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Robust adaptive control of hypersonic vehicle
considering inlet unstart
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Abstract: In this paper, a model reference adaptive control
(MRAC) augmentation method of a linear controller is proposed
for air-breathing hypersonic vehicle (AHV) during inlet unstart.
With the development of hypersonic flight technology, hyperso-
nic vehicles have been gradually moving to the stage of weaponi-
zation. During the maneuvers, changes of attitude, Mach num-
ber and the back pressure can cause the inlet unstart phe-
nomenon of scramjet. Inlet unstart causes significant changes in
the aerodynamics of AHV, which may lead to deterioration of the
tracking performance or instability of the control system. There-
fore, we firstly establish the model of hypersonic vehicle consi-
dering inlet unstart, in which the changes of aerodynamics caused
by inlet unstart is described as nonlinear uncertainty. Then, an
MRAC augmentation method of a linear controller is proposed
and the radial basis function (RBF) neural network is used to
schedule the adaptive parameters of MRAC. Furthermore, the
Lyapunov function is constructed to prove the stability of the
proposed method. Finally, numerical simulations show that com-
pared with the linear control method, the proposed method can
stabilize the attitude of the hypersonic vehicle more quickly after
the inlet unstart, which provides favorable conditions for inlet re-
start, thus verifying the effectiveness of the augmentation me-
thod proposed in the paper.
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1. Introduction

With the development of air-breathing hypersonic
vehicles (AHVs), key technologies such as scramjet tech-
nology, airframe-propulsion integration technology,
thermal protection technology, and flight control techno-
logy have made great progress, and all military powers
have moved forward from flight test to engineering ap-
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plication. As a kind of weapons, air breathing hypersonic
vehicle need to maneuver according to the guidance law.
During maneuvers, low Mach number, large angle of at-
tack, and high back pressure of the isolator may cause the
terminal normal shock wave to be pushed out of the inlet,
resulting in the inlet unstart. As a result, the internal and
external flow field of the vehicle will be changed due to
inlet unstart, and the AHV will experience an instantan-
eous loss of thrust and a sudden change in aerodynamic
characteristics. Consequently, the tracking performance
of flight control system deteriorates and even the flight
control system impulsively transforms into unstable flight
conditions [1]. The flight test jointly conducted by De-
fence Advanced Research Projects Agency and Queens-
land University of Australia in 2007 and the x-51A flight
test in 2010 and 2011 failed due to the unstart of scramjet
inlet [2—4]. The unstart of the inlet of the scramjet engine
has attracted wide attention from researchers. Im et al. [5]
examined recent research progress in identifying flow
choking mechanisms that trigger unstart and discussed
three different flow choking mechanisms. Kong et al. [6]
detected inlet unstart by estimating the location of the
shock train leading edge based on the flowfield recon-
struction model, and the detection accuracy was greatly
improved. Devaraj et al. [7] performed experiments in the
hypersonic wind tunnel of Indian Institute of Science at
Mach 6 to study unstart characteristics of generic scr-
amjet intakes. Xue et al. [8] proposed a few novel data-
analyzed methods based on the analysis of the schlieren
images and dynamic pressure to study the dynamic cha-
racteristics of separation shock in an unstarted hyperso-
nic inlet flow. Li et al. [9] analyzed flow characteristics
during the start/unstart transition and discussed the influ-
ences of the backpressure and transition stage on the hys-
teresis behavior of the transition in detail. Deng et al. [10]
investigated unstart process of dual-mode scramjet from a
started state to an unstarted state numerically at the free-
stream Mach number of 4 and predicted unstart phe-
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nomenon by applying time histories of static pressure and
mass flow rate. Bolender et al. [11] observed slope re-
versal in stability and control derivatives during unstart,
and found that the unstarted inlet destabilized the control-
ler designed using the started inlet acrodynamics. In sum-
mary, current research on inlet unstart problem mainly
concentrates on its mechanism, detection, characteristics,
hysteresis behavior, prediction and aerodynamic varia-
tion caused by inlet unstart. Whereas solving the prob-
lem of inlet unstart by flight control are investigated in
the initial phase. In this paper, the attitude stability of the
aircraft after the inlet unstart is realized by flight control,
which creates conditions for the inlet restart.

