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Abstract: This  paper  presents  a  deep  reinforcement  learning
(DRL)-based motion control method to provide unmanned aerial
vehicles  (UAVs)  with  additional  flexibility  while  flying  across  dy-
namic unknown environments autonomously. This method is ap-
plicable  in  both  military  and  civilian  fields  such  as  penetration
and  rescue.  The  autonomous  motion  control  problem  is  ad-
dressed  through  motion  planning,  action  interpretation,  traject-
ory  tracking,  and  vehicle  movement  within  the  DRL framework.
Novel  DRL  algorithms  are  presented  by  combining  two  differ-
ence-amplifying  approaches  with  traditional  DRL  methods  and
are used for solving the motion planning problem. An improved
Lyapunov guidance vector field (LGVF) method is used to handle
the  trajectory-tracking  problem  and  provide  guidance  control
commands for the UAV. In contrast to conventional motion-con-
trol approaches, the proposed methods directly map the sensor-
based detections and measurements into control signals for the
inner  loop  of  the  UAV,  i.e.,  an  end-to-end  control.  The  training
experiment  results  show that  the  novel  DRL algorithms provide
more  than  a  20% performance  improvement  over  the  state-of-
the-art  DRL  algorithms.  The  testing  experiment  results  demon-
strate  that  the  controller  based  on  the  novel  DRL  and  LGVF,
which  is  only  trained  once  in  a  static  environment,  enables  the
UAV to  fly  autonomously  in  various  dynamic  unknown  environ-
ments.  Thus,  the  proposed  technique  provides  strong  flexibility
for the controller.
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1. Introduction
Over recent decades, there has been an increasing trend in
the  application  of  unmanned  aerial  vehicles  (UAVs)  in
both  military  and  civilian  missions,  such  as  intelligence,
surveillance,  reconnaissance  [1],  suppression  of  enemy
air  defences  (SEAD)  [2],  search  and  rescue  [3],  and

goods  delivery  [4].  A  common  and  long-term  theme
among  such  tasks  is  the  establishment  of  an  intelligent
system  for  enabling  UAVs  to  perform  tasks  autonom-
ously  without  any  human  intervention  [5−7].  In  particu-
lar, the development of techniques that enable an UAV to
fly autonomously from arbitrary starting points to destina-
tions with obstacles avoidance in dynamic unknown sur-
roundings is imminent.

As an open research topic,  the UAV autonomous mo-
tion control (AMC) problem has attracted sustained atten-
tion, a series of methods have been proposed for address-
ing  it.  These  methods  can  be  generally  classified  into
three  groups:  rule-based,  planning-based,  and  learning-
based.  In  rule-based  approaches,  a  state  trigger  mecha-
nism is  designed  and  deterministic  control  strategies  are
provided in a hard-coded manner [8−10]. The most com-
mon  rule-based  approach  is  sensing-avoiding,  which  di-
rectly  turns  the  vehicle  with  a  specified  angle  to  avoid
collisions.  Chee  et  al.  [8],  for  example,  turned  the  UAV
in the  opposite  direction  whenever  an  obstacle  is  sensed
in  front  of  it,  and  then  a  new  path  is  searched  by  a  ra-
pidly random tree (RRT) algorithm. Panagou [9] designed
regular  velocity-control  laws  and  used  them  to  realize
distributed  motion  control  of  vehicles  in  different  situa-
tions. Israelsen et al. [10] combined a reactive quad-direc-
tional  approach with a  pre-defined waypoint-tracking al-
gorithm  to  implement  navigation.  These  rule-based  ap-
proaches  can  always  produce  a  feasible  solution  but  not
the optimal one. They are only applicable in some simpli-
fied deterministic scenarios because it is hard to consider
thoroughly  and  make  comprehensive  strategies  for  all
possible  situations,  especially  when  faced  with  dynamic
environments.  Another  kind  of  applicable  approach  is
planning-based,  which  can  address  uncertain  circum-
stances  typically  relying  on  a  model  of  the  environment
[11−17].  If  the  environment  model  is  available  in  ad-
vance,  path  (re-)planning  [11−15]  combined  with  trajec-
tory  following [16,17]  can  be  used  to  realize  an  optimal
controller that drives the UAV for flying across the envi-
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ronment  autonomously.  A  series  of  specific  approaches,
such as A* algorithm [11], bio-inspired computation [12],
dynamic  planning  [13,14],  and  artificial  potential  fields
[15]  have  been  used  to  generate  optimal  paths  while  fa-
cing a known environment. If we know nothing about the
environment in advance,  a  simultaneous localization and
mapping  (SLAM)  method  [18−21]  can  be  used  to  con-
struct a map of the environment first, and navigation can
then  be  achieved  via  online  path  planning.  A  common
feature  of  planning-based  approaches  is  their  over-reli-
ance on the model of the environment, and an inaccurate
model can easily result in poor performance. Besides, this
type of method includes the use of an open-loop mecha-
nism that generate strategies without any projection about
what’s next,  which  affects  its  adaptation  to  dynamic  en-
vironments.  To  deal  with  these  shortcomings,  reinforce-
ment learning (RL) techniques have been explored by re-
searchers to develop novel learning-based controllers for
UAVs.

RL is a suitable method for dealing with sequential de-
cision-making  problems  in  machine  learning.  Its  basic
principle is to learn by trial-and-error through an interac-
tive process between an agent and an environment and to
select current action based on the predicted long-term cu-
mulative  rewards  [22].  An  RL-based  controller  can  pro-
duce  strategies  adapted  to  stochastic  dynamic  environ-
ments in the absence of an available model, as long as the
training  process  is  performed.  To  perceive  the  high-di-
mensional  continuous  state  space  better,  a  deep  neural
network is  introduced into  the  conventional  RL to  deve-
lop  the  deep  reinforcement  learning  (DRL)  method.  By
leveraging the  perceptual  abilities  of  deep learning (DL)
and  the  decision-making  capabilities  of  RL,  DRLs  have
performed well  in  the  field  of  UAV control  [5].  In  [23],
Kersandt  tried  to  construct  a  high-level  controller  to  na-
vigate an UAV to fly across an area with dense obstacles.
The  original  deep  Q  network  (DQN)  [24],  double  DQN
[25], and dueling DQN [26] were directly migrated to an
UAV application and trained in a simple virtual environ-
ment. The experiments demonstrated the feasibility of all
these three algorithms,  and also showed their  sample-in-
efficiency in  navigating problems.  After  tens  of  millions
of  training  episodes,  the  UAV  only  gained  some  simple
skills of moving at low speed in a static environment. To
improve learning efficiency,  Fan et  al.  [27]  introduced a
model-based  stochastic  search  strategy  to  produce  high-
quality samples for learning, and the learned controller is
successfully  used for  controlling UAV swarms in  a  hos-
tile environment. Wang et al. [28] changed the parameter-
updating strategy from the end-of-an-episode to step-by-
step  and  produced  a  fast  recurrent  deterministic  policy
gradient  (Fast-RDPG)  algorithm.  This  algorithm  contri-

