) approach is adopted to perform
diagnosis and health monitoring for bearings in rotating
machinery through signal transformations and feature ex-
traction to establish a health indicator (HI) for pro-
gnostics. The main contributions of this research work are
summarized as follows:

(i) Develop a transfer learning approach by modifying
the VGG16 architecture with high accuracy on ImageNet
for learning low-level features in insufficient vibration
datasets.

(i) Increase overall robustness, accuracy and decrease
the average computation time by transforming the raw vi-
bration signal into spectrogram and Mel spectrogram.
The Mel spectrogram representation results in the best
performance.
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(iii) Develop a framework that conjoins a diagnosis
outcome after classification to a prognostics scheme. An
overall prognostics strategy is established by construct-
ing an HI from the fusion of significant features. The as-
sessment to determine the likelihood of a specific statis-
tical attribute containing deterioration data was decided
by its monotonicity. The value of the HI can therefore be
used to indicate the trend in degradation. This can then be
fitted to a regression model for health analysis and pre-
diction of RUL.

The rest of the paper is organized as follows. The the-
oretical overview of the task at hand is given in Section 2,
which is followed by a description of the proposed me-
thod in Section 3. In Section 4, the experimental proce-
dure and results are analyzed under diagnostics and prog-
nostic frameworks. Finally, concluding remarks are
presented in Section 5.

2. Theoretical background

Appropriate vibration data acquisition is vital to an ef-
fective health monitoring, fault diagnosis and prognosis
of a machinery. The most popular non-destructive tech-
niques used today are mostly focused on analysis of
vibrations. In a typical rolling element bearing as shown
in Fig. 1, the position of an abnormality can be determin-
ed if it corresponds with one of the frequencies given in
the following formulae, calculated from the bearing’s
geometry:

Sl D
o= 1= D cose| n
ﬂuter = Nb : f;age’ (2)
finner = Nb(f;t - fcage)r (3)
D, D\’
Jr= Z_Db A {1 _(D_Z) COSZQD}, 4)

where fuge, fouers fimer» and fr represent the cage, outer
race, inner race, and the roller spin frequencies respec-
tively. N, is the number of balls, f, is the frequency of
revolution, ¢ is the angle of contact, D, and D, are the
ball and pitch diameters respectively.
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Fig.1 Typical rolling element bearing

The impact frequencies for selected fault conditions are
illustrated in Fig. 2. Based on this discernment, vibration
signals in bearings are effectively classified by using a
DCNN.
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Fig. 2 Envelope spectrum of vibration signal

Transfer learning (TL) is a research exploratory field
where knowledge acquired in solving a problem in a
source domain is applied in a different target domain. In
the area of deep learning, the TL technique results in the
reduction in the training time of a model with better gen-
eralization even when large datasets are not available. TL
involves the concepts of a domain D and the task T,
where D consists of the feature space y and the marginal
probability P(X), where X = {x,x,,---,x,}. For a specific
domain,

D = {y,P(X)}. &)
Conversely, a task comprises a label space y and an ob-
jective function

T ={y,fO)} (6)
where f(-) can be expressed as P(y|X).
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From the aforementioned expressions, the objective of
TL is the enhancement of an objective function in the tar-
get domain by applying knowledge acquired from the
source task in the source domain as represented in Fig. 3.
However, there exist a difference in either the feature
spaces of source and target domains (Ysource # Xtarger) OF
difference in their marginal probabilities P(Xpuee) # P
(Xiarge) - Analogously, Ysource # Viarger OF P(Ysouree) # P(Yiarger) s
which implies differences in the source and target dom-
ain’s label spaces.
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Fig.3 Concept of TL

The VGGNetl6 is a DCNN having 16 layers, hence
VGG16 [32]. An advantage of this model is the conveni-
ence of loading a model pre-trained on over a million im-

ages for classifying thousand images with high accuracy.
3. Proposed method

The approach proposed in this study for health monitor-
ing of bearing operating conditions consists of a diag-
nosis and prognostics section. This study adopts VGG16
architecture, capitalizing on the benefits of TL, to achieve
a high-performance model by extracting distinct features
from various transformations of input data. The overall
model is based on the concept from transference of in-
variant features from a source to a target domain. The
VGG16 model outperformed the other well-known pre-
trained architectures such as VGG19 [32] and ResNet50
[33]. Therefore, we leverage this potential in developing
a model for the purpose of classifying selected fault
states. The input to the network is an RGB image of size
224 x 224. The subsequent blocks (convl to conv5) con-
sist of convolution and pooling layers after which fully
connected layers (fc6, fc7) and a SoftMax classifier
serves as the final stages of the model. The modified ar-
chitecture is shown in Fig. 4 where the original model is
truncated after pooling layer of conv5 and weights frozen
just beforethe fully connected layer. This is then flattened
and fed to a new fully connected classifier. In this re-
search, the size of fc6 and fc7 is fixed at 4 096x1after
several experimentations, which is followed by the final
dense layer of size 10.

