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Abstract: This paper proposes a liner active disturbance rejec-
tion control (LADRC) method based on the Q-Learning al-
gorithm of reinforcement learning (RL) to control the six-degree-
of-freedom motion of an autonomous underwater vehicle (AUV).
The number of controllers is increased to realize AUV motion de-
coupling. At the same time, in order to avoid the oversize of the
algorithm, combined with the controlled content, a simplified Q-
learning algorithm is constructed to realize the parameter adapt-
ation of the LADRC controller. Finally, through the simulation ex-
periment of the controller with fixed parameters and the control-
ler based on the Q-learning algorithm, the rationality of the sim-
plified algorithm, the effectiveness of parameter adaptation, and
the unique advantages of the LADRC controller are verified.
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1. Introduction

Underwater robot plays a very important role in the de-
velopment of marine resources and protection of marine
rights and interests. Autonomous underwater vehicle
(AUV) has been widely used in marine research and na-
tional security [1—4]. In recent years, AUV has been suc-
cessfully applied to complex underwater motion such as
seabed imaging and seabed mapping [5,6]. The motion of
an AUV has six degrees of freedom. Because each opera-
tion on the AUV will have different degrees of influence
on its various degrees of freedom, the AUV has the cha-
racteristics of strong coupling and strong nonlinearity. In
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addition, the complex dynamics of the underwater envi-
ronment makes it more difficult to control AUVs [7].
Therefore, it is of practical significance to control the
movement of AUVs in accordance with the required per-
formance. Many control methods in classical control the-
ory, modern control theory and intelligent control theory
have been applied to motion control of AUVs. For exam-
ple, proportional-integral-derivative (PID) control, slid-
ing mode control, fuzzy control and adaptive control, and
many combination methods of the above methods [8—11].
PID control is a feedback control based on error signals
and is currently one of the main AUV control methods.
However, when PID control faces a system with strong
nonlinearity and strong coupling, the dynamic perform-
ance of the system is poor and the overshoot is large. Han
proposed the active disturbance rejection control (ADRC)
method in the 1990s [12,13]. On the basis of this, Gao
proposed a linear active disturbance rejection control
(LADRC) method [14], which greatly reduced the num-
ber of parameters of the ADRC controller and made the
whole system easy to debug and apply. ADRC has been
applied to the control problems of fighter aircraft’s high
angle of attack tracking [15], ship course control [16] and
the power system [17], demonstrating its superior control
performance. A good controller should have a certain de-
gree of adaptive ability in resisting disturbances while
having a good control performance [18,19], so the selec-
tion of parameters of the controller has been the focus of
many experts and scholars. At present, many algorithms
have been used to calculate controller parameters, such as
the adaptive controller combined with fuzzy control al-
gorithm can realize parameter self-adjustment [10,20,21].
However, establishment of fuzzy rules depends on pro-
fessional experience and model, so the application scope
of fuzzy control is limited. Reinforcement learning has
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been widely used in artificial intelligence and machine
learning [22,23]. Control algorithms based on reinforce-
ment learning can optimize control strategies by interact-
ing with unknown environments. The temproal-differ-
ence (TD) method in reinforcement learning is a model-
independent reinforcement learning algorithm. The al-
gorithm updates strategies by updating the value function,
and the new status and immediate rewards generated after
the execution of the strategy are used to update the value
function again. The TD method includes on-policy Sarsa
algorithm and off-policy Q-learning algorithm [24]. The
effectiveness of Q-learning algorithm has been verified in
many fields [16,17,25]. At present, in most control meth-
od researches, the AUV model is always decoupled
[23,26], so the authenticity of the controlled model is re-
duced. Therefore, the LADRC controller based on the Q-
learning algorithm is used to control the six-degree-of-
freedom AUV model, and the related structure of the con-
troller and the Q-learning algorithm are designed.
Through Matlab simulation experiments, the control ef-
fect of the new controller is compared with that of the
PID and LADRC controllers with fixed parameters. The
results show that the LADRC controller based on the Q-
learning algorithm can achieve the better control effect.

The main contributions of this paper are summarized
as follows:

(1) The LADRC controller is adopted to stabilize the
AUV system.

(i1) Controllers are added for motion decoupling: two
LADRC controllers are used to control AUV motion in
yaw and pitch planes.