buted sufficient utilization of the experience and explora-
tion  of  the  environment  and  has  shown  great  perform-
ance  in  addressing  navigation  problems  in  a  large-scale
complex  environment.  However,  there  was  an  oversim-
plification  of  the  UAV’s control  system  in  [28],  where
only  a  discrete  flight  direction  was  used  for  navigating
the  UAV  and  the  guidance  process  was  discarded.  It  is
good for accelerating the training of the network but not
for application. Experiments have shown that a controller
learned  from this  simplified  model  usually  produces  un-
stable and wobbling trajectories. Alejandro et al. [29] adop-
ted  the  same  simplified  strategy  while  addressing  an
autonomous  landing  problem,  where  a  DQN-based  con-
troller is learned to navigate a UAV landing on a moving
platform.  To  achieve  a  directive  stable  control,  William
et al. [30] introduced the deep deterministic policy gradi-
ent  (DDPG)  [31],  the  trust  region  policy  optimization
(TRPO) [32], and the proximal policy optimization (PPO)
[33]  to  design  an  intelligent  flight  control  system  that
provides  continuous  end-to-end  control  for  the  UAVs.
The  learned  controller  directly  mapped  the  UAVs ’  raw
sensory measurements into control  signals.  It  sounds ex-
citing that a complete intelligent controller has been con-
structed.  However,  considering  various  disturbances  in
practical applications and many classical control theories
that have already been proved to be reliable and stable, it
is unlikely that we give the entire control authority to arti-
ficial  intelligence.  A  better  compromise  strategy  is  to
construct  a  learning-based  high-level  controller  for  mo-
tion planning with a  control-theory-based low-level  con-
troller for trajectory tracking.

Under  motion  planning,  trajectory  tracking  is  the  ulti-
mate objective of autonomous flight control that guaran-
tees the vehicle to fly over a series of particular geoloca-
tions.  It  is  a  well-studied  topic  with  extensive  solutions
based  on  different  mathematical  theories,  such  as  poten-
tial  functions  [34],  vortex  fields  [35],  navigation  func-
tions  [36],  harmonic  functions  [37],  and  vector  fields
[38,39]. Potential functions and vortex fields can provide
closed-form solutions by optimizing scalar equations, but
it  is  easy to fall  into local  minima.  The navigation func-
tion can avoid local minima with Morse property, but it is
hard  to  determine  the  Morse  parameter  in  advance.  The
harmonic function also guarantees a global optimum, but
it  suffers  from  a  huge  computational  cost  for  construct-
ing a harmonic function. To overcome these drawbacks, a
vector field is defined to create a control law for vehicle
guidance.  As  a  nonlinear  cascade  control  approach,  it
specifies  a  desired  velocity  vector  field  that  provides
global attraction to the desired path.  Given its  simplicity
and  ease  of  implementation  with  limited  computational
resources, this notion of vector field control has received
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considerable recent  attention for  UAV’s guidance in tra-
jectory tracking [40−42].  In this  paper,  a  Lyapunov vec-
tor field concept is introduced into DRL to construct the
low-level controller.

The main contribution of this paper is that we develop
a hierarchical control approach that could realize closed-
loop  navigation  and  guidance,  and  provide  flexible  and
reliable control for UAVs. More specifically:

(i) To maintain flexibility and reliability, we develop a
DRL-based  motion-control  framework  for  realizing
autonomous flight control of UAVs in dynamic unknown
surroundings, where novel DRL algorithms are presented
for  motion  planning  and  an  improved  Lyapunov  guid-
ance  vector  field  (LGVF)  method  is  introduced  for  tra-
jectory  tracking.  This  hierarchical  framework  combines
the  flexibility  of  the  learning-based  policy  and  the  relia-
bility of the control-theory-based method.

(ii)  To  address  the  sample-inefficiency  challenge,  we
propose two novel learning approaches based on the dif-
ference  amplifying  (DA)  technique.  As  we  know,  DRLs
learn  experiences  from  feedback  rewards.  An  apropriate
learning  rate  and  a  motivative  reward  signal  will  intui-
tively learn a better agent. Researches in DL show that a
dynamic  learning  rate  usually  performs  better  conver-
gence than a stable one. By amplifying the temporal dif-
ference  (TD),  we  design  a  variable  learning  rate  that
changes  dynamically  with  the  temporal  difference  error
(TD-error).  It  is  an  algorithm-independent  strategy  that
can be combined with general  DRL algorithms.  Another
novel  learning approach comes from the status  quo phe-
nomenon in psychology [43],  where a  person is  inclined
to  make  a  decision  which  has  achieved  good  returns  in
some similar scenarios. If a person finds a new method of
a  problem  which  is  better  than  the  previous  methods,
after confirming that the new method is effective and reli-
able,  he  will  use  this  method  to  solve  a  similar  problem
confidently.  Correspondingly,  if  one  fails  unexpectedly
near  success,  such  as  an  accidental  failure  with  a  high
score  in  a  video  game,  one  will  become  conservative  if
the  same  situation  happens  again,  or  even  stay  in  place
without taking risky moves. To model this phenomenon,
a  parameterized  reward  function  obtained  by  amplifying
the  reward  difference  is  formulized.  We  add  the  two
tricks into some state-of-the-art  DRL algorithms and ve-
rify  their  validity  and  applicability  through  experiments
and tests.

(iii)  To  maintain  the  practicability  of  the  learned  con-
troller, we construct a general UAV mission environment
for the training and testing process. The environment can
be  used  to  simulate  a  series  of  different  dynamic  mis-
sions  and  to  evaluate  the  effectiveness  of  the  proposed
methods and their adaptability to dynamic environments.

The  remainder  of  this  paper  is  organized  as  follows:
Section 2 presents the formulation of the problem, where
an  AMC  problem  is  first  analyzed,  and  our  DRL-based
solving framework is then introduced. Sections 3 presents
a discussion of the core solving approaches for the AMC
problem,  including  DA-DRL-based  algorithms  for  mo-
tion  planning  and  an  LGVF-based  algorithm  for  traject-
ory tracking. Section 4 introduces the training and testing
environment  constructed  for  the  experiments,  which  are
presented  in  Section  5.  The  performances  of  the  pro-
posed  techniques  are  demonstrated  both  from  the  al-
gorithm  training  perspective  and  the  application  testing
perspective  in  Section  5.  Section  6  presents  the  conclu-
sions of this study as well as prospective future works. 

2. Problem formulation
 

2.1    AMC problem analysis

In our autonomous motion-control scenario, a fixed-wing
UAV  is  required  to  fly  across  an  unknown  area  until  a
specified  target  is  finally  reached.  Such  a  scenario  re-
flects  many  real-world  applications,  e.g.,  a  military  at-
tack  during  a  SEAD  [2]  or  a  precise  target  tracking  in
massively  hostile  surroundings.  In  contrast  to  static  mo-
tion-control  scenarios  (such  as  goods  delivery  [4]),  the
UAV  herein  is  expected  to  navigate  more  complicated
circumstances, that is, dynamic environments with inten-
sively deployed mobile threats and moving targets. To il-
lustrate this idea, Fig. 1 presents the top view of the spa-
tial relationship of the UAV and the environment.
 