Model reference adaptive control (MRAC) has been
shown to successfully handle dynamical systems with
parameter perturbations and external disturbances due to
its strong robustness and adaptation. In [12], a classical
open-loop reference model design and a modified closed-
loop reference model design were applied to the road run-
ner six-degree-of-freedom generic hypersonic vehicle
model with uncertainty in control effectiveness, longitu-
dinal center of gravity location, aecrodynamic coefficients,
sensor bias and noise, and input time delays. In [13],
Lavretsky et al. designed and analyzed a predictor-based
MRAC which yielded improved transient characteristics.
In [14], a direct MRAC framework provided stable adapt-
ation in the presence of multi-input constraints for a class
of multi-input dynamical systems with unknown parame-
ters and matched uncertainties. While one drawback of the
MRAC is the large number of design parameters to be
scheduled by trial and error. Therefore, some kind of
automated and intelligent procedure to extricate the de-
signer from the cumbersome and time-consuming work is
needed.

Radial basis function (RBF) neural network can ap-
proximate any continuous function to any desired accu-
racy [15]. This characteristic of RBF neural network
makes it widely used in the estimation and identification
of system parameters. Combining RBF neural network
with other control methods, a variety of novel control
methods are proposed. Wang et al. [16] proposed sliding
mode controller with radial basis function neural net-
work (RBFNN) identifying uncertainty parameters,
which removed the chattering and reserved the fast, ro-
bust, immunity of sliding mode control. Zhai et al. [17]
designed the sliding mode fault tolerant controller with
RBFNN estimating the unknown additive fault and adapt-
ive method dealing with the partial loss of effectiveness
fault. Slama et al. [18] presented an RBFNN MRAC sys-
tem containing RBFNN models, RBFNN controllers, RB-
FNN reference models and an adjustment mechanism for
multiple input multiple output nonlinear systems. Where-

as there has been little research on using RBF to sched-
ule adaptive parameters of MRAC.

In practical engineering application, the aircraft already
has baseline controller including proportion and integral.
In this paper, based on the baseline controller, the adap-
tive unit is added to augment the baseline controller, that
is, the total control input is the sum of baseline linear
control and adaptive control, which can not only restore
the expected performance of the controller, but also make
the least changes to the baseline controller. This method
is convenient for engineering implementation and is sig-
nificant to solve engineering problems. Therefore, an
MRAC augmentation method of a linear controller is pro-
posed for the longitudinal short-period dynamics of AHV
to provide a stable attitude quickly after the inlet unstart.

In summary, the contributions of this paper are ex-
plained as follows:

(1) The model of hypersonic vehicle inlet unstart is es-
tablished;

(i) An MRAC augmentation method of a linear con-
troller is proposed to solve the problem of attitude stabil-
ization of hypersonic vehicle when inlet unstart;

(iii) RBF neural network is used to adjust the parame-
ters of adaptive control quickly;

(iv) The simulation results show that the MRAC aug-
mentation method of linear controller can stabilize the at-
titude of the aircraft more quickly when the inlet unstart,
which creates favorable conditions for the restart of the
inlet.

The paper is organized as follows: Section 2 describes
the longitudinal model for a hypersonic vehicle with the
start and unstart inlet. Section 3 proposes a MRAC aug-
mentation method of linear controller. Section 4 presents
simulation results. Finally, Section 5 gives conclusions.

2. Longitudinal model of a hypersonic vehicle

The longitudinal motion equations of the rigid hyperso-
nic vehicle in the start regime are given as follows [19,20]:
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where V, y, O, ¢ , and «@ represent velocity, flight-path
angle, pitch rate, pitch angle, and angle of attack, respecti-
vely. I, and m are moments of inertia and mass of the
hypersonic vehicle respectively. g is the acceleration of
gravity. M,,, T, D, and L denote pitching moment,
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thrust, drag, and lift, respectively. The approximations of
force and moment are expressed as follows:

Myy = qS E‘CMW

T=3SC;