(iii) The Q-learning algorithm is applied to realize
parameter self-adaptation of the LADRC controller.

(iv) The state division and reward design of Q-learn-
ing algorithm are constructed for the controlled content.
The scale of the algorithm is simplified and the effective-
ness of the algorithm is guaranteed.

2. Motion and modeling of AUV

2.1 Coordinate frames and rigid body dynamics
equation

Six degrees of freedom motion equations of AUV can be
described using the earth-fixed coordinate frame and the
body-fixed coordinate frame shown in Fig.1, both of
which are right-handed. The origin of the body-fixed co-
ordinate frame is located at the AUV center of buoyancy.
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Fig.1 Coordinate frames and motion parameters

The motion of AUV can be described by these vectors:
m=[x y dm=lp 6 yI,

vi=[u v wi,u,=[p q r,

=X Y ZI'\,=[K M NI,

where 7 describes the position and orientation of the
AUV in the earth-fixed coordinate frame, v describes the
linear and angular velocities of the AUV, and 7 de-
scribes the total forces and moments acting on the AUV
in the body-fixed coordinate frame. The meanings of the
symbols are summarized in Table 1.

Table 1 Symbols and their meanings

Linear and angular velocity

Motion Position and angle (Force and moment)
Surge X u(X)
Sway y v(Y)
Heave z w(Z)
Roll ¢ p(K)
Pitch 0 q(M)
Yaw Y r(N)

The coordinate transformation of the translational velo-
city between earth-fixed and body-fixed coordinate
frames can be expressed as

X u
yl=J:i|v (D
Z w

where

cosysinfcos g + siny sing
—cosysing +siny sinfcosp|.
cosfcosy
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The coordinate transformation of the rotational velo-
city between two coordinate systems can be expressed as

¢ p
0 =J.|q (2)
v r
where
1 singptanf cosegtané
J.=10 cos ¢ —sing

0 sing/cosf cose/cosd

The positions of the AUV centers of gravity and buo-
yancy are defined in the body-fixed coordinate frame as
follows:

er[xg Ve Zg]TarB:[xb /) Z/;]T~

According to the theory of rigid body dynamics, the
motion equations of a six degrees of freedom rigid body
defined by body-fixed coordinates are as follows:

m[(u—vr+wq)—xg(q2+F2)+yg(17q_i")+
Z(pr+9] =X,

m[(v—wp+ur)—yg(r2+p2)+zg(qr—p)+
Xg(qp+i’)] =Y,

m[(w—uq+vp)—zg(q2+P2)+yg(rCI+P)+
x (rp=9| =7,

pr+(lz_I)’)qr+m[yg(w+pv_qu)_
z,(V+ru—pw)] =K,

L+, —L)rp+mz, (it+wg—vr)—
x,(W+pv—uq)l=M

Li+(I,—1,) pg+m[x,(V+ur—pw)—
Ye(it+gqw—vr)| =N (3)

where m is AUV’s weight and I,,1,,1, are the moments
of inertia of mass m of AUV to three coordinate axes.

u m—X, 0 0

% 0 m-—1Y, 0
Wl 0 0 m—27,

p | 0 —mz, my,

q mz, 0 -mx, — M,
P -my, mx,—N, 0

where ZX,‘ . -,ZN is the other terms except the term

containing acceleration. Six degrees of freedom nonlin-
ear motion equations of AUV can be obtained by combin-
ing (5) with (1) and (2).
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2.2 Force and motion equation

At present, there are many submarine motion equations
used in the world, but each equation differs only in mathe-
matical description and mathematical processing method.
The AUV model referred in this paper is a remote envir-
onmental monitoring units (REMUS) autonomous under-
water vehicle [27]. The total forces and moments acting
on AUV can be expressed as follows:

X = Xus + Xyt lul + Xyt + X, ,wq+
X099 + Xvr + X, rr + X
Y =Yus+Yyywl+ Yyurir| + Yo+ Vi + Y, ur+
Y, owp+Y,,pqg+Y,uv+Y,; u*s,
Z =Zys + Zywwl+Zy0qlql + Z;w + Z,4+
Zuq+2,,vp+Z,,rp+Z,uw +Z,;, uz(SS
K =Kus + K, plpl + Kyp + Kprop
M = Mys + M,y wiw|+ M, ,qlql + M+
M,g+ M, ug+M,,vp+M,,rp+
M, uw + M5 1*5,
N = Nys + Ny V| + Ny 7 1] + Nyv + N+
“
where Xys, Yus, Zus, Kus, Myus, Nys are hydrostatics;