 

: UAV; : Moving threats; : Moving target.

Fig. 1    Top view of the AMC scenario
 

It is difficult for a UAV to fly autonomously in the en-
vironment  presented  in Fig.  1.  There  exist  at  least  two
challenges in this scenario.

(i) Partial observability of the environment: the informa-
tion of threats is unknown to the UAV when the mission
begins  and only  partial  states  of  the  environment  can be
obtained  by  the  onboard  forward-looking  sensor,  which
makes the hard-coded path-planning methods unsuitable.

(ii)  Unpredictability  in  external  conditions:  the irregu-
lar mobility of the unknown obstacle threats provides the
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UAV  with  an  unstable  surrounding  that  influences  the
performance of the navigation techniques on the basis of
SLAM  and  also  leaves  the  UAV  a  very  short  response
time. This means that the sensing-planning-based naviga-
tion methods could be inefficient for online control.

To  cope  with  these  issues,  more  intelligent  motion-
control techniques are required to be developed such that
the  UAV  can  fly  autonomously  in  various  dynamic  un-
known environments. 

2.2    AMC problem-solving framework

In  this  paper,  we  focus  on  learning-based  approaches.
Specifically, a DRL technique is used to design the con-
troller for the UAV. DRL allows the agent to learn an op-
timal  model  of  state  and  action  from  historical  trajecto-
ries accumulated through trial-and-error interactions with
the environment. The learning-based scheme provides the
UAV with the abilities  to address the dynamic uncertain
states  and directly generate  a  flexible  and (near-)optimal
control  policy  sequentially. Fig.  2 illustrates  the  DRL-
based motion-control structure of the UAV.
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tracker
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Fig. 2    DRL-based motion-control structure of the UAV
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In  this  control  scheme,  four  core  modules  collaborate
to  maintain  the  UAV’s autonomous  flight.  At  each  step,
the motion planner learns a task-driven favorable action 
based  on  the  collected  information ,  where  the  sys-
tem  state s is  composed  of  the  UAV  state ξu,  the  target
state ξT,  and  environment  state ξe.  The  action  interpreter
then  translates  the  high-level  action  into  a  specific  re-
ference  position  such  that  the  trajectory  tracker  can
generate  a  concrete  control  command  for  the  vehicle
movement  through  the  UAV  kinematics.  Four  modules
are described in the following subsections. 

2.2.1    UAV kinematics

A six-degrees-of-freedom (6-DoFs)  aircraft  model  is  the
most  accurate  one  for  UAV  flight  control.  However,  by
assuming that our UAV flies at a fixed altitude with con-
stant  velocity  and  inertially  coordinated  [44]  turns,  we
can simplify the UAV kinematics down to four DoFs.  It

is  rational  in  many  real  situations,  and  we  can  concen-
trate on developing movement decision approaches [45].
The continuous-time model is defined as follows:

ξ̇u =
d
dt


xu

yu

ψu

φu

 =


vucos ψu+ηx

vusin ψu+ηy

− (g/vu) tan φu+ηθ
u

 (1)

(xu,yu) ∈ R2 ψu ∈ S 1

φu ∈ S 1

g vu

u
ωu

u = ωu

ξu :=
[
xu yu ψu φu

]T

ηx, ηy, and ηθ

N
(
0,σ2

x

)
N

(
0,σ2

y

)
N

(
0,σ2

θ

)

where  is  the  planar  position,  is  the
heading angle, and  is the roll angle of the UAV.

 represents  the  acceleration  of  gravity,  and  denotes
the  UAV’s linear  speed.  represents  the  control  com-
mand defined by the turn rate of the roll angle , that is,

,  and  the  UAV  state  is  represented  by  the  vector
. Besides, the model takes the disturb-

ance  terms  into  consideration,  which  is
drawn from the  normal  distributions , ,
and ,  respectively. Fig.  3 illustrates  the  mathe-
matical definitions within an attitude map of the UAV.
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y

yu

o

vu

Ψu

ωu −ωu
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ϕu=0

Top view Back view

xu

Fig. 3    Mathematical definitions of the UAV
  

2.2.2    Motion planner

t
at

st

st+1 rt

rt

Q∗

Q(st,at)
(st,at)

The  motion  planner  is  the  most  important  part  of  the
AMC system, which uses the RL scheme to provide adap-
table strategies. The RL scheme comprises the use of the
Markov  decision  process  (MDP)  for  modeling  the  per-
ceiving-acting-learning  process  of  the  agent.  At  time ,
the agent  makes an action  based on the perception of
state . The generated decision is then executed, and the
system  state  is  updated  to  with  a  reward  that  the
agent  acquires.  In  contrast  to  traditional  techniques  in
which  decisions  are  made  on  the  basis  of  the  instant  re-
ward ,  the  RL  scheme  makes  the  optimal  decision  by
maximizing an expected long-term reward , which as-
sistis  the  agent  in  handling dynamic stochastic  status  in-
formation.  The  expected  long-term reward  with
regard to the given state-action value  could be ex-
pressed as

Q (st, at) = E

 H∑
l=0

γlr (st+l,at+l) |st,at

 =
Es′∼P(s′ |s,a)

(
r (s′)+γmax

a′
Q (s′,a′)

)
(2)

P (s′|s,a)
s′ s′ a H

where  is  defined  as  the  transition  probability
from state  to  owing to action .  denotes the scope
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γ ∈ (0,1]of  the  prediction.  and  represents  the  discount
coefficient.  Subsequently,  the  optimal  action  could  be
definded as follows:

π∗ (st) = arg max
a

Q(st,at). (3)

a

P (s′|s,a)

Q(st,at)

The non-myopic scheme in (3)  provides a robust  con-
trol policy by considering its impact on the future cumu-
lative rewards (illustrated in Fig. 4). In this paper, the ac-
tion is  defined as  the  desired flight  direction,  where  =
–1, 0, or 1 indicates that the suggestion is to turn left, go
straight, or turn right, respectively. Despite the limitation
of the action space, it  is  troubled by the curse of dimen-
sionality while trying to calculate the Q-value exactly. As
the agent is facing continuous state space in this scenario,
and  more  seriously,  the  transition  dynamics  is
unknown  to  the  agent.  Any  heuristic  or  evolutionary  al-
gorithms  become  intractable  for  solving  (3).  To  address
this,  a  deep  neural  network  is  designed  to  approximate
the , and the DQN will be used to provide a sub-
optimal  motion  policy  for  the  UAV.  The  details  will  be
introduced in Section 3.1.
 
