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Abstract: This paper studies the optimal policy for joint control
of admission, routing, service, and jockeying in a queueing sys-
tem consisting of two exponential servers in parallel. Jobs arrive
according to a Poisson process. Upon each arrival, an admis-
sion/routing decision is made, and the accepted job is routed to
one of the two servers with each being associated with a queue.
After each service completion, the servers have an option of
serving a job from its own queue, serving a jockeying job from
another queue, or staying idle. The system performance is in-
clusive of the revenues from accepted jobs, the costs of holding
jobs in queues, the service costs and the job jockeying costs. To
maximize the total expected discounted return, we formulate a
Markov decision process (MDP) model for this system. The value
iteration method is employed to characterize the optimal policy
as a hedging point policy. Numerical studies verify the structure
of the hedging point policy which is convenient for implement-
ing control actions in practice.
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1. Introduction

Queueing models are now widely used to study the manu-
facturing systems, public service systems, distributed
computer systems, data communication networks, traffic
flow systems, healthcare operations management, etc. A
queueing system typically consists of three components:
jobs, queues, and servers. Here, a job could be a part, a
telephone call, a data file, a computer program, a patient,
or a plane. Correspondingly, a server could be a worksta-
tion in a plant, a telecommunication transmission channel,
a data transmission channel, a CPU, a clinic, or a runway.

Controls are often applied to queueing systems to im-
prove system performance. Queueing controls usually take
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the form of static (open-loop) control and dynamic (close-
loop) control. For dynamic controls, we can dynamically
change some parameters of queueing systems, such as ar-
rival rate and service rate, or we may implement the rules
for routing jobs to parallel servers upon job arrivals.

Queueing control problems have been extensively
studied in literature. Here we mention a few significant
works among the earliest ones. For the admission control
models, readers may refer to [1—4] for detailed illustration.
The research works [5—8] considered routing control
problems while [9] and [10] studied the service rate con-
trol problems. For the joint admission and routing con-
trols, [11] and [12] were among the earliest to study this
issue. Comprehensive surveys on controlling queueing
systems can be found in [13].

In this paper, we study the optimal joint control of ad-
mission, routing, service, and jockeying in a queueing
system of two parallel servers. Jobs arrive according to a
Poisson process. Upon each arrival, a system controller
will decide which job is admitted into the system and to
which server an admitted job is sent. Each server is asso-
ciated with a queue with no capacity limit. Two exponen-
tial servers with distinct service rates are controlled in the
following manner: once a service is completed, a server
may stop service, or serve the job from its own queue, or
serve a jockeying job from another queue.

The system performance is measured in terms of the
revenues from the accepted jobs, the holding costs for
jobs in queue, the service costs for processing jobs, and
the jockeying costs associated with transferring jobs from
one queue to another. To characterize the optimal control
policy, we formulate a Markov decision process (MDP)
model with an objective to maximize the total expected
discounted return in infinite horizon.

Job scheduling and logistics and supply chain coordin-
ation are challenging as shown in [14—17]. Our research
is motivated by the example of managing global supply
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chains with multiple production bases since many
transnational corporations maintain two production bases
to fulfill their global operations strategies. For instance,
Zara and H&M, global leaders in apparel industry, have
one production base in Europe and the other in Asia. The
well-known sportswear companies Nike and Adidas keep
two production bases: one in China and the other in
Southeast Asian countries. Haier, a leading manufacturer
in home appliances, operates one production base in
China serving the whole global market and the other in
the US focusing on the American market. Even for local
supply chains in China, our research can find potential
applications. Suppose a manufacturing firm has two sep-
arate plants in the Pearl River Delta and the Yangtze
River Delta, the two most developed areas in China.
When customer orders arrive, the firm dispatches the or-
ders to two plants. To fully exploit the production and lo-
gistics resources of two plants, the firm further allows or-
der jockeying before their final entry into the production
process. For instance, an order originally assigned to the
plant in the Pearl River Delta can be conveniently reas-
signed to the plant in the Yangtze River Delta via inform-
ation systems. Along with the above applications in oper-
ations management, our model can be applied to telecom-
munication networks, computer systems, and vehicular
traffic flow. One specific example given in [18] is that of
a multibeam satellite system that serves the earth-based
stations organized into disjoint zones. For such a system,
an effective routing and jockeying control rule is neces-
sary to achieve efficient packet transmission.