Xaws Yovts Yirts Zuwt> Zagts Kpipts Mugwis Mgy Nopys Ny are

2
Nyur+N,,wp+N,,pq+ N,uv+N,s;ud,

hydrodynamic damping coefficients. Y,., Yius, > Zuws Zus.
M,,, Mys., Nu, Nus are lift coefficients and lift mo-
ment coefficients of body and control fin. X,,.,,, Kypare
propeller thrust and torque. J;, d, are the AUV’s pitch fin
angle and rudder angle. The remaining coefficients are
additional mass coefficients.

Substitute (4) into the right end of (3). Organize the
formula so that all the left end of the formula are acceler-
ation terms. The nonlinear equations of motion can be ob-
tained after sorting out

0 mz, —my, >»X

—mz, 0 mx, —Y; nY
my,  —mx,—Z, 0 2z 5)

I,.—-K, 0 0 > K

0 L,-M, 0 M

0 0 I.—N; >N

2.3 AUV system model

The attitude of the REMUS vehicle is controlled by hori-
zontal fins and vertical fins. The horizontal fins of the
REMUS vehicle can control the pitching fin angle §,, so
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that vehicle can carry out pitching motion. The vertical
fins can control the rudder angle §,, to control the head-
ing motion of the vehicle. In addition, this paper assumes
that the propeller speed is constant at 1 500 rpm, and the
REMUS vehicle maintains a speed of 1.51 m/s [27].

As can be seen from Fig. 2, taking depth control as an
example, the depth set value Z is used as the controller in-
put to get the appropriate control quantity. The input of
AUV motion control is fin angle ¢,, rudder angle §,, and
propeller thrust X,,,,.

z

Spatial

| —»= Controller P i
? p stress

Equations | » | Coordinate n

of motion 7| transformation

Set | .
value | # Kprop

Fig.2 AUYV system work flowchart

3. LADRC controller

LADRC does not rely on the accurate mathematical mo-
del, and treats various uncertain factors in the controlled
object as the total disturbance, uses linear extended state
observer (LESO) to estimate the total disturbance and
eliminate it, so as to suppress the influence of the disturb-
ance [13]. The LADRC controller for an n-order system
is shown in Fig.3.

r Uy
— PD controller—»_ —# 1/b, T Cont'rolled Y
object
A A
il | 2 Zn+1
Y
LESO =

Fig. 3 LADRC basic control structure

The following content takes AUV depth control as the
control target. According to (5), the AUV model can be
regarded as a first-order system

y=f+bou (6)
where f is the total disturbance. Set the state variable
X1 =y, X, =f, then x =[ y f ]T is the extended state

including disturbance. Equation (6) is transformed into
the description of the extended state space

)'Cl =Xy +bou
xzzf : (7
y=x

Construct an extended state observer for (7) to esti-
mate the extended state x, [28] as

{Z:l iZz"‘bou"‘ﬂl(y_Zl) @)
L=50-z1)

T .
where Z = [ 1 2 ] , Z — x 1is the state vector of the
observer. For an n-order system, the observer gain coeffi-

cient [14] can be taken as: [3, 3, ---
. n+1)!

el and @ = SEmET
gains in (8) are B = 2wy, Bi = wy*, where w, is the ob-
server bandwidth.

With a well-tuned LESO, we can get the estimate of
the second state in (7), if the controller adopt the follow-
ing form:

Bl = [woa, w(z)a'z

so the observer’s

Uy — 2
= —, 9
u=" ©)
then (6) will be simplified as an integrator without dy-
namic uncertainty

¥ = up. (10)
Then a simple P control can be employed as
Uy = w(r—y) (11)

where w, is the controller bandwidth, and r is the given
value of the system.

Finally, (8), (9), and (11) are combined into a LADRC
controller for first-order systems.

4. LADRC controller based on reinforce-
ment learning

In recent years, reinforcement learning has attracted ex-
tensive attention. For a sequential decision making pro-
cess with Markov property, through the interaction
between agent and environment, the strategy is con-
stantly updated and optimized to finally realize value
maximization.