 

t=0

t=3

t=3

t=2

t=2

t=1

t=1

Fig. 4    Diagram of UAV sequential decision process
  

2.2.3    Action interpreter

∆T pu,t = (xu,t,yu,t)

a∗t
p∗u,t+∆T =

(
xu,t+∆T ,yu,t+∆T

)
t+∆T xu,t+∆T

yu,t+∆T

The  action  interpreter  is  an  auxiliary  module  that  con-
nects  the  motion  planner  and  trajectory  tracker.  In  the
control  cycle,  once  an  action  is  selected  by  the  motion
planner, the action interpreter has to turn it into a specific
reference  position  immediately.  Let  us  suppose  that  the
decision cycle of the planner is , and let 
denote  the position of  the UAV at  time t.  For  a  selected
action ,  the  UAV has  to  move  to  a  reference  position

 when  the  time  is . 
and  are updated as follows:

{
xu,t+∆T = xu,t + vu cos

(
a∗t∆ψu

)
∆T

yu,t+∆T = yu,t + vusin
(
a∗t∆ψu

)
∆T (4)

∆ψuwhere  is  the  heading  angle  that  can  be  rotated  by
performing a single action. 

2.2.4    Trajectory tracker

pu,t = (xu,t,yu,t)
p∗u,t+∆T = (x∗u,t+∆T ,y

∗
u,t+∆T )

u∗t
f (pu,t, p∗u,t+∆T ,u)

The  trajectory  tracker  is  used  to  make  the  current  posi-
tion  of the UAV track a reference position

. The objective of the tracker is to
generate an optimal tracking controller  by minimizing
a predefined performance function , i.e.,

u∗t = arg min
u

f (pu,t, p∗u,t+∆T ,u). (5)

To design a proper optimizer for (5), we adopt the Lya-
punov  function  [46]  as  an  indicator  of  the  tracking  per-
formance,  and  the  detailed  derivation  can  be  found  in
Section 3.2. 

3. AMC problem-solving approaches
This  section  presents  DA-DRL  algorithms  for  providing
the  UAV  end-to-end  motion  strategies,  and  an  LGVF
controller is introduced here for driving it to track a spe-
cified trajectory. 

3.1    DA-DRL for motion planning

DRL  algorithms  can  be  classified  into  two  major  types
according to the form of the action space. For discrete ac-
tion,  DQN,  dueling  DQN,  double  DQN,  and some other
DQN-based  methods  perform  better,  while  DDPG,
TRPO, and PPO are more suitable for continuous action.
In  our  problem,  the  action  is  defined  as  the  requested
flight  direction  in  a  discrete  form.  Thus,  a  basic  DQN-
based  planning  architecture  is  designed  for  solving  the
AMC problem,  and two DA policies  are  introduced into
some  traditional  DQN-based  algorithms  for  improving
their performances. 

3.1.1    DRL-based planning architecture

Q (s,a)

Q (s,a;θ)
Q (s,a) s

ξu =
[
xu yu ψu φu

]T

ξT =
[
xT yT

]T
ξe ξe

Nr ξe = [d1,d2, · · · ,dNr
]T

Nr

s
Nr +6

a

Since  in (3) is intractable, the approximation is an
alternative  strategy.  As  shown  in Fig.  4,  DRL  uses  a
neural  network  with  parameter θ in  a  critic
module to fit .  In our scenario, the system state 
consists  of  a  UAV  state ,  target  state

,  and  environment  state ,  where  is  an
-dimension  vector,  and  repres-

ents  the threats’  relative distances  detected using an -
rays  LiDAR  sensor. Nr respresents  the  number  of  the
laser  beams.  Therefore,  a  system  state  with  a  total  of

 elements  is  fed  into  the  critic  network  and  three
different Q-values are output  for  three desired flight  dir-
ections in . An actor module then selects the optimal ac-
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a∗ arc max
a

Q(s,a;θ) ϵtion  through  or -greedy.

(s,a, r, s′)

Q′(s,a;θ′)
y

(s,a, r, s′)

In DQN [23] the teamporal difference method is taken,
and a  decreasing  gradient  algorithm is  introduced to  op-
timize the critic network. An experience replay approach
[47] is  used in DQN to store all  the collected transitions

 in a pool such that, on each iteration, a batch of
experience  data  can  be  sampled  for  the  critic  network
training.  The correlation between the experiences is  des-
troyed by random sampling, so learning efficiency can be
guaranteed.  Also,  a  fixed  target  network  strategy  [48]  is
the  designated-address  compound-error  problem,  in
which a  copy of  the critic  network is  stored periodically
and used to construct a target network  for tar-
gets  generation.  Let  denote  the  target  for  a  given  cur-
rent sample :

y (s,a) = r (s′)+γmax
a′

Q′ (s′,a′;θ′) (6)

Q′ (s′,a′;θ′)
θ′ Q (s,a;θ)

where  denotes  the  target  network,  and  the
parameters  are copied from  at the moment of
target  network  updating.  Therefore,  the  mean  square  er-

loss = (Q (s,a;θ)− y (s,a))2
ror  (MSE)  loss  function  can  be  expressed  as

, and the critic network are up-
dated by gradient descent, which is described as

θt+1 = θt +αtδq,t∇θQ (s,a;θ) (7)

where

δq,t = y (s,a)−Q (s,a;θt) =
r (s′)+γmax

a′
Q′ (s′,a′;θ′)−Q (s,a;θt) (8)

is the TD-error. 

3.1.2    DA-based learning approaches

α
(
δq

)
r (δr)

The  use  of  experience  replay  and  fixed  target  networks
make it workable to generate solutions for UAV’s motion-
planning  based  on  DRL.  In  order  to  improve  perform-
ance and stability, DA ideas are introduced into the learn-
ing process. To be specific, we design a variable learning
rate (see  in (8)) by amplifying the TD and shape a
parameterized  reward  function  (see  in Fig.  5)  by
amplifying the reward difference.

 
 

ξu

ξe

u*

a* p*

ξT

s

θ

r

a

UAV
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Target network

Critic

Input layer Hidden layer Output layer Actor

Q (s, a)

y (s, a)
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Q′ (s′, a′; θ′)
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max Q′ (s′, a′; θ′) α (δq)
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Fig. 5    DRL-based motion planning architecture
 

(i) Variable learning rate
In RL, designing an appropriate learning rate is crucial,

in  that  a  higher  rate  usually  helps  to  achieve  faster  con-
vergence,  but  it  also  increases  the  possibility  of  diver-
gence.  In  essence,  if  the  learner  receives  a  larger  differ-
ence between the feedbacks (TD-error), a larger learning
rate is suitable for producing a larger update for Q. Simi-
larly, if the difference is small, a fine adjustment of Q is
more  conducive  to  convergence,  and  the  learning  rate
should  be  relatively  small.  Consequently,  the  learning
rate  should  continue  to  vary  in  response  to  the  TD-error
while  interacting  with  the  dynamic  environment.  This

scheme can be described by

α
(
δq

)
=max

(
1− e−

|δq |
ϱ , ς

)
(9)

ϱ α

ς α

δq

where  is a tuning parameter that ensures that  is with-
in a reasonable interval, and  sets a lower bound for .

 is  the  TD-error  defined  by  (8).  This  variable  scheme
can  adjust  the  learning  process  dynamically  and  make  a
balance between the learning speed and the convergence.