‘: Convolutional layer; ' : Max pooling layer; g : Fully connected layer; ' : Softmax layer.

Fig. 4 Modified VGG16 architecture

4. Experimental verification

Two health management cases are conducted for fault clas-
sification and failure prognostics. The latter is designed to
warn of escalating levels in vibration, based on the outco-
me of the former, and serves as a boundary beyond which a
machinery under an identified bearing fault condition will
be deemed inoperable and hence appropriate actions must
be taken. The initial study groups the bearing fault data

into 10 categories and the proposed model is trained on
these samples. Based on the outcome of the fault diagno-
sis, the progression of the fault is analyzed through the
extraction of significant health features and culminates
into an HI for prognostics. By so doing, RUL can be esti-
mated based on predefined thresholds to prevent catas-
trophic failures. The overall approach of the proposed bea-
ring diagnosis and prognostics model is shown in Fig. 5.
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Fig.5 Process of implementing the proposed approach

4.1 Description of experimental setup

The dataset used in the experiment is acquired from Case
Western Reserve University and is collected from a 2 hp
motor, a torque transducer, a dynamometer, and electron-
ics for control. Vibration data were acquired from a
single-row deep groove bearing (SKF6205-2RS) at the
drive end of the motor. Further parameters of this bear-
ing are given in Table 1.

Table 1 Parameters of bearing

Parameter Value
Type 6205-2RS JEM SKF
Inside diameter/mm 25
Outside diameter/mm 52
Thickness/mm 15
Ball diameter/mm 8
Pitch diameter/mm 34.35
Fatigue load/kN 0.335

Single point faults were injected to the test bearing
with varying fault diameters and load conditions result-
ing in vibration signals collected at sampling frequency
(fs) of 12 kHz. These are categorized as normal condi-
tion (N), inner race fault (IR), outer race fault (OR), roller
fault (ball fault). The defect frequencies of this bearing
are multiples of the speed of operation which in this case

varies from 1 797 rpm to 1 730 rpm at different load con-
ditions.

4.2 Case 1: bearing fault diagnosis

4.2.1 Data segmentation

The samples used in the experimentation are obtained by
segmenting the raw signals of the bearing operating con-
ditions. The length each operating condition is given in
Table 2.

Table 2 Size of vibration signal

Length of data
Bearing operating condition
0 hp 3 hp
Normal 240 000 480 000
Ball, inner, and outer race fault 120 000 120 000

A total of 400 data points are selected in succession
without overlapping across all the individual raw data
signals. An inner race fault signal with a sliding window
is illustrated in Fig. 6. This process is repeated for all the
operating conditions and each sample is subsequently
transformed to spectrogram and Mel spectrogram. At the
end of this procedure, the normal condition has 600 and
1 200 samples for 0 hp and 3 hp. The remaining fault
conditions each have 300 samples for both 0 hp and 3 hp.
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Fig. 6 Segmenting inner race fault signal
4.2.2 Data transformation

Spectral representation of signals only shows their fre-
quency content. However, it does not expose information
relating the frequency constituents at any given point in
time.

Table 3 Description of bearing operating condition

Size of segment

Bearing  Diameter of —
. .. Validation and
operating faults/ Training . Class label
. testing
condition mm
Ohp 3hp 0 hp 3 hp
Normal 0 480 960 120 240 1
Ball 0.18 240 240 60 60 2
Ball 0.36 240 240 60 60 3
Ball 0.54 240 240 60 60 4
Inner race 0.18 240 240 60 60 5
Inner race 0.36 240 240 60 60 6
Inner race 0.54 240 240 60 60 7
Outer race 0.18 240 240 60 60 8
Outer race 0.36 240 240 60 60 9
Outer race 0.54 240 240 60 60 10

A combined time-frequency approach can be effectual
in the analysis of signal whose amplitude and frequency
components vary in time.

Short time fourier transform (STFT) can be described
as a method which assumes stationarity of a signal over
a period. This signal is divided into a series of short (win-
dowed) signals and the Fourier transform is performed
for each of the windowed signals resulting in a complex
matrix which contains both real and imaginary parts of
the Fourier transform with time and frequency dimen-
sions. The spectrogram, therefore is squared magnitude
of STFT and the Mel spectrogram is the non-linear
transformation of the frequency scale. A segment of vi-
bration data and its time-frequency transforms are shown
in Fig. 7.

|.ﬂ:!.".'|-.i'-'||l||l' f-'- l'm]

| Raw yibration Ha m;nin g
[ Hamming | signal window
wm:iow |STTFT|
v
B Log()

=3

Spectrogram Mel spectrogram

Fig.7 Spectrogram and Mel spectrogram transformation

The parameters required for computing the spectro-
gram of a given signal can significantly influence the ac-
curacy of a classifier [34]. Since there are nearly infinite
combinations of such parameters, the selected values that
result in best representation are given in Table 4.