4.1 Q-learning

Given the five elements of reinforcement learning [24]:
action set A, state set S, reward R, attenuation factor vy,
exploration rate &, solve the optimal action value func-
tion ¢, and the optimal strategy m«. The Q-learning al-
gorithm has two strategies:
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(i) Greedy strategy
Q-learning uses the greedy strategy to update the value
function as follows:
1, if a =argmaxgq.(s,a)
s (als) = aed
0, else
(i1) & — greedy strategy
The &-—greedy strategy is adopted to select new ac-
tions. By setting a value ¢, the action that currently has
the greatest action value is greedily accessed with the
probability of 1 — &, while the action is randomly selec-

ted from all m optional actions with the probability of €.
£ , if a=argmax Q. (s,a)

m+1l-¢

(als) = c acA
—, else
m

Q-learning uses this strategy to encourage exploration
in action selection, so that as many actions as possible

Algorithm initialization:
initialize L, T'

Initialize state seS', and
random number r€[0, 1]

can be accessed. The steps of Q-learning algorithm are as
follows:

Step 1  Algorithm initialization: state set S, action set
A, learning rate «, attenuation factor y, exploration rate &.

Step 2 Initialize state s € S .

Step 3 Use the e—greedy strategy to select action a
in the current state.

Step 4 Perform action « in current state s to get new
state s’ and reward R.

Step 5 Update value function

0(s,a) = Q(s,a)+
a/(R+ymax o(s',a)— Q(s,a)),s =y

Step 6 Learning ends when the termination condi-
tion is reached; otherwise, return to Step 3.
The complete algorithm flowchart is shown in Fig.4.

State initialization seS,
initialize 77, i

‘

e

No
I=l+1

Yes

=T

Select the action

Select parameter
actions randomly
aed

Select the action
a=argmax Q (s, a)

\

a=argmax ¢.(s, a)
aed

v ]

Perform action a, get new state s', s=s’
calculate reward R

v

Update the action value
function with (1)

N

]

Output Q table

‘—

v

Perform action a,, i=i+1;
get new state s, 1'=t'+1

Fig.4 Q-Learning algorithm flowchart

4.2 Q-learning algorithm design

In this subsection, based on the established model of six

degrees of freedom AUV model, Q-learning algorithm is
combined to realize the design of the adaptive LADRC
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controller.

In order to implement parameter self-adaptation using
the Q-learning algorithm, the dynamic parameter adjust-
ment process is considered to be equivalent to the action
selection process in the Q-learning algorithm. Therefore,
reasonable state division and the design of reward func-
tion R have become important contents. There are two
main considerations in controller design:

(1) Coupling between AUV heave motion and yaw mo-
tion.

(il) With the increase of the types of states to be di-
vided and the control parameters, the dimension of the
state set Sincreases and the Q table becomes larger,
which will lead to an increase in the amount of calcula-
tion in the learning process.

Aiming at the first problem, the AUV yaw controller is
considered to be added in this paper, so that the AUV can
maintain course stability during the sinking process.

There are two main solutions to the second problem.
The first one is to reduce the number of control parame-
ters. According to (8), (9) and (11), the parameters
needed to be adjusted by the LADRC controller are w,,
w, and b,. It is worth mentioning that in the simulation
experiment, the parameter b, can be approximated by the
model calculation. For AUV system without time delay,
b, can take the approximate value of the actual value of
the system, while the LESO can still work normally
[29,30]. Therefore, the parameters to be adjusted in the
adaptive LADRC controller are simplified to w, and w,,
and b, is fixed according to model calculation and experi-
ence. Finally, the structure of LADRC controller based
on the Q-learning algorithm is shown in Fig.5, where w,,
w, and @., &, are parameters of AUV depth and yaw
controller respectively.

Given value
> Reward (=

v

Q-learning

vy

0, 0,0, 0,

ARA
LADRC Model of | |Output _
controller AUV =

Fig. 5 AUY control system based on Q-Learning

The second one is to design the state division method.
In order to avoid doubling the dimension of the con-
trolled state set S caused by the dual controllers, this pa-
per constructs a Q-learning state division method based
on the main controlled state and constructs a reward

design method that is not limited to the error of the di-
vided state. Taking AUV sinking depth and attitude angle
6 as the main controlled states, the division of the states
is shown in Table 2, with a total of 25 states. ¢ is defined
as e = depth —state, where “depth” is set at 10 m and
“state” is the real-time depth of AUV. The main function
of this division is reflected in the “Initialize state s> and
“get new state s'” processes on the left side of Fig. 4. The
yaw motion of AUV is taken as the secondary controlled
state. Its state error and the main controlled state particip-
ate in the reward design in the value function. The pro-
cess is embodied in the “calculate reward R” on the left of
Fig. 4.