Theoretically, to ensure convergence with a probability
of one, the learning rate must satisfy the following condi-
tions:
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
∞∑

k=1

αk =∞
∞∑

k=1

α2
k <∞

(10)

ς

α

α ∣∣∣δq

∣∣∣
ς ς

ς

ς α

where  the  first  inequality  in  (10)  (Condition  1)  guaran-
tees a final convergence no matter how far away the ini-
tial state is from the optimal one, and the second inequa-
lity in (10) (Condition 2) gives a constraint to make sure
the stability of the convergence. As for the first condition,
the  maximizing  mechanism  and  lower  bound  in  (9)
guarantee  the  learning  rate  will  never  be  equal  to  0.
That  is,  Condition  1  is  satisfied.  Condition  2  requires  a
gradual decrease of the learning rate until it  decreases to
to  0.  For  our  learning  rate  function  (9),  is  positively
correlated with the absolute value of TD-error  in the
scope of [0, 1]. That is, as TD-error declines in the learn-
ing process,  the learning rate  will  eventually  decrease to

.  Although  holds  a  small  value,  it  never  equals  0,
which destroys the satisfaction of Condition 2. However,
despite all this, we cannot remove  from (10) for a practical
purpose  that  the  lower  bound  ensures  that  does  not
become too small, which gurantees that the learning pro-
cess does not become too slow to be accepted. Consider-
ing that (10) gives a very strong constraint, in spite of the
dissatisfaction of Condition 2, we can still own a conver-
gent  learning  process  by  choosing  appropriate  parame-

ters in (10). The experimental results described in Section 5
verify this possibility.

(ii) Shaped reward function
The  reward  represents  the  feedback  signals  which

could be used in the training of the agent. Usually, an ef-
fective  reward  function  is  built  based  on  rich  and  avail-
able human experience information,  which will  motivate
the  agent  to  generate  better  behaviors.  Three  reward
schemes are formulated here.

ra

i)  Sparse  reward.  This  is  the  simplest  scheme  that
provides constant rewards under certain fixed conditions.
In our task scenario, the UAV agent would receive a posi-
tive  reward  if  the  UAV arrived  at  the  target  position;
the UAV would be punished in the event of a collision with
a  threat  obstacle;  otherwise,  the  reward  is  ruled  as  zero.

r1 (s,a) =


ra,
rb,
0,

arrived at the target
collided with a threat
every step

(11)

ii)  Intermediate  reward.  The  sparse  scheme  is  ineffi-
cient because the UAV is required to fly several steps to
successfully avoid threats and reach the target, which re-
sults in the agent receiving numerous invalid rewards. To
address  this  problem,  we  design  an  intermediate  reward
scheme  while  considering  the  characteristics  of  the  mo-
tion-planning problem.  The main  idea  is  to  add progres-
sive  reward  signals  according  to  the  relative  situation  at
each iteration step.

r2 (s,a) =


ra, arrived at the target
rb, collided with a threat

µ1
(
Dpre

ut −Dcur
ut

)
+µ2

(
−∆ψ

4

)
+µ3

(
D f

Ds
−1

)
, every step

(12)

Dpre
ut and Dcur

ut

∆ψ

Ds

D f

D f Ds

µ1, µ2, µ3

r2

where  represent  the  previous  distances  and
current between the UAV and the target, respectively; 
denotes  the  angle  of  the  UAV  flight  direction  deviating
from the  target; is  the  detection  distance  of  the  laser;

 is  the  distance  of  the  detected  threat  in  front  of  the
UAV, and if there is no threat ahead of it,  is set as .
All  the  variables  can  be  observed  in Fig.  6.  Obviously,
the  three  sub-items in  (12)  denotes  three  parts  of  the  re-
wards  about  distance,  angle,  and  threat.  And,  three  rela-
tive gain factors  are introduced to optimize the
sum of reward .
 
 

Threat

Target
ΔDut

ΔΨ

Df

Ds

Fig. 6    Relative situations among UAV, threat, and target

δr = (rt − rt−1)/min(rt,rt−1)

iii) Difference amplified reward. It is derived from the
status  quo  phenomenon  in  psychology  [43],  in  which  a
person  is  proved  more  likely  to  take  any  action  that  has
brought him a better reward in some similar situations as
described  in  Section  1.  To  model  these  experiences,  the
reward difference  is defined as
a  signal  to  optimize the reward.  The transform law is  as
follows:

r3 (δr) =

 rt + |rt |
(
arctan

(
δr +λ

η
· π

2

)
−λ

)
, |δr +λ| > η

rt, otherwise
(13)

rt and rt−1 t
t−1 λ = sgn(rt − rt−1)

λ = −1
λ = 1 η

where  represent the rewards at time  and time
;  is used to balance the formula such

that a negative difference results in  and a positive
difference  results  in .  is  a  tuning  factor  that
provides  agent  with  adaptability  for  different  tasks.  In
fact,  based  on  the  existing  reward  function,  some  of  the
reward  values  are  dynamically  adjusted,  so  that  the  ad-
justment can make the reward function more in line with
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human psychological expectations [49].  Besides,  the dif-
ference  amplification  is  a  scheme  used  for  adjusting  the
existing  reward  functions  so  that  they  are  applicable  for
many DRL-based training processes. This strategy makes
the  agent  develop  its  strong  points  in  making  decisions
and makes it easier to generate the optimal solution to the
problem. On combining the variable learning rate and the
shaped reward function and adding it to the classic DQN,
we  obtain  the  DA-DRL-based  motion-planning  al-
gorithm in Algorithm 1.
Algorithm  1　 DA-DRL-based  motion-planning  al-

gorithm (with DQN)

Q network θ Q′

θ′ = θ

1:  initialize  hyper-parameters:  experience  replay  buffer
D, mini-batch size B, target network update frequency K,

 with  arbitrary  weights ,  target  network 
with  weights ,  greedy exploration  rate ,  maximum
motion  steps  of  the  agent  in  each  episode T target  net-
works update interval I
2: repeat (for each episode)

s0← (ξu,0,ξT,0,ξe,0)3: initialize  randomly;
4: while (not arrived at target and not collided and t < T)
do

at ϵ
at = arg max

a
Q(st ,a;θ)

5:  choose  randomly  with -greedy  or

ut ← at6: TrajectoryTracker (ActionInterpreter ( ));
ut st+1← (ξu,t+1,ξT,t+1,ξe,t+1)7: execute , new system state ;

rt ←8: intermediate reward Equation (11);
r′t ←9: difference amplified reward Equation (13);

st,at, r′t , st+110: store ( ) in D;
[s j, a j, r′j, s j+1

]
j=1,··· ,b

11: sample transitions  from D;
δq,t, j = r′j+γmax

a′
Q′

(
s j+1,a′;θ′

)−Q
(
s j,a j;θt

)
12: ;

αt ←13: learning rate Equation (9);
θt+1← θt +αtδq,t∇θQ (st,at;θt)14: ;
θ′← θ15:  if t mod K = 0;