The research on queueing systems with jockeying dates
to the 1950s. However, most of the studies are classified
into the descriptive models which focus on performance
evaluation under specific jockeying rules. In this stream
of research, [19-34] are typical works. The shortest
queue problem with two parallel queues and threshold
jockeying was studied in [19]. Adan et al. [20] and Zhao
et al. [21] further studied the case of multiple parallel
queues. The special case of the shortest queue problem
with instantaneous jockeying, i.e., jockeying occurs
whenever one queue is shorter than others, was examined
in [22-27]. For more recent research on the shortest
queue problem with jockeying, please refer to [28,29].
For the applications, Jeganathan et al. [30] studied the
jockeying in inventory management while Stagje [31]
considered the jockeying of cost-conscious customer in
service systems. Tarabia [32] examined jockeying in par-
allel queues in the case of restricted capacities. Baykaso-
glu et al. [33] modeled the jockeying problem associated
with manufacturing systems and Chaleshtori et al. [34]
analyzed the location-allocation problem with jockeying.

In contrast with numerous studies on controlling
queueing systems in terms of admission, routing, and ser-
vice, there are only a few on jockeying. Xu et al. [18]
considered optimal control of routing and jockeying in a
two-station queueing system which had a Poisson arrival
of jobs and exponential service time at two stations in
parallel. They formulated the queueing control problem
as an MDP and used dynamic programming to character-
ize the optimal policy as a switching-curve policy for
both discounted and long-run average cost criteria. Down
et al. [35] studied a system of multiple parallel queues
with each queue having a dedicated arrival stream. They
first discussed the condition under which the policies
yield a stable Markov chain. For the two-server case with
Poisson arrivals and exponential service time, they for-
mulated an MDP model to characterize the optimal policy
which was used to further develop a heuristic policy for
the general case. Rosberg et al. [36] investigated a prob-
lem of energy efficiency for stochastically assigning jobs
in a server farm with multiple processor-sharing servers
and finite buffer sizes. The cases of jockeying and no
jockeying were considered. For the case with jockeying,
the authors formulated the problem as a semi-MDP to de-
rive the optimal assignment policy and two heuristic
policies. Dehghanian et al. [37] examined the optimal
joining and jockeying policy for a queueing system of
two stations in parallel. Customers arrived in a Poisson
stream and chose to join one of the two stations with one
chance of jockeying to the other queue. The optimal indi-
vidual policies for joining and jockeying were character-
ized as the monotone threshold policy with the problem
formulated as an MDP to minimize total holding and
jockeying costs.

Our research is closely related to [18]. Both [18] and
this paper use MDPs to characterize the optimal control
policy for a system of two parallel queues with infinite
buffer sizes. However, a significant difference exists
between the two papers. Regarding models, only the rout-
ing and jockeying controls were studied in [18] which
was motivated by a multibeam satellite system serving
earth-based stations that were organized into disjoint
zones. Since our research is oriented towards applica-
tions in operations management which are more con-
cerned with closely matching supply with customer or-
ders, we study a more complex model which includes
joint controls of admission, routing, service, and jockey-
ing. Consequently, the optimal policy in their paper was
characterized as monotonically nondecreasing switching
curves while the optimal policy in this paper was a
hedging point policy characterized by one nonincreasing
switching curve and one nondecreasing switching curve.
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Moreover, we consider unit jockeying, i.e., transferring
only one job each time from one queue to another, while
they studied the case of batch jockeying under which
multiple jobs were transferred each time. Obviously, unit
jockeying is more responsive than the batch jockeying.
Therefore, unit jockeying is more likely to be implemen-
ted in the operations management systems which are of-
ten intended for quick response to customer orders.

To the best of our knowledge, the problem in this pa-
per has never been studied before. Our main contribution
is the incorporation of jockeying controls into queueing
systems, the formulation of a general model for various
applications as mentioned above, and the subsequent
characterization of the optimal control policy.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the model formulation. The optimal
policy is characterized in Section 3 and system analysis is
conducted in Section 4. Numerical studies are given to il-
lustrate our results in Section 5. Conclusions are drawn in
Section 6.

2. Model formulation

The problem discussed in this paper is illustrated in Fig. 1.
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Fig. 1 Queueing system with two servers in parallel
The system state is x = (x,, x,), where x, and x, denote
the number of jobs in two queues. Hence, x, and x, are
nonnegative integers, i.e., x = (x|, x,) € X=Z2, where
the state space X is a two-dimensional nonnegative in-
teger set Z2. Jobs arrive according to a Poisson process

with rate A. Upon arrival, each job is subject to admission
control. The rejected jobs are lost, and an accepted job is

Ju(x) =E}

where M(?), N(¢) (i =1, 2), N\5(f), and N,,(¢) represent the
number of jobs accepted to two servers, the number of
service completed at two servers, the number of jobs
transferred from Queue 1 to Queue 2, and the number of

routed to one of the two servers. The server-dependent
revenues generated from the accepted jobs are 7, and 7,
respectively. The service times follow the exponential
distributions with rates u, and u,, respectively. Suppose
the job holding cost function is A(x) = h.x, + h,x,, where
h, and h, are the unit holding cost per unit time at two
queues. The unit service costs at two servers are ¢, and ¢,
respectively. The unit job jockeying cost ¢, or ¢, is asso-
ciated with transferring a job from Queue 1 to Queue 2 or
from Queue 2 to Queue 1. Further, we assume 4 < g, + ,
which assures the stability of the system in the long run.