Table 4 Parameters of spectrogram transformation

Parameter Value
Sampling frequency/kHz 12
Window type Hamming
Overlap length/% 50
Number of DFT points 256
Filter bank Triangular
Number of filters 32
Window length 128

The x and y axes of the resultant samples represent
time and frequency respectively. However, these axes are
excluded from the training samples. Selected samples of
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spectrogram and Mel spectrogram with a 0.18 mm fault
width under different operating conditions are shown in
Fig. 8.

(a) Normal (b) Normal (Mel)
(c) Ball fault (d) Ball fault (Mel)

(e) Inner race fault (f) Inner race fault (Mel)

(g) Outer race fault

(h) Outer race fault (Mel)
Fig. 8 Training samples of spectrogram (left) and Mel spectro-

gram (right) representations of operating conditions

The data preprocessing procedures followed in this
work are data resizing and z-score normalization. All the
input images are automatically resized to 224 x 224 us-
ing the Keras image data preprocessing pipeline to en-
sure a uniform input dimension for the proposed model.
After resizing the images, the pixel values (features) are
normalized between the range 0 and 1 to ensure similar
data distribution and faster convergence during training.
Given an input image x;, the normalized feature form
Xnom() 18 glven by

_ X —H(xq)
Xnorm(i) = T)
@)

(N

where u(x;) and o(x;) are the mean and standard devi-
ations of the image feature i.
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4.2.3 Diagnosis results and analysis

The performance of the model in classifying the ten bear-
ing operating conditions is represented in Fig. 9 and
Fig. 10. It can be observed that the model performed
creditably well in most of the classification results with
high precision and recall. However, ball faults seem to be
the most difficult for the model to correctly classify with
fault depth of 0.36 mm and 0.54 mm being the most
affected across the three transforms of datasets. This can
be attributed to the evidence of inner and outer race faults
in the ball fault dataset. This can be seen from the ball
pass frequency outer (BPFO) race which is equal to the
product of the number of rolling elements and the cage
rotating frequency as expressed in (2). In addition, smear-
ing phenomenon has been observed in Fig. 12 as well as
envelope spectrum of some fault depths which matches
twice the ball spin frequency and other harmonics [35].
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The training and testing results after the experimental
procedures are given in Table 5. The accuracy of the pre-
diction on a test set shows good value on the Mel spectro-
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The effectiveness of our proposed method is compared
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4.3 Case 2: bearing condition monitoring

In this study we consider a situation where a rotating ma-
chine operates from 0 hp to 3 hp condition as illustrated
in Fig. 11 under the assumption that only one fault has
occurred at a given time. In addition, analogous to Fig. 7
the signal is demarcated into 300 segments with each seg-
ment having 400 data points.
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Fig. 11  Vibration signal at different loads for ball fault of width

0.18, 0.36, and 0.54 mm from top to bottom respectively

4.3.1 Degradation assessment

Fault diagnosis depends mainly on extracting a set of fea-
tures from sensor data that can distinguish between fault
classes of interest and detect and isolate a particular fault
at its early initiation stages. Since the sensor data can be
noisy, it is vital for an effective signal processing ap-
proach. In this study the vibration signal is analyzed at
the various fault depths and its impact of increasing load
from 0 hp to 3 hp condition. A sample of this is shown in
Fig. 12 for the impact of increasing load on a ball fault.
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Fig. 12 Degradation in ball fault (0.18 mm) over varying load

conditions

4.3.2 Health indicator construction

The process of constructing the HI begins with the ac-
quisition of relevant data. The time-domain representa-
tion of the signal shown in Fig. 12 indicates an increas-
ing trend in amplitude as load increases. Subsequently,
some time and frequency domain features are extracted to
analyze the health condition information. The following
time domain statistical features are extracted: mean,
standard deviation, skewness, kurtosis, peak2peak, root
mean square (RMS), crest factor, shape factor, impulse
factor, margin factor, energy. Conversely, the spectral
kurtosis of the mean, standard deviation, skewness, and
kurtosis are extracted from the signal in frequency do-
main. The HI is developed from the aforementioned time-
domain and frequency domain extracted features for the
purpose of prognostics. The extracted features are prepro-
cessed to remove noise which can interfere in prognostic
implementation. The effect of filtering out the noise us-
ing a mean filter with a lag window of five steps is shown
in Fig. 13 for selected domain representations.
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Fig. 13 Selected significant feature process