16: end while
 

3.1.3    Complexity analysis

Q network

Nr +6 Nr

O((Nr +6)N +N2+

· · ·+3N) = O(N2)

O
(
BN2

)

Suppose  the  is  an  all-connected  neural  net-
work,  which  contains M hidden  layers  and  each  hidden
layer  owns N nodes.  In  this  paper,  the  input  layer  has

 nodes  (  owns  a  determined  value)  and  output
layer  has  three  nodes.  The  complexity  of  a  feedforward
calculation  with  one  sample  is 

.  As  the  mini-batch  size  is B,  the  com-
plexity  of  a  feedforward  calculation  with B samples  is

.  Let’s take  the  eposide  number E and  eposide
length T into  account,  we  can  count  the  complexity  line
by line:

O (7)+O (1)+O (E (Nr +6))+O (E)+O
(
ET N2)+

O (ET10)+O (ET (Nr +6))+O (ET )+

O (ET )+O (ET (2Nr +14))+

O (ET B (2Nr +14))+O
(
ET B

(
2N2

))
+

O (ET )+O
(
ET B

(
N2))+O (1)+O (1)+O (1) =

O
(
ET B

(
N2)) .

O
(
ET B

(
N2))Then  the  complexity  of  the  DA-DRL-based  motion-

planning algorithm is . 

3.2    LGVF for trajectory tracking

at

p∗u,t+∆T = (x∗u,t+∆t,y
∗
u,t+∆T ) ut

∆T

After  action  is  converted  into  a  reference  position
, a controller  is required to drive

the UAV to fly to the reference position in  seconds.
In this work, we design a controller of the roll-angle turn-
ing  rate  based  on  the  LGVF  [38,39]  while  the  origi-
nal one can only provide a heading control for 3-DoFs ki-
nematic models.

r = pu− p∗u =
[
xr,yr

]T

rd

Let  denote  the  relative  position.
The guidance vector field (GVF) method drives the UAV
to  fly  around  the  reference  position  with  a  radius  in-
stead of directly flying to the reference position. The anti-
clockwise GVF is defined as follows:

f (r) =
[

ẋd

ẏd

]
=

−vd

r(r2+ r2
d)

[
(r2− r2

d)
−2rrd

2rrd

(r2− r2
d)

] [
xr

yr

]
(14)

vd =
[
ẋd, ẏd

]T

r = ∥r∥ , and vd = ∥vd∥ ψd

ψ̇d

where  is  the  desired  relative  velocity,
.  The  desired  relative  heading 

and the desired relative heading rate  can then be cal-
culated as follows:

ψd = arctan
ẏd

ẋd
= arctan

yr · (r2− r2
d)− xr ·2rrd

xr ·
(
r2− r2

d

)
+ yr ·2rrd

, (15)

ψ̇d = 4vd
rdr2(

r2+ r2
d

)2 . (16)

ψ̇u

According to Wu et al.  [46], the absolute heading rate
 is generated by

ψ̇u = −k (ψr −ψd)+
ψ̇d

kψ
(17)

ψr k
p∗u ∆T

ṗ∗u =
(
ẋ∗u, ẏ

∗
u

)
= 0 ψr ψu kψ = 1

where  is  the  relative  heading  angle  and  is  a  gain.
Since  does  not  move  within  time ,  i.e.,

.  Subsequently, =  and  can be
derived  from the  relative  kinematics  model  [46]  and  we
obtain a simplified (17) as

ψ̇u = −k (ψu−ψd)+ ψ̇d. (18)
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φ̇u

ψ̇u = − (g/vu) tan φu

We then derive the roll rate  according to (15)–(18)
and .

φ̇u =
−vu/g

1+ (vu/g)2ψ̇2
u

ψ̈u =
−(vu/g)

[
k2 (ψu−ψd)− ψ̈d

]
1+ (vu/g)2

[
ψ̇d − k (ψu−ψd)

]2

(19)

ψd and ψ̇d

ψ̈d

where  can be calculated by using (15) and (16),
and  can be calculated by using (20):

ψ̈d = 8v2
d

rr2
d(

r2+ r2
d

)3 . (20)

u∗Finally,  we  obtain  our  control  command  with  the
consideration of UAV kinematic constraints

u∗ =min
(
ωu,max, φ̇u

)
. (21)

 

4. Training and testing environment
As is known, the DRL requires a mission environment for
its  interactive  learning.  There  is  no  exception  for  our
DRL-based  solutions  to  the  motion-control  problem.  As
an  important  contribution,  a  general  simulation  scenario
is  built  for  the  training  and  testing  requirements,  as
shown  in Fig.  7.  The  environment  simulates  a  world  of
400 m × 300 m, and a series of obstacles (or threats) are
randomly scattered in  the  world  (see  the  white  cylinders
in Fig.  7).  The  green  circle  denotes  the  target,  and  the
blue agent is a fixed-wing UAV equipped with a LiDAR
sensor  for  detecting and ranging threats  and targets.  The
blue  sector  in  front  of  the  UAV represents  the  detection
capability  area  of  the  sensor.  Whenever  an  object  is  de-
tected, the corresponding blue beams are set as red so that
the  user  can  intuitively  observe  the  interaction  between
the  UAV and the  environment.  A real-time collision de-
tection system is used in this environment to address the
interactions of collisions and sensor detections.
 
 

Fig. 7    Training and test environment
 

The  simulated  environment  is  developed  in  Python
with the support  of  a  visualization framework called Di-
rector. To ensure the continuity of our research work, we
adopt an advanced modularized design, which makes our

environment  adaptable  and  easy  to  expand.  The  threats
and targets can be stationary or movable and can be set to
an  arbitrary  shape,  size,  and  position.  We  provide  vari-
ous sensors and dynamics for the UAV and provide mul-
tiple scenario options for different mission requirements.
Both  single-agent  and  multi-agent  applications  can  use
our  environment  as  the  training  and  testing  platforms.
Moreover,  we continue to improve this environment and
prepare  to  submit  it  to  Github  to  share  it  with  more  re-
searchers. 

5. Numerical simulation results and analysis
 

5.1    Environmental settings

±

σx= σy = 0.1 σθ

∆ψu

10 rd

In  our  scenario,  a  UAV  is  required  to  travel  through  an
unknown  environment  to  find  a  target.  The  UAV  is
equipped with a sensor that is capable of detecting up to a
distance of 40 m ahead and 45° from left  to right.  The
sensor  uses  30  beams  for  distance  detection  in  the  area.
The velocity of the UAV is set as 15 m/s, and the disturb-
ance  parameters  are  set  as ,  and =  0.01.
The maximum heading angle  rotating in  one action 
is set as °, and the turning radius is set as = 4 m.