For the above-described queueing system, the admis-
sion/routing control actions are made only at the decision
epochs when each job arrives while the service and jock-
eying control actions are made at the decision epochs
when the service of a job is completed. Thanks to the
memoryless property of the exponential inter-arrival time
and service time distributions, the system evolution is
only influenced by the control actions made at the de-
cision epochs. Consequently, the system evolution forms
a two-dimensional continuous-time Markov chain, and all
decision epochs are the Markov renewal points of the
process. Hence, we can restrict our attention to Markov
policies since a Markov policy is the optimal.

Denote the control action by a = (ay, a,, a,), where a, =
0, 1, 2, indicating the control action of rejecting a job,
routing an accepted job to Server 1, and routing an accep-
ted job to Server 2, respectively; @;=0, 1,2 (i =1, 2), in-
dicating the control action of stopping service, serving its
own job, and serving a jockeying job, respectively. Thus,
the control action a takes integer values within the finite
set [0,1,2]x[0,1,2]x[0,1,2]. An admissible policy u con-
sists of a sequence of functions u = {u,, u, u,, ="} €U,
where U denotes the set of all admissible policies. At
each decision epoch k (k = 0, 1, 2,--+), the function u,
maps the state x = (x,, x,) into a control action, i.e., u,(x) =
aforallx € X.

Let a (o0 > 0) denote the continuous-time discount rate.
For the infinite horizon model of the problem considered
in this paper, given the initial state x = (x,, x,), the total
expected discounted return associated with a policy u,
which is denoted by J,(x), can be written as

2 © 2 o~ ~ ~ ~
Z f() e_mr,»dM,-(t) - Z J;) e_‘”CidN,-(t) - J;) e_mh(x)dt - L e_mclszlz(t) - J;) e_(nchde(t)]
i=1 =1

jobs transferred from Queue 2 to Queue 1 up to time ¢, re-
spectively. Next, we seek a stationary policy u = {u,, u.,
Uy, '+ €U to maximize J,(x). Thus, the optimal value
function ¥ can be written as follows:
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V(ix) = ma}]x J.(x).

The above V' is then shown to satisfy the Bellman
equation based on the dynamic programming optimality
principle. Following the technique in [38], we uniform-
ize the transition rate as A= A+pu; +u,. After the uni-
formization of transitions, the original continuous-time
Markov chain is transformed into a probabilistically equi-
valent system observed at evenly spaced points in time.
In other words, a random event occurs in the system with

arate 4 and the event happens to be a job arrival with the
probability 1/4, a service completion at Server 1 with the
probability u,/4, a service completion at Server 2 with the
probability u,/4. Next, we describe in sequel the system
transitions considering the control actions.

Denote e, = (1, O)T and e, = (0, I)T. Given a state (x,,
x,) and for each control action a, the next state after tran-
sition is denoted by y. Then we can define the transition
probability function p(y | x, u) as

A A A
pylx,u)= Z[{x|x,a0 :0}+Z1{x+el lx,a0 = 1}+ Zl{x+e2|x, ag=2H

Hi Hi

Hi

Xl{xlx,al =0}+ Xl{x—ellx,a. =1}+ Xl{x—ezlx,a1 =2}+

M2

where /{-} is the indicator function. For instance, the
term %I{x—eﬂx,al = 2} implies that an event of service
completion happens at Server 1 with the probability '%

and a job is transferred from Queue 2 to Queue 1 if the
action a, = 2 is selected, leading to a transition from the

Slixix.a, = 0)+ %I{x —elx.a =1} + %I{x —ex.a, = 2)

current state x to the next (x — e,).

In the following analysis, for the convenience of nota-
tions and analysis, we define the operators 7,, T;, T, as
follows:

(ToV)(x) =max{r,+V(x+e)),rn+V(x+e,),V(x)},

max{V(x—e;)—c;,V(x—e,))—c,,V(x)}, x,>0; x, >0

max{V(x—e;)—c;,Vx)}, x,>0; x,=0

(TV)(x) =

max{V(x—e,)—c,,V(x)}, x;,=0; x>0

Vix), x,=0;x=0

max{V(x—e)—cp,V(x—e)—c;,V(x)}, xi> 0; x>0

max{V(x—e;)—cp, V(x)}, x,>0; x,=0

(T>V)(x) =

max{V(x—e,)—c,,V(x)}, x;=0; x,>0

V(x), x1=0;x2:0

where T, T, and T, are the operators for admission/rout-
ing controls, service and jockeying controls at Server 1,
and service and jockeying controls at Server 2, respect-
ively.

Then, from the principle of optimality of dynamic pro-
gramming, the optimal value function ¥ can be shown to
satisfy the following Bellman equation:

V=TV (1)
where the dynamic programming operator (or the Bell-

man operator) 7 is as follows:

A (=h A H Ho }
— + 2TV E TV ET,VE 2
{A AT AT T AT @

Furthermore, without loss of generality for analysis and

T a+A

computation, we can rescale the time to achieve o + 4 = 1.

Hence, TV can be simplified as
TV:_h+/lTOV+ﬂ1T1V+ﬂ2T2‘/. (3)

3. Optimal control policy

In this section, we explore the structure of the optimal
policy. Define V* as the set of functions on Z> such that
if ¥ € V*, then the following properties exist:

(@) Vx +e) = Vx) | x| x;

(1) Vx + e) — V(x) | x; | xp;

(iii) V(x + e)) = V(x + ;) | x,1x,.

1 and | indicate non-decreasing and non-increasing, re-
spectively. The V(x + e,) — V(x) | x, in (i) and the V(x +
e,) — V(x) | x, in (ii) refer to the discrete concavity in x,
and x,, respectively. The V(x + ;) — V(x) | x, in (i) and
the V(x + e,) — V(x) | x, in (ii) are identical and referred
to as the submodularity of ¥V(x). In some papers,
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(iii) refers to the subconcavity of V(x), where V(x + e,) —
V(x + e,) | x; implies V(x + ) — V(x + e,) = V(x+ 2e)) —
V(x+ e +e,)and V(x+e)— V(x+ e,)Tx, suggests V(x +
e) — Vix+e) < V(ix+e +e)— Vix+ 2e,). For brevity,
we will use increasing (decreasing) and non-decreasing
(non-increasing) interchangeably. Next result shows the
existence of an optimal policy.

Proposition 1 There exists an optimal deterministic
stationary policy for (1).

Proof Since the state space is discrete and the con-
trol action set is finite for each x € X in our model, we
can find an admissible policy u to attain the maximum of
the right-hand side of (1). According to Theorem 6.2.10
in [39], u is a stationary optimal policy. O

Then we show that all the operators defined above
propagate the structural properties (i)—(iii).

Lemma 1 7,V, T\V,and T,V and TV € V' ifV € V',

Proof Readers may refer to [40] for the detailed proofs
of such typical operations. O

Next lemma shows that the optimal value function re-
tains the properties (i)—(iii).

Lemma 2 The optimal value function V € V.

Proof The result is proved by value iteration. Let V,, =
0 which is in J°. Based on Lemma 1, we apply T repeat-
edly to V,, leading to 7'V, € V" for all n. As n approa-
ches infinity, (7"V,)(x) takes the point-wise convergence
to the optimal value function V(x) for all x. Hence, V re-
tains all the structural properties (i)—(iii) based on the
knowledge of mathematical analysis. Thus, V € V°'. O

Then we define the switching functions which are ne-
cessary to characterize the structure of the optimal policy.
Thus, we have

S1(x)) =min{x;|r, +V(x+e,)—V(x) <0,
rn+V(x+e)—V(x) <0, given x,},
S5(x;) =min{x,|V(x+e))—V(x+e,)+
ri—ry, >0, givenx, },

Li(x;) = min{x,|V(x)-V(x—e)+c; <0

or V(x)—V(x—e,)+ ¢y <0,
given x;,and x; > 0, x, > 0},
Ly(x,) = min{x,|V(x —e,) - V(x —e,)—
¢y +c¢; = 0,givenx,, and x; > 0, x, > 0},
L;(x, =0) = min{x,|V(x) - V(x—e,)+
c; <0, givenx, =0 and x, > 0},
Ly(x; =0) = min{x,|V(x) - V(x —e,)+
¢y <0, givenx; =0 and x, > 0},
Gi(x;) = min{x,|V(x) - V(x —e,)+
cpn<0orV(x)-V(x—e,)+c, <0,

given x;,and x; > 0, x, > 0},

G(x;) = min{x,|V(x —e;) - V(x —e,)—
¢+ 2 0,givenx;, and x; > 0, x, > 0},
Gi(x, =0) = min{x,|[V(x) - V(x—e))+

c1p <0, givenx, =0 and x; > 0},

Gy(x; = 0) =min{x,|V(x) - V(x —e,)+
¢, <0, givenx; =0 and x, > 0}.

From the above definitions, the switching functions S,
and S, are associated with the admission and routing de-
cisions. The switching functions L; (i = 1, 2, 3, 4) are as-
sociated with the service and jockeying controls at Ser-
ver 1. And the switching functions G, (i = 1, 2, 3, 4) are
associated with the service and jockeying controls at
Server 2. In the following discussion, we demonstrate
that the switching functions are monotone with respect to
the state variables.

Lemma 3  S|(x,) is decreasing in x, and S,(x,) is in-
creasing in x;; L,(x;) is decreasing in x, and L,(x,) is in-
creasing in x,; G,(x,) is decreasing in x, and G,(x,) is in-
creasing in x,.

Proof We only prove the result of S|(x,) and the rest
can be proved analogously.

For S,(x,), it can be regarded as a function of two parts
made up from the following two respective functions:

S’ 1(xy) = min{x,|r; + V(x +e;) — V(x) <0, given x;}
S”1(x;) = min{x,|r, + V(x +e,) — V(x) <0, given x;}.

Regarding S (x;), for a given x;, Si(x;) is the least
value of x, to satisfy

rn+Vix+e)-V(x) <0,
that is,
ri+ V(i +1,57(x) = V(x,S7(x)) <0.
Further, the concavity of V implies that
r+ Vo +2,81(x) -V +1,S"1(x)) <0.

By definition, S{(x; + 1) is the least value to satisfy

I +V(x1 +2,S'1(x1 + 1))—V()C1 + l,S'l(xl + 1)) < 0.

After comparing the above two inequalities, we have
S1(x;) > S (x;+1). Hence, S’(x;) is decreasing in x.
Analogously, we can show that S7(x;) is decreasing in x;.

S1(x;) and S7(x;) have exactly one intersection point
for the reason that the slope of S(x;) is less than or equal
to —1 while the slope of S7(x;) is greater than or equal to
—1. Readers may refer to [40] for detailed argument on
this result.

Based on the above result, as in Fig. 2, the left part of
S1(x;)(the solid curve on the left side of the intersection
point) and the right part of S (x,)(the solid curve on the
right side of the intersection point) are combined to form
S1(x,) which is also decreasing in x;,.
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Fig. 2 Hedging point policy for admission and routing controls

Other results are proved analogously. O

The above lemma states that S, L,, and G, (i = 1, 2) are
monotone in the state variables. From now on, we can
call them switching curves because each of them parti-
tions the state space into two distinct decision regions. L,
and G; (i = 3, 4) are the degenerate switching functions
characterized by a hedging point, i.e., the so called criti-
cal point or threshold in other papers, which segment one
axis (horizontal or vertical) into two decision parts. In
Fig. 2, the solid curve S,(x,) and the solid part of S,(x,)
partition the whole state space into three decision regions
and the intersection point of S;(x;) and S,(x,) is called the
hedging point. The decision regions in Fig. 3 are inter-
preted in the same manner. Next, we demonstrate that the
hedging point policy as illustrated in Fig. 2 and Fig. 3 is
optimal.

XA

Serve jockeying jobs from Server 2 or Lyx) or Gylexy)

serve own jobs at Server 2

Ly(x,=0) or G,(x,=0)
The hedging point
Serve own jobs at Server 1 or
serve jockeying jobs from Server 1

No servi L () or G,(x)
0 service

0 Ly(x,=0) or G;(x,=0)

>
Xy

Fig.3 Hedging point policy for service and jockeying controls

Theorem 1 The optimal policy for admission and
routing controls is a hedging point policy characterized
by the monotone switching curves S;(x;) and S,(x,) (solid
curves in Fig. 2); the optimal policy for service and jock-
eying controls at Server 1 is a hedging point policy char-
acterized by the monotone switching curves L,(x;) and
L,(x,) (solid curves in Fig. 3) while L;(x, = 0) and L,(x,=
0) are for the degenerating cases when the states lie on
the axes; the optimal policy for service and jockeying
controls at Server 2 is also a hedging point policy charac-

terized by the monotone switching curves G,(x,) and
Gy(x;) (solid curves in Fig. 3) while G;(x, = 0) and G4(x,
= 0) are for the degenerating cases when the states lie on
the axes. Given a state (x,, x,), the optimal control ac-
tions are prescribed by the optimal policy as follows:

(i) Regarding the admission and routing controls, an in-
coming job will be accepted if and only if x, < S,(x,); other-
wise reject it. An accepted job is routed to Server 1 if x, =
S,(x,); otherwise, it is routed to Server 2.

(i) For the service and jockeying controls at Server 1,
there are four cases.

First, when x, > 0 and x, > 0, the server remains active
if x, = L,(x,); otherwise, stays idle. The active server pro-
cesses the job from its own queue if x, < L,(x,); other-
wise, processes a jockeying job from another queue.
Second, when x, > 0 and x, = 0, the server keeps serving
its own jobs if x; = L;(x, = 0); otherwise, stays idle.
Third, when x; = 0 and x, > 0, the server keeps serving
the jockeying jobs if x, = L,(x, = 0); otherwise, stays idle.
Fourth, when x; = 0 and x, = 0, the server stays idle.

(iii) For the service and jockeying controls at Server 2,
there are four cases.

First, when x, > 0 and x, > 0, the server remains active
if x, 2 G,(x,); otherwise, stays idle. The active server pro-
cesses the job from its own queue if x, = G,(x,); other-
wise, processes a jockeying job from another queue.
Second, when x, > 0 and x, = 0, the server keeps serving
the jockeying jobs if x; = Gs(x, = 0); otherwise, stays
idle. Third, when x;, = 0 and x, > 0, the server keeps
serving its own jobs if x, = G,(x, = 0); otherwise, stays
idle. Fourth, when x, = 0 and x, = 0, the server stays idle.

Proof For the admission and routing controls in (i),
from Lemma 3, S;(x,) is decreasing in x,. According to
the definition of S;(x,), the submodularity and concavity
of the optimal value function ensure r, + V(x + e,)— V(x) <
0 and r, + V(x + e,) — V(x) < 0 whenever x, = S|(x)).
Hence, it is optimal to reject the job; otherwise accept
some job whenever x, < S(x;); moreover, when x, <
Si(x,) and x, = S,(x,), we have V(x + e)) — V(x te,) +r —
r, = 0, suggesting that it is optimal to route the accepted
job to Server 1; when x, < S,(x;) and x, < S,(x,), the in-
equality V(x + e)) — V(x + e,) + r, — r, < 0 holds, imply-
ing that it is optimal to route the accepted job to Server 2.
(i1) and (iii) on the service and jockeying controls are
proved analogously. O

4. System analysis

In this section, we demonstrate that the system with jocke-
ying control performs no worse than that without jockey-
ing. Here, the model for the system without jockeying has
the same parameters, i.e., arrival rate, service rates, reve-
nues, holding costs and service costs, as those in Section 2.
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Define U as the optimal value function for the model
without jockeying in which the operators 7, and 7, should
be removed of the jockeying control terms. Hence, the
modified operators denoted by T,, T,, and T are

(TlU)(x) _ {max{U(x—el)—cl,U(x)}’ X >0,
U(x), -xl :O

(ToU)@) = {ma*{U (r=e)=ex U], x>0
U(x)y .X2 =O

and
TU =~h+ AT,V +u,T\U +u,T,U.

Here, T takes the form after the time is rescaled to
achieve o + 4 = 1. Notice that 4 herein is the same one as
that in Section 2. This is critical for comparison. Thus,
the Bellman equation is written as

U=TU. “4)

Next, we show the optimal value function V" associated
with jockeying control is no less than U. First, we have
the following lemma:

Lemma4 TV > TUif V(x) = Ux) for all x € X.

Proof Suppose V(x) = U(x) for all x € X. And we
will show T,V > T\U, T,V > T,U, and T,V > T,U.

To verify T,V > T, U, we prove it in four cases. First,
for x; > 0 and x, > 0, since V(x) = U(x) and V(x — ¢e,) =
U(x — e,), we have

max{V(x—e)—c,V(x—e,)—c,,V(x)} >
max{U(x—e,)—c;,U(x)}.

For x, > 0 and x, = 0, obviously, we have

max{V(x—e)—c;,V(x)} 2max{U(x—e,)—c;,U(x)}.

For x, =0 and x, > 0, it is evident that

max{V(x —e,) —c;;, V(x)} > U(x).

For x; =0 and x, = 0, simply, V(x) > U(x).

T,V > T,U can be proved analogously.

For T,V > T, U, since V(x) = U(x), V(x + e,) = Ux +
e), and V(x +e,) = U(x + e,), we have

max{r,+V(x+e)),rn+V(x+e,),V(x)} >
max{r,+U(x+e,),n+U(x+e,),U(x)}.

Finally, because both T and Tare positive linear com-
binations of Ty, Ty, T», T}, and T,, the result applies. O

The above lemma states that the inequality is pre-
served after the operators T and T act on V and U, re-
spectively. Then we can prove our main result.

Proposition 2 V(x) = U(x) forall x € X.

Proof We arbitrarily choose V;(x) and U,y(x), for in-
stance, Vy(x) = Uy(x) = 0, to make Vy(x) = Uy(x) for all
x € X. From Lemma 4, TV, > TU,. Further, repeatedly
applying T and T to V;, and U,, respectively, yields T"V, >
T"U, for all n. By the standard result, 7"V, — V and
T"Uy— U in a manner of point-wise convergence as
n — oo. Hence, V(x) = U(x) forallx € X. ]

The above result demonstrates the value of jockeying
by showing that the system with jockeying control per-
forms at least no worse than that without jockeying. Next,
we show that the system performance is monotone with
respect to some of its parameters.

Proposition3 V1ATu T lcnlcen

Proof First, we show V' 1 A, i.e., the optimal values
are nondecreasing in the arrival rate. Let the system up-
date arrival rate ' = 4 and other parameters remain un-
changed from (1) in Section 2. Now, for model formula-
tions, both systems use the same uniformized transition
rate A" = A" + p, + 1,. Without loss of generality, rescale
time to achieve a + A" = 1. Then the Bellman equation for
the original system is modified as follows:

V=TV (5)
where
TV =-h +/1T0V+/J]T1V+,UzT2V+ (/l/ — /l)V

The Bellman equation for the system with a new ar-
rival rate is written as

Vr — T/V/ (6)
where
TV =-h+ /l,T()V, +/11T1 %4 +ﬂ2T2V’.

In (5) and (6), T,, T}, and T, remain the same forms as
those in Section 2.

Next, to show V' = V, we first prove that 7'V’ = TV if
V' = V. The result is readily proved by showing

TV -TV = /I(T()V/ - T()V) +ﬂ1(T1 V- Tl V)+
W(ToV =Ty V) + (X = ATV = V) > 0.

Then let V;(x) = Vo(x) =0 for allx € X. Thus, 7"V >
TV,. Apply T’ and T repeatedly, leading to 7"V, > T"V,
for all n. Asn — oo, we have V' = V, thatis, V' 1 A.

The results that 7 is nondecreasing in service rates and
nonincreasing in job jockeying costs can be proved in the
same manner as the above argument. O

5. Numerical studies

The following example is used to illustrate the hedging
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point policy. Jobs arrive according to a Poisson process
with the rate A = 2. The service rates of two servers are
set to 1, = 2 and u, = 2, which assures 1 < u, + @,. The
revenues from the accepted jobs are r; = 7 for Server 1
and r, = 7 for Server 2. The unit holding cost rates are as-
sumed to be 4, = 1 and 4, = 1. The service costs at two re-
spective servers are ¢, = 2 and ¢, = 2. The jockeying costs
are ¢, = 3 and ¢,, = 3, respectively.

For Bellman equations, typically, we can apply the
standard methods of value iteration, policy iteration and
linear programming. However, the value iteration al-
gorithm is in general the best computational method for
solving large-scale Markov decision problems [41]. Here,
to solve (1), we employ the value iteration algorithm, i.e.,
the dynamic programming approach, which reads

V(x) = }Lrg(T"VO)(x), xeX.

That is, if we apply the operator 7 in (2) to any
bounded function V| repeatedly, we can finally attain the
optimal value function V. For our example, for simplicity,
let Vy(x) = 0 for all x € X. The continuous-time discount
rate a is usually a very small value. However, to achieve
a fast convergence of the value iteration algorithm for our
model, we let a =0.1.

For the large state space of Z2, we need to truncate the
state space in computation. If the target optimal de-
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cisions associated with the discrete states [0,,0,] X
[63,64], where the integers 8, > 6, >0 and &, > 65 >0,
are desired, we can apply n number of value iterations
from an initial truncated state space [(6; —n)*",0,+n] X
[(65—n)*,6,+n] to achieve our goal since each iteration
causes a state transition which could be a service comple-
tion at Server 1, i.e., (6;—1), a service completion at
Server 2, i.e., (65—1), a job routed to Server 1, i.e.,
(6, + 1), and a job routed to Server 2, i.e., (6, +1).

The uniformization rate is 4 = A + y; + u, = 6 and
hence oo + 4 = 6.1. From (2),

H

T,V + Ho
a+A

—h
TV = T,V +
a+A

= +
a+A

TzV:
a+A

X;+ X, 2 2 2
- +—T\V+—=T,V+—=T,V.
61 61 ° 61 ' "61°

Applying the above operator 7 to V(x) = 0 repeatedly
with 500 times, we attain (7°®V,)(x) for x € [0,15] x
[0,15], which is our target state. Then compare two opti-
mal values at the origin point, i.e., (T°% V;)(0,0) = 22.698 7
and (T*°7,)(0,0) = 22.698 4 and find that ((7° V;)(0,0) —
(T*V)(0,0)/(T**V,)(0,0) = 0.0015% which is suffi-
ciently small. Hence, (7% V,)(x) is a suitable approxima-
tion to V(x). Correspondingly, the derived optimal de-
cisions are computed and listed in Fig. 4, Fig. 5, and Fig. 6,
respectively.
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Fig. 4 Decisions for admission and routing controls
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15 (2 1 1 1 1 1 1

14 | 2 1 1 1 1 1 1

13 | 2 1 1 1 1 1 1

12 | 2 1 1 1 1 1 1

11| 2 1 1 1 1 1 1

10 | 2 1 1 1 1 1 1

9 2 1 1 1 1 1 1

L8 2 1 1 1 1 1 1
Iy

7 2 1 1 1 1 1 1

6 2 1 1 1 1 1 1

5 2 1 1 1 1 1 1

4 2 1 1 1 1 1 1

3 2 1 1 1 1 1 1

2 0 1 1 1 1 1 1

1 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 2 3 4 5 6
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Fig. 5 Decisions for service and jockeying controls at Server 1
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Fig. 6 Decisions for service and jockeying controls at Server 2

In Fig. 4, “0”, “1”, and “2” denote the decisions of re-
jecting the job, routing a job to Server 1, and routing a
job to Server 2, respectively. Whenever a job arrives, if
the state x is found to be, for instance, at (3, 5), i.e., three
jobs in Queue 1 and five jobs in Queue 2, the correspond-
ing decision in Fig. 4 is “1”, which suggests that we

should accept the job and route it to Server 1.

The decisions of service and jockeying controls are lis-
ted in Fig. 5 and Fig. 6 where “0”, “1”, and “2” indicate
stopping service, serving own jobs, and serving a jockey-
ing job, respectively.

The structural properties (i) and (iii) of V(x) are illus-
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trated in Fig. 7 and Fig. 8, respectively. For instance, in
Table 1, the difference V(x+e,) — V(x) is monotone non-
increasing in x, and x,, respectively. The similar interpret-
ation applies to Fig. 8. The diagram of property (ii) is
analogous to that of property (i) and hence it is not shown
here.

Value difference

6 78 9101112131415

X

ot
—
Nk
w
FNg s
w F

——: X,=15; —-=: x,=10; 1 X, =55 e x,=0.

Fig. 7 Monotone property of the value difference V(x+e1) — V(x)
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Value difference

8 9101112131415

——: x,=15; -=: x,=10; 1 X,=5; = x,=0.
Fig. 8
W(x+ez)

Mmonotone property of the value difference V(x+e1) —

Furthermore, we investigate the system performance
associated with various system parameters. Comparisons
of the optimal values at the origin are made under differ-
ent scenarios and the corresponding results are presented
in Table 1.

Table 1 System performance with different paremeters

Paremeters of the system

Case - 1(0,0) Variation/%
r r ¢ c cn Cy hy h A " 1
Base case 7 7 2 2 3 3 1 1 2 2 2 22.699 0

No jockeying 7 7 2 2 0 0 1 1 2 2 2 16.372 —27.87
1 7 7 2 2 2.1 2.1 1 1 2 2 2 26.395 16.28
2 7 7 2 2 3.5 3.5 1 1 2 2 2 21.47 -5.42
3 7 7 2 2 4 4 1 1 2 2 2 20.332 —-10.43
4 7 7 2 2 4.5 4.5 1 1 2 2 2 19.275 -15.09
5 7 7 2 2 5 5 1 1 2 2 2 18.322 —19.28
6 7 7 2 2 3 3 1 1 1 2 2 —14.333 -163.15
7 7 7 2 2 3 3 1 1 1.5 2 2 5.205 =71.07
8 7 7 2 2 3 3 1 1 2.5 2 2 37.187 63.83
9 7 7 2 2 3 3 1 1 3 2 2 47.86 110.84
10 7 7 2 2 3 3 1 1 3.5 2 2 55.071 142.62
11 7 7 2 2 3 3 1 1 2 1.5 1.5 1.228 —94.59
12 7 7 2 2 3 3 1 1 2 1.5 2 13.327 —41.29
13 7 7 2 2 3 3 1 1 2 25 2 29.691 30.8
14 7 7 2 2 3 3 1 1 2 3 2 34.861 53.58
15 7 7 2 2 3 3 1 1 2 3 3 39.907 75.81

From Table 1, we can identify that the system perform-
ance of no jockeying worsens by 27.87% in contrast with
the case of jockeying. For Cases 1-5, we only change the
jockeying costs while other parameters are fixed. It is ob-
vious that the optimal values are decreasing with respect
to the jockeying costs. For Cases 6—10, the arrival rates
are different while other parameters remain unchanged.
The results show that the optimal value is increasing in
the arrival rate. This is intuitive because more incoming
jobs could bring in more revenues. For Cases 1115, we
examine the system performance with varied service

rates. Clearly, the performance improves as the service
rate increases.

6. Conclusions

In this paper, we study the optimal control of queueing
systems with a Poisson arrival of jobs and two parallel
exponential servers. With the structure properties of the
optimal value function, we characterize the optimal con-
trol policy as a hedging point policy of which two mono-
tone switching curves intersected at the hedging point and
typically partitioned the state space into three decision
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zones. The simple structure of the optimal policy is con-
venient for implementing the control actions in practice.

One important contribution of this paper is the incor-
poration of jockeying controls into queueing systems in
addition to the commonly used job admission, routing,
and service controls. This queueing control system has
not been addressed by previous researchers. Furthermore,
our numerical studies confirm the structural properties of
the optimal value function and the structure of the
hedging point policy and demonstrate the value of jock-
eying control for our queueing system. Besides, we com-
pare system performances associated with varied system
parameters and verify some monotonicity results which
might offer insights into the design and operation of such
queueing systems.

Although we give an analysis on the queueing system
of two parallel servers, it would be interesting to study
jockeying control problems with more than two servers.
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