Machines and equipment failure processes are irre-
versible in practical applications. This implies that a de-
fective part cannot recover by itself without a certain
form of maintenance or intervention. An acceptable HI
must have a monotonic raising or lowering pattern to cor-
respond with the irrecoverable degradation processes.
This effect is known as monotonicity and it is used in
quantifying the features by merit [4]. This is an intrinsic
characteristic of an HI itself, without considering its inter-
actions with certain other variables and often described
using a formula based on the HI pattern. Ranking the ex-
tracted and smoothed features according to importance as
shown in Fig. 14 is essential for further processing. The
importance of features is obtained by taking the average
of the difference between positive and negative derivat-
ives for each feature. Features above a predefined
threshold are selected for later feature fusion.
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Fig. 14 Monotonicity of extracted statistical features

Finally, an unsupervised linear transformation ap-
proach is adopted to determine unique and appropriate
features that represent the relevant information about the
bearing's condition degeneration. The principal compon-
ent analysis (PCA) transforms the original data, which
comprises the selected features, to a new lower-dimen-
sional subspace of orthogonal data referred to as principal
component (PC). Patterns in the data are identified as a
result of the correlation between features. An example of
a ball fault is given in Fig. 15.
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Fig. 15 Visualization of different degradation states of a ball fault
From experimental simulations, it is observed that PC1
has the best HI due to the progression in the data as
shown in Fig. 16.
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Fig. 16 HI for prognostics

4.3.3 Prediction of degradation behavior based on
feature fusion

A data-driven prognostic methodology based on the sys-
tematic prediction is proposed in this section. A model
based on exponential deterioration is fit to the HI ob-
tained in the previous section. The degradation model
adopted in this study for estimating the state of health un-
til a predetermined threshold is reached consists of stoch-
astic and deterministic components. The HI at a given
sampling instance & is modeled as

HI(k) = fexp (ﬁ(k) +e— %2) +6 ®)

where 6 is a lognormal distributed variable and § is a
Gaussian distributed random variable representing the
stochastic components are random variables, ¢ is a Gaus-
sian white noise with zero mean and variance 0. ¢ is a
deterministic intercept term which is constant.

Threshold determination is typically based on an
equipment historical record or other domain-specific in-
formation [39]. The HI is normalized to range from 0 and
1, and the RUL is estimated to be the time from the cur-
rent HI till the deterioration reaches a threshold. For the
purposes of maintenance scheduling, two levels of thre-
shold alerts can be set. A warning level to indicate that
the HI has reached or exceeded at least 0.8 and prompt
the scheduling of maintenance task, and a critical level of
1.0, beyond which maintenance has to be performed. Us-
ing Matlab functions, the exponential degradation model
is developed with relevant parameters. The model pre-
dicts and updates in real time by estimating future load-
ing of the bearings and detecting slopes at various in-
stances, thereby ignoring past observations and re-initial-
izing estimation based on past information. This results in
a model that makes predictions based on expected loads.

The degradation process is represented in Fig. 17, where
there is no evidence of degeneration preceding the 400th
sample. This gives rise to an RUL which is potentially
immeasurable as the slope is close to zero. Subsequently,
degradation becomes evident as the load increases close
to the 600th sample. Beyond this time, the model can be
used to estimate the RUL with higher confidence as more
data becomes available.
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Fig. 17 Degradation evolution and prediction results

5. Conclusions

This paper proposes a health monitoring approach for
rolling bearings comprising a diagnosis and prognostics
framework. In developing a robust model for the classi-
fication of bearing operating conditions, a method based
on TL is adopted by transferring the pre-trained DCNN
model to three transforms of vibration signals under vary-
ing operating conditions. Subsequent comparative experi-
ments were carried out to analyze the performance of
these three signals transforms under two operating condi-

tions. It was realized that Mel spectrogram transformed
signal offered the best classification results owing to the
ability of the model to extract distinguishing features.

Furthermore, this paper explores the health monitoring
and life prediction of a faulty bearing by generating an HI
by fusing significant statistical features. The assessment
to determine the likelihood of a specific statistical attri-
bute subsuming deterioration was decided by its monoto-
nicity. The value of the fused HI by principal component
analysis can therefore be used to indicate the trend in de-
gradation. It has been shown that the features extracted
can provide an advanced indication of rising bearing de-
fects under a given bearing fault condition and enhance
bearing deterioration assessment. Developing deep learn-
ing approaches for fault diagnosis and prognostics is very
important. Therefore, in realistic industrial scenarios, the
proposed approach intends to increase equipment relia-
bility.

Nevertheless, due to large variability in the HI, degra-
dation tracking and RUL estimation becomes a challenge
as prediction accuracy is highly dependent on the effi-
ciency of an HI. This is a problem to be resolved. In the
future, the authors will further investigate this issue by
implementing different deep learning approaches to
achieve better prognostics performance.
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