× × ×

α

ra rb µ1 µ2

µ3

ϱ ς

α

η

γ = 0.9

ϵ ϵt =max(1−Nl∆ϵ,ϵ0) Nl

∆

ϵ ϵ0 = 0.000 1

Before its application, the DRL-based controller is first
required  to  be  trained.  As  described  in  Section  3.1,  a
neural network constitutes the core of the motion planner,
and the network is  constructed by 36 100 100 3 fully
connected  neural  networks  based  on  UAV  state,  target
state,  and  sensed  information.  To  demonstrate  the  per-
formance of our DA-based learning approaches, we con-
ducted  four  sets  of  experiments,  wherein  the  different
learning  approaches  are  bound  to  the  DQN  and  are
trained in a static environment. Table 1 shows the differ-
ences between the introductions of the four experiments,
where different DA schemes are bounded to DQN. In the
DQN, the model is trained with a stable learning rate of 
= 0.001 and an intermediate reward (see (11)), where the
parameters are set as = 3, = –3, = 0.3, = 0.4, and

 = 0.5. In the DQN with DA1, a variable learning rate
(see (9)) is used to replace the stable one, where  = 100 and  =
0.001 are set as (9). The third one, DQN with DA2, uses
the same stable learning rate  = 0.001 and a difference
amplified  reward  (see  (13))  with =  2,  and  the  last  one,
the DQN with DA3 combines the DQN along with a vari-
able learning rate (see (9)) and a difference amplified re-
ward (see (13)).  The other common hyperparameters are
set  as  follows:  the  discount  coefficient ;  mini-
batch  size B =  32;  experience  pool  capacity D =  5  000,
and target network update frequency K = 200. A variable

-greedy  is  used,  where  is  the
number of learnings that has been performed,  is the re-
duction  factor  with  a  value  of  0.000  02,  and  the  least
value of  is set as . At the beginning of each
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trainging  round,  the  initial  information  of  the  UAV,  tar-
get,  and  threats  are  randomly  generated.  All  the  models
are  employed  using  Tensorflow,  and  the  models  are
trained  by  using  a  GeForce RTX 2 080 graphics  pro-
cessing unit in 5 000 episodes.
  

Table 1    Experiments and algorithms

Name Definition of algorithms

DQN DQN with an intermediate reward and a
stable learning rate

DQN with DA1 DQN with an intermediate reward and a
variable learning rate

DQN with DA2 DQN with a difference amplified reward
and a stable learning rate

DQN with DA3 DQN with a difference amplified reward
and a variable learning rate

  

5.2    Training in static environments

To evaluate the performance, we use the average rewards
and average  hit  rates  as  quantified  indicators  of  success,
where the hit rate represents the success rate of the UAV
hitting  a  target  validly  in  the  last  100  episodes.  The  ex-
periment  results  are  illustrated  in Fig.  8.  As  observed  in
Fig.  8,  all  the three improved algorithms achieved better
convergences than the original DQN both in terms of the
average  hit  rate  (left)  and  the  episode  average  reward
(right). 
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Fig. 8    Convergence curves of the four different algorithms
The DQN with DA3 (the red line) achieves the fastest

convergence, the highest hit rate, and the largest average
reward  among  the  four  algorithms  because  it  integrates
both the DA strategies, which can give the agent a great-
er  incentive  signal  and  a  more-precise  parameter-tuning
mechanism. Specifically, DA3 brings a 24.0% promotion
of  the  average  hit  rate  for  DQN and a  34.7% promotion
of  the  average rewards  for  DQN, respectively.  Based on
further  verifications  of  the  adaptability,  we bind the  two
DA-based learning approaches  to  the  other  two DRL al-
gorithms—double DQN and dueling DQN—and perform
comparative  experiments  similar  to  DQN. This  time,  we
select  the  hit  rate  at  the  final  convergence  and  the  epi-
sode number when the hit rate first reaches 80% as indic-
ators for directly quantifying the promotions of the novel
algorithms relative to the original ones.

As  shown  in Table  2,  the  conventional  algorithms  in
the  rows  plus  the  learning  strategies  in  the  columns
provide  new algorithms.  For  example,  a  double  DQN in
the third row plus a DA2 in the fourth column constructs
an algorithm of double DQN with DA2, where the DA1,
DA2,  and  DA3  have  the  same  definitions  as  those  de-
scribed in Table 1. From Table 2, we can observe that all
the  learning  strategies  DA1,  DA2,  and  DA3 provide  the
three conventional DRL algorithms with higher hit rates.
To be specific, from the perspective of the hit rate at the
final  convergence,  DA1,  DA2,  and  DA3  bring  learning
effectiveness  promotions  of  17.1%,  10.3%,  and  24.0%;
5.1%,  5.6%,  and 12.8%;  and 1.1%,  6.6%,  and 11.9% for
the  DQN,  double  DQN,  and  dueling  DQN,  respectively.
Meanwhile,  from  the  perspective  of  episode  number
when the hit rate first reaches 80%, DA1, DA2, and DA3
bring  learning  speed  promotions  of  20.1%,  12.1%,  and
38.3%;  28.4%,  22.7%,  and  41.8%;  16.2%,  14.2%,  and
33.2% for the DQN, double DQN, and dueling DQN, re-
spectively.  The  vacancy  in  the  third  row  and  the  sixth
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column means that the hit rate of the DQN never reaches
80% in  the  learning  process.  With  no  loss  of  generality,

the vacancy is set as the maximum episode (5 000) while
calculating the promotions. 

Table 2    Results of algorithms

Controller
Hit rate at final convergence Episode number when the hit rate first reaches 80%

+Null +DA1 +DA2 +DA3 +Null +DA1 +DA2 +DA3

DQN 0.721 0.844 0.795 0.894 − 3 995 4 397 3 084

Double DQN 0.812 0.853 0.867 0.925 4 983 3 567 3 854 2 902

Dueling DQN 0.854 0.863 0.910 0.956 4 125 3 458 3 541 2 756
 
 

5.3    Exploiting in dynamic environments

After  a  series  of  full  training  performed in  different  set-
tings,  the  autonomous  motion  controller  is  finally  con-
structed. The controller is required to be tested in applica-
tions. In this section, we prove that our DRL-based con-
troller, which is trained in static environments, can adapt
well to other unknown dynamic environments without re-
training. To ensure comprehensive proof, we design four
different  kinds  of  test  experiments.  Experiment  I  con-
tains  some  new  unknown  environments  that  are  com-
pletely  different  from  the  training  one  and  four  control-
lers are tested in them. Experiment II tests some weak dy-
namic circumstances with pop-up threats. Experiment III
tests a strong dynamic environment with movable threats
all  around.  Experiment  IV  tests  a  stronger  dynamic  cir-
cumstance of tracking a moving target in dynamic envir-
onments.  In the exploiting process,  four pre-trained con-
trollers  in Table  1 are  used  for  driving  the  UAV  to  fly
across  the  environment  until  the  target  arrives.  To  con-
duct  a  deeper  comparison,  a  traditional  path  planning
method  of  the  artificial  potential  function  (APF)  is  used

4×3×5 = 60
to  construct  the  fifth  controller.  There  are  a  total  of

 comparative experiments conducted.
(i) Experiment I: testing in complicated environments
In  this  experiment,  environments  with  different  threat

densities  are  created  for  testing  the  effectiveness  of  the
constructed  controllers  and  their  adaptabilities  to  com-
plicated  environments.  Specifically,  a  threat  density  of
15%,  25%,  and  35% are  respectively  selected  for  ran-
domly  creating  threats  in  the  mission  area  (as  shown  in
the  three  columns  in Fig.  9).  In  each  environment,  five
controllers are used to drive the UAV fly from the same
initial  position  to  the  same  target  while  avoiding  the
threats. The flight trajectories are shown in Fig. 9 and the
trajectory parameters are listed in Table 3.