Table 2 Division of the states

e/m
O/rad
(-11,0.3] (-0.3,0.1] (-0.1,0.1) [0.1,0.3) [0.3,11)

(-1,-0.3] 1 6 11 16 21
(-0.3,-0.1] 2 7 12 17 22
(-0.1,0.1) 3 8 13 18 23

[0.1,0.3) 4 9 14 19 24

[0.3,1) 5 10 15 20 25

Then, the four-dimensional parameter space which can
be selected by w., w,, @., and @, is established. The
parameter selection range here is

w, €[0.05:0.1:0.65],
w, €[2.4:0.05:2.7],
@.€[1.7:0.05:2],
@, €[2.7:0.05: 3],

in total 2401 parameter combinations are available.

After the above state and parameter division, the Q-ta-
ble size of LADRC controller based on the Q-learning al-
gorithm (Q-LADRC) is 2401x25. Similarly, since there
are six parameters to be adjusted for the dual PID control-
ler, the scale of the Q-table of PID controller based on the
Q-learning algorithm (Q-PID) is 117 649x25.

5. Simulation results analysis

As one of the reinforcement learning methods, Q-lear-
ning algorithm is most widely used. Therefore, Q-lea-
rning algorithm is compared with another reinforce-
ment learning algorithm in this section, and it proves the
advantages of Q-learning algorithm in some aspects.
In order to verify the view that the controller parameter
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changes caused by AUV state changes will improve the
AUV control performance in the process of AUV sinking
and resisting external disturbance, this section simulates
AUV’s sinking motion and adds the disturbance of set
values to verify the controller’s disturbance rejection
performance based on the Q-learning algorithm. In ad-
dition, the LADRC method is compared with PID me-
thod to verify the superiority of LADRC method in some
aspects.

5.1 Comparison between Q-learning algorithm and
Sarsa algorithm

In addition to the off-policy Q-learning algorithm, the
temporal-difference method in reinforcement learning
also has the on-policy Sarsa algorithm. Sarsa algorithm
adopts the € —greedy strategy in both value function up-
date and action selection. In order to conduct comparat-
ive experiments, the structural design and simplification
of Sarsa algorithm are the same as the Q-learning al-
gorithm in Subsection 4.2, which will not be repeated
here.

Because Sarsa algorithm is relatively conservative in
updating the value function, the convergence speed of the
algorithm itself will be slower. Fig. 6 shows the length of
each episodes between the Q-LADRC controller and the
Sarsa-based LADRC controller (S-LADRC) in 1500
episodes.

0.15

0.10

Episode length/ms

0.05

Episode

: S-LADRC.

: Q-LADRC;
Fig. 6 Length of each episode

Due to the randomness of the AUV state at the begin-
ning of each training and the complexity of the AUV
movement, it may take a long time for individual epi-
sodes. Excluding the above influencing factors, it can be
seen from the Fig. 6 that the Sarsa algorithm adopts the
random value update strategy, which makes the most of
episodes longer in the later stage of convergence.

Increase the number of episodes, that is, increase the
number of training, which enables S-LADRC to achieve
similar control effect as Q-LADRC. As shown in Fig. 7,
when the number of training of S-LADRC controller

reaches 4500, it has similar depth control effect with the
Q-LADRC controller after 1500 times of training.

Depth/m

60 80 100

Time/s
——: Q-LADRC (1 500); ==------ : S-LADRC (3 500);
: S-LADRC (1 500); =------- : S-LADRC (4 500).

Fig. 7 Depth control effects of two controllers with different train-
ing times

The Q-learning algorithm tends to maximize the Q
value, while the Sarsa algorithm can avoid errors to a cer-
tain extent. Sarsa has a slow convergence speed, but it
can improve the training effect by increasing the number
of training times.