D=3SC, 2)
L = qS CL

where Cy, Cr, Cp, and C, present the coefficient of
pitching moment, thrust, drag , and lift, respectively. S, ¢,
and g denote reference area, reference length, and dy-
namic pressure

1

q= 3oV’ G

where p denotes air density.
The coefficients of longitudinal force and moment are
as follows [19]:
Cu, = Coyo +Cjy @+ Cyy > +Cy; 6.
Cr ~ Cro+Cla+C¥a?+C% a?
p = Cpo+Coa+CEa? +C%6,+C% 5,2
CL=Cp+Cla+ Ci"ée
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where 6, is the elevator deflection angle.
The nonlinear equation of motion (1) is linearized with

small perturbation method:
{d = —a,a+ Q —aso,
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The linearized dynamic equations (5) can be written in

the form of the following state space:

{x=Ax+Bu

ay

as

6
y=Cx (6)
where the state vector x =[a Q]", the control vector
u=9,, the output vector y=c«, and the coefficient
matrices are as follows:
- 1
A:[ s

—a; —a

_| 74 _
],B—[ o ],C—[l 0].

During an un-start event, the shock system in the inlet

moves forward and out of the inlet due to a downstream
rise in stagnation pressure. The shock system moving out
of the inlet results in a significant pressure rise on the in-
let that is manifested as a positive slope in the moment as
a function of angle-of-attack that either de-stabilizes a
stable aircraft or makes an unstable aircraft more un-
stable. In the unstart regime, the thrust 7 in (1) is set to
zero and simultaneously the coefficients of longitudinal
force and moment are changed, as described in the fol-
lowing equations:
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The state space equation is modified as follows:
{x = Ax+BAu + f(x))

y=Cx ®)

where f(x) = @T®(x) represents uncertainty caused by
inlet unstart; @ = [0, 6,]" denotes the matrix of unknown
constant parameters, @(x) is the vector related to states,
and A represents the change in elevator efficiency.

3. MRAC augmentation design of linear con-
troller

3.1 Defining the reference model

The following equation is defined:

€y =Y Yemd (9)
where e, represents the system output tracking error, and

Yema indicates the command to be tracked. The integral of
the output tracking error is defined as follows:

é)'l =€, =YY = Cx = Yema- (10)

Extending (8) with (10) produces the extended open-
loop dynamic equations:

xau = Aauxau + BauA(u + f(-x)) + Brefycmd
(11)
y = Cauxau
where x,, = [e}; x"]" is the extended state vector. The ex-
tended open-loop matrices are as follows:

0 C
Aau_|:0 A:|,
0
Bau - |:B:|7



WANG Fan et al.: Robust adaptive control of hypersonic vehicle considering inlet unstart 191

C,.= [0 C],

-1
Bref:[0]~

The assumption of A = I and f(x) =0 in (11) results in
the following linear baseline extended open-loop dyna-
mic equations:

x(ll,l = Aauxau + Bauu + Bl'e cme
{ £y a (12)

y=CuXau
The baseline linear controller for baseline extended

system (12) is designed in the following way.
The equation is defined as follows:

7=Xg = ( éfy’ )
x /. (13)
v=u
Then
z=A,z+B,v. (14)

The linear quadratic cost index is as follows:
J= f:zTQz+vTRv dr (15)

where Q and R are the appropriately selected symmetric
positive-definite matrices. The corresponding optimal
LQR solution is as follows:

y=ut=-R"'B"Pz= —(K,K,,)(Z"’] (16)

where P is the only symmetric positive-definite solution
of the algebraic Riccati equation.

A" P+PA,+Q-PB,.R'B"P=0. (17)

au au

The following baseline linear controller is obtained by
integrating (16)

Uy = —K:(mxau = _Kley[ —pr. (18)

The block diagram of the baseline linear controller is
shown in Fig. 1.

Vem
T:*Qﬂ

»y

Fig. 1 Block diagram of baseline linear controller
Substituting (18) into (20) yields the following refer-
ence model dynamic equations:

{xref = Arefxrel' +Brefycmd

Yeet = Crefxref

(19)

where

Aref = Aau - BauK;l-
(20)

Cref = C

3.2 The design of MRAC

The presence of the uncertainties of the hypersonic
vehicle may cause the tracking performance deterioration
or even the instability of the baseline linear controller. In
order to solve this problem and minimize the change of
baseline linear controller, the controller should not only
possess strong robustness to uncertainty, but also retain
the advantages of simple form and easy engineering ap-
plication of baseline linear control, therefore, an MRAC
augmentation method of a linear controller is proposed.
Thus, the total control input is the sum of baseline linear
control and adaptive control [21].

u= —K:L’xau ‘U =Uy Uy (21)
Substituting (21) into (11) and using (20) yield:

xauzArefxau+BauA(uad+(I_A_l)ubl + 0T¢(-x))+Brefycmd
yZCrefxau .

(22)
It is noted that
K =1-A"" (23)
Redefine vectors
Dy, x) = (u,, P"(x))". (24)

Then the augmented matrix of unknown parameters is
as follows:

6= o (25)
Then (22) can be rewritten as follows:

{xau = Arefxau + BauA(uad + @T@(ubl’ x)) + Brefycmd

e Cx (26)
— Lreftau

The adaptive component u,, is chosen to dominate the
system uncertainty @ ®(u,,;, x):

Uus = _éTé(ubhx) 27

where @ is the matrix of adaptive parameters.
The state tracking error is as follows:

e =X, — Xt (28)
Adaptive laws are selected in the following form:
0 =I'o®(w,,x)e"PoiB,, (29)

where elements I'e = I'j > 0 represent adaptation rates
and P is the only symmetric positive-definite solution
of the algebraic Lyapunov equation.
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AT ‘Pref + Prel'Aref = _Qrel'

ref

(30)

where Qs = Q. > 0 is the appropriately chosen matrix.

ref

The partitioning matrix I' is as follows:

r, o
ro=(y 1)

where I', and I'g denote adaptation rates for uncertain-
ties that correspond to x,, and @(x). Equation (29) be-
comes as follows:

(€2))

o T
Ifu - Fuuble PrefBau (32)
@ = F9¢(x)eTPrefBau
The total control input is as follows:
u=uy+u, =K x,—Ku,—6"d(x). (33)

The block diagram of adaptive augmentation of
baseline linear controller is shown in Fig. 2. The adapt-
ive gains K, and @ are driven by the tracking error
e = Xx,,—X,. Under the influence of adaptive augmenta-
tion of the reference linear controller, the output of sys-
tem y tracks the output of reference model y.; asympto-
tically in the presence of uncertainty f(x) = @Td(x) and
unknown elevator efficiency change A caused by inlet

unstart.
Reference| Yrer [~ Yret

Poof e Maf A |o{PlantEf O

Fig. 2 Block diagram of adaptive augmentation of baseline linear
controller

3.3 Demonstrating the stability of adaptive augment-
ation of the baseline linear controller

Equation (27) is substituted into (26):

xau = Arefxau - BauA(@ - @)T@ + Brefycmd (34)
y = Crefxau

where
AO=6-6 (35)

which is the matrix of parameter estimation error.
The tracking error dynamics is calculated by subtract-

ing reference model (19) from the system (34):
é=A.e—B,ANO"D. (36)

The following quadratic Lyapunov candidate function
is selected:

V(e,AB) = e" P, e +tr(AO"T;' AOA). (37)
Equation (37) is differentiated as follows:
V(e,A@) = —e"'Q,.ce —2¢" P,..B,, AAO " D+

2t(AG'T; OA). (38)
If the following vector trace identity is applied to (38):
a'b = tr(ba"), (39)

then the following equation is obtained:

V(e,A®) = —€"Q\se +21r (A@T {r;.,' o- ¢_eTPre,~Ba,,}A).
(40)
The substitution of (29) into (40) produces the follow-
Ing equation:

V(e,A@) = _eTQrefe <0. (41)

The asymptotical stability of adaptive augmentation of
baseline linear control is demonstrated with the Lyapu-
nov stability theory.

3.4 Scheduling parameters of the RBF neural net-
work

In Subsection 3.2, I?,,represents the adaptive laws.
ku = thub[eTPrefBau (42)

As we all know, the scheduling of adaptive control
parameters is a very time-consuming work. In order to
free designers from the cumbersome work and improve
the work efficiency, this paper uses the approximation
characteristics of the RBF neural network to design I',,.

The RBF neural network uses a three-layer forward
network. The input-to-output mapping is nonlinear,
whereas the hidden-to-output layer mapping is linear,
thereby greatly improving its learning speed and avoid-
ing local minimum problem. The input signal uses sys-
tem output tracking error e, and its integration e,;. The
hidden layer uses the Gaussian function as the base func-
tion. The output of the neural network is the parameters
to be scheduled.

The structure of the neural network is shown in Fig. 3,
and the 2-6-1 structure is adopted.

Fig.3 Structure of RBF neural network

As shown in Fig. 3, X = [e,; é,,]" is selected as the in-
put vector, the radial basis vector is defined as H = [k,
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hy,--+ b, -+ ,he]T, where h; is the Gaussian function.
I X-Ci\ .
h,-:exp(—z—bi2 i=1,2,--,6 (43)

The center vector of the ith node of the neural network
is
Ci=[cy Ciz]T- 44)
The base width vector of the neural network is as-
sumed to be

Bz[bl’bZa”"bG]T (45)
where b; is the base width parameter of the node i, and

satisfies b; > 0.
The weight vector of the neural network is

W= [wi,wa, -+, wel. (46)
The output of the neural network I, is
6
r.= Zw,»h,. A7)
i=1

The performance index function is
1, 1
J= Ee;, = E(y_ycmdy' (48)

The base width parameter of the node, the value of the
node center, and the output weight vector are calculated
with the gradient descent method.

The base width parameter of the node is

HJ__, c')éyI__, dy
ab o, e
. oyol, . oI, _
| X-Ci?

-

i

Ab[z_

—é ylwihi (49)

bi(k) = bi(k— 1)+ nAb; + u(bi(k— 1) —b(k—2))  (50)
The value of the node center is
oJ . 0éy . Oy
ACij = —aTij = _eylaT‘ij = —eylgij =
_e Oy or, Ol _
Mor, dc; ~ Moy
X —c;j
»

i

_éylwihi (51
cij(k) = cijtk = 1)+ nAcij+ plcijtk—1) —cij(k=2))  (52)
where j=1, 2.
The output weight vector is

o] . 96y . Ay
AW,- = _6_Wi = —eyla—‘:i = _eyla_wl- =
oy or, . o,

_éyla_[‘ua_\/vi =~ —eyla—m = —éylh,-. (53)

wi(k) = wi(k— 1) +nAw; + p(w;(k— 1) —wi(k=2))  (54)

where 7 is the learning speed, u is the learning factor,
O<n<l,andO<pu<1.

4. Simulation results and analysis

The MRAC augmentation method of a baseline linear
controller is simulated and applied to an AHV to verify
its effectiveness.

The assumed simulation conditions are listed in Table 1.
A commanded angle of attack is tracked. In the begin-
ning, the inlet is started, and the baseline linear controller
is designed for the baseline extended system. When the
angle of attack reaches 10°, the inlet unstarts, and the
model perturbs on the basis of the baseline model. The
perturbation is as follows: @ =[6, 6,]" = [0.025a,—
0.025a,]1", @(x) = [ Q]", A = 0.6. That is to say, the ab-
solute value of the kinetic coefficient @, increases by
45%, a; and as decrease by 40%, a, decreases by 6%,
and a, decreases by 45%.

Table 1 Simulation conditions

Symbol Description Value
Hy/km Initial height 23
Ma, Initial Ma number 6
ao/(°) Initial angle of attack 2.5
Q0/(-s ™) Initial pitch rate 0

Thereafter, two control methods are adopted, one is the
baseline linear control method, and the other is the
MRAC augmentation method. When the angle of attack
is stabilized to —5°, the inlet restarts. The simulation re-
sults of the two methods are compared and shown in
Fig. 4-Fig. 8.

20

15 "”Jy
!

Angle of attack/(°)

Time/s
———: Command; — — —: Linear control; - - - - - : MRAC.

Fig. 4 Time histories of angle of attack
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Fig. 6 Time histories of elevator deflection angle
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Fig. 7 Time histories of the parameter K,

As shown in Fig. 4-Fig. 6, in the beginning, the
baseline linear control method has a good control per-
formance for the baseline model, and the output of the
system can track its command well. Pitch rate is less than
10°/s and maximum elevator deflection angle is 9.8°.

When the inlet unstart, the pitch rate, elevator deflec-
tion angle, and angle of attack controlled by the baseline
linear control method have a sustained large oscillation,

and the maximum amplitude reaches about 25°s, 38°,
and 11° respectively. At 25 s, the angle of attack stabil-
izes to —5° and the inlet restarts. The pitch rate controlled
by the MRAC augmentation method remains stable after
a small oscillation. The elevator deflection angle changes
obviously, and the amplitude reaches about 20°, then it
converges rapidly. The angle of attack only produces a
perturbation of 1°, and after 0.2 s it begins to track the
angle of attack command. At 8.5 s, the angle of attack stabi-
lizes to —5°, and the inlet restarts. The MRAC augmenta-
tion method is superior than the linear control method in
the unstart regime.

60

50}--

40F--

Time/s

Fig. 8 Time histories of the adaptive rate I',

After the inlet restart, the control performances of the
two methods are similar, and both methods have good
control effect on the vehicle with started inlet.

In Fig. 6, the red solid line denotes the total control in-
put, the dot line represents the elevator deflection angle
generated by the linear control method, and the dash line
is the elevator deflection angle generated by the adaptive
control method. When the MRAC augmentation method
of linear controller is adopted from 2.5 s, the total control
input is the sum of the elevator deflection angle gene-
rated by the adaptive control and the elevator deflection
angle generated by the linear control.

The estimated values of parameter K, converge, as
shown in Fig. 7. Fig. 8 shows the adaptive rate I', sche-
duled by the RBF neural network.

In order to prove the superiority of the proposed meth-
od, it is compared with the conventional MRAC. The
simulation results are shown in Fig. 9—Fig. 11. It can be
seen from the figure that after the inlet unstart, the max-
imum values of oscillation process of angle of attack,
pitch rate and elevator deflection angle controlled by the
conventional MRAC method reach 11.5°, 22.5°/s and
38.5°, respectively, which are larger than 11.0°, 13.4°s,
29.6° controlled by the proposed method. It proves that
the oscillation process controlled by the proposed meth-
od has smaller amplitude and faster convergence than the
conventional MRAC method.
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The simulation results show that the MRAC augmenta-
tion method of a linear controller is strongly adaptive and
robust to parameter changes caused by inlet unstart. The
proposed method can stabilize the attitude of the hyper-
sonic vehicle more quickly than the linear control me-
thod after the inlet unstart, which provides favorable condi-
tions for inlet restart. Compared with the conventional
MRAC, the amplitude of the oscillation process con-

trolled by the proposed method is smaller and the conver-
gence is faster.

In terms of computational complexity, the proposed
method mainly increases the calculations of the baseline
controller and RBF neural network compared with the
traditional MRAC. These two parts only need basic cal-
culations, and there is no need for other time-consuming
calculations such as optimization and iteration. Therefore,
the proposed method is equivalent to the traditional
MRAC in terms of computational complexity, which has
no obvious increase in complexity.

5. Conclusions

The inlet unstart control problem is a very interesting and
challenging work. This paper establishes the model of
AHV after inlet unstart to describe the changes of flight
dynamics caused by inlet unstart of scramjet. Based on
this model, an MRAC augmentation method of a linear
controller is proposed. The method can stabilize the atti-
tude of the AHV quickly after inlet unstart and provide
favorable conditions for the inlet restart. The main superi-
ority of the proposed method over linear control and con-
ventional MRAC is the improvement of the dynamic per-
formance of the control system after inlet unstart. The in-
tegration of RBF neural network to schedule parameters
of the adaptive controller further simplifies the design
process and enhances the efficiency of parameter
scheduling.
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