In Fig. 9 the rows represent controllers and from top to
bottom are APF, DQN, DQN with DA1, DQN with DA2,
DQN with DA3, respectively. The columns represent dif-
ferent  environments  with  a  threat  density  of  15%,  25%,
and 35%, respectively. From the screenshots in Fig. 9, we
can observe that all the five controllers successfully drive
the  UAV  to  the  target  while  facing  a  low  threat  density
environment (Fig.9(a1)−Fig.9(e1)).

 

(a1) APF algorithm in environments

  with a threat density of 15%
(a2) APF algorithm in environments

  with a threat density of 25%
(a3) APF algorithm in environments

  with a threat density of 35%

(b1) DQN algorithm in environments

 with a threat density of 15%
(b2) DQN algorithm in environments

 with a threat density of 25%
(b3) DQN algorithm in environments

 with a threat density of 35%
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In spite of different tracks, the controller of DQN with
DA3  flies  a  smoother  and  shorter  path  than  the  others.
For  the  medium threat  density  (Fig.9(a2)−Fig.9(e2)),  the
DQN-based  controller  failed  at  the  time  15.7  s  and  the
three  of  the  rest  finally  complete  the  mission  although
they are facing environments that they never meet before.
With  further  increase  of  the  treat  density  (Fig.9(a3)−
Fig.9(e3)),  the  number  of  crashed  UAVs  increases,  and
only  the  controllers  of  DQN  with  DA2  and  DQN  with
DA3  successfully  reach  the  target.  These  results  show
that  our  proposed  DA  policy  could  greatly  improve  the
adaptability  to  a  complicated  unknown  environment  of
the traditional DQN algorithm.

Furthermore, we list  the detailed trajectory parameters
in Table 3, where the flight times and path lengths are re-
corded for evaluating the effectiveness. It is clear that the
controller  of  DQN  with  DA3  performs  the  best  mission
effectiveness  in  all  three  circumstances  with  different
threat densities, because for the same mission, DQN with
DA3 usually  spends  shorter  flight  time  and  flies  a  more
fuel-efficient path than the rest. Comparing the tradition-

al  APF  method  and  the  DRL  methods,  we  can  see  that
APF  completes  the  tasks  in  simple  environments,  but  it
takes  longer  time  and  flies  longer  paths  than  DRL  me-
thods.  When  confronting  with  a  complicated  environ-
ment, APF fails to work while our method works well.
  

Table 3    Trajectory parameters of the four controllers

Controller

Environment
with a threat

density of 15%

Environment
with a threat

density of 25%

Environment
with a threat

density of 35%
Flight
time/s

Path
length/m

Flight
time/s

Path
length/m

Flight
time/s

Path
length/m

APF 21.0 420 24.1 482 Crash Crash

DQN 20.0 400 Crash Crash Crash Crash

DQN with DA1 19.0 380 20.1 402 Crash Crash

DQN with DA2 18.8 376 19.7 394 23.1 462

DQN with DA3 15.8 316 17.3 346 22.1 442
 

(ii)  Experiment  II:  testing  in  a  dynamic  environment
with pop-up threats

In  this  experiment,  unknown  threats  are  set  to  sud-
denly appear on the path of the UAV to test the control-

 

(c1) DQN with DA1 algorithm in environ-

    ments with a threat density of 15% 

(c2) DQN with DA1 algorithm in environ-

   ments with a threat density of 25%
(c3) DQN with DA1 algorithm in environ-

   ments with a threat density of 35%

(d1) DQN with DA2 algorithm in environ-

   ments with a threat density of 15%
(d2) DQN with DA2 algorithm in environ-

   ments with a threat density of 25%
(d3) DQN with DA2 algorithm in environ-

   ments with a threat density of 35%

(e1) DQN with DA3 algorithm in environ-

   ments with a threat density of 15%
(e2) DQN with DA3 algorithm in environ-

   ments with a threat density of 25%
(e3) DQN with DA3 algorithm in environ-

   ments with a threat density of 35%

Fig. 9    Trajectories of the UAV with different controllers while flying across environments with different threat densities
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lers’ capability of adapting pop-up circumstances. For the
sake of comparison, three settings comprising no pop-up
threat (the first column in Fig.10), one pop-up threat (the
second column in Fig.10),  and two pop-up threats  (third
column  in Fig.10)  are  used.  All  the  four  controllers  are
tested in the three settings,  respectively. The results thus
obtained are shown in Fig.10 and Table 4, where the yel-
low cylinders  represent  the  pop-up threats.  In Fig.10 the
rows  represent  controllers  and  from  top  to  bottom  are
APF, DQN, DQN with DA1, DQN with DA2, DQN with
DA3, respectively.

From the results, we can observe that all the five con-
trollers enable the UAV to fly autonomously towards the
target  without  any  collision  when  there  is  no  pop-up
threat (as seen in Fig.10(a1)−Fig.10(e1)). As the first pop-
up threat appears exactly on their straight ahead (as seen
in Fig.10(a2)−Fig.10(e2)),  all  the  UAVs  make  adaptive
turns  immediately.  But  unfortunately,  only  the  control-
lers  of  APF,  DQN with  DA2,  and  DQN with  DA3  suc-
cessfully avoid the pop-up threat and eventually reach the
target  while  the  other  two  controllers  crash  during  their

path-changing  process.  When  the  second  pop-up  threat
suddenly appears and completely blocks the original best
way  ((as  seen  in Fig.10(a3)−Fig.10(e3)),  the  UAVs  fur-
ther conduct a fine-tuning of the new path (after the first
adjusting) immediately and autonomously to avoid collid-
ing.  But this  time only the controller  of  DQN with DA3
makes it, the controller of APF and DQN with DA2 fails
to find its new way. These results indicate our DA policy’s
outstanding performance of adapting to a dynamic envir-
onment  with  unknown sudden threats.  Not  only that,  we
can perceive directly from Table 4 that no matter wheth-
er  there  is  a  pop-up threat  or  not  and how many pop-up
threats are there,  the controller of DQN with DA3 could
provide  the  UAV  more  efficient  trajectories  than  others
and  the  trajectories  usually  cost  shorter  flight  time  and
shorter flight distance. Meanwhile,  we can conclude that
both the traditional APF method and original DRLs have
limited  adaptability  to  poo-up  threats,  while  our  pro-
posed method still  works well  without any re-training of
the model.
 

 

(a1) APF algorithm in environments

       with no pop-up threat

(a2) APF algorithm in environments