In the simulation experiment of AUV, it is found that
the rapidity and smoothness of AUV sinking motion can-
not be satisfied at the same time. Therefore, a Q-LADRC
controller which can make the AUV motion smoother
after Q-Learning training is adopted in the subsequent
simulation experiment.

5.2 Parameters fixed controller and controller
based on Q-learning algorithm

Fig. 8(a) and Fig. 8(b) show the control effect compari-
son between PID, LADRC controllers with fixed parame-
ters and Q-LADRC controller. Fig. 8(c) shows the
changes of parameters caused by the state changes of the
AUV when using the Q-LADRC controller.

g G
= |
k=
a T
70 80
12 1 1 1 1
20 40 60 80 100
Time/s
-------- PID; - -------: LADRC;
Q-LADRC

(a) Time-depth image
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Fig. 8 Parameters fixed PID, LADRC controller and Q-LADRC
controller

It can be seen from the Fig. 8 that the LADRC method
is effective in AUV motion control. The PID controller
can quickly generate control quantity to meet the require-
ments of the system, but when the PID controller meets
the speed, its control effect in the final stable state of the
system is deficient. Compared with PID control method,
LADRC gives AUV higher motion stability.

In addition, the data shows that the final depth and yaw
error using the Q-LADRC controller are both less than
10 m. It can be seen from the data and figures that ad-
justing parameters according to the state in real time has a
positive impact on the control effect. At the same time,
compared with the controller with fixed parameters, the Q-
LADRC controller gives the AUV smaller yaw move-
ment in the process of sinking. Therefore, although the
yaw motion state of AUV is not divided in the learning
process of the Q table, Q-learning algorithm can update
the action value function according to the return value
with yaw error, so as to successfully find the parameters
of the yaw Q-LADRC controller. This proves that the
state division method and reward design of the construc-
ted Q-learning algorithm are reasonable and effective.

The Q-PID controller can achieve a similar control ef-

o

fect with the Q-LADRC controller on AUV sinking mo-
tion control. It will not be repeated here. However, the
contradiction between its rapidity and stability still exists
when it comes to disturbance rejection.

5.3 Change of set value

In order to compare the control effect of the controller in
the face of abrupt state change, set value change and oth-
er uncertain factors, based on the AUV sinking control in
the previous section, change the 80 s to 120 s depth set-
ting from 10 m to 11 m. Simulation studies the control ef-
fect of parameters fixed LADRC, Q-LADRC, and Q-PID
controllers.

When AUV resisting the disturbance of set value, the
overshoot and oscillation of AUV can be reduced by
proper parameter adjustment, and the control quantity is
still kept in a reasonable range, as shown in Fig. 9(a),
Fig. 9(b), and Fig. 9(c). The fin angle of AUV using Q-
PID controller changes quickly and responds quickly to
the system. However, the disadvantages of PID control-
ler are not changed, PID controller will cause system os-
cillation and severe overshoot due to excessive initial
control force, it takes a long time for AUV to stabilize
around the set value of the system. Fig. 9(d) shows the
parameter changes of Q-LADRC controller during AUV
following the set value.

9.5

60 130 200

0.04

0.02

Yaw/m

—-0.02

(b) Time-yaw image
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(d) Parameter variations of Q-LADRC controller
Fig. 9 Parameters fixed LADRC, Q-PID and Q-LADRC controller

6. Conclusions

It is an important research topic to design a control meth-
od to make AUV have excellent motion performance.
While using the LADRC controller to decouple the AUV
movement, it also realizes the adaptive adjustment of the
controller parameters combined with the reinforcement
learning algorithm. Simplifying a part of the structure in
the reinforcement learning algorithm avoids the “curse of
dimensionality” to a certain extent. In a system with con-
tinuously changing state, constant adjustment of control-
ler parameters is beneficial to the final stability of the
system. At the same time, simulation experiments verify
the effectiveness of the constructed Q-LADRC controller
in AUV motion control. Although the value function up-
date of Q-Learning algorithm is relatively risky, the al-
gorithm has faster convergence speed and less time cost.
Compared with the controller with fixed parameters, the
AUV using Q-LADRC controller has lower overshoot
and better motion performance in disturbance rejection.
By comparing the control effects of PID and LADRC
controllers, it is found that for slowly changing control
objects such as AUV, when the control accuracy and sta-
bility of the controlled object have higher requirements,
the LADRC method has higher applicability than the PID
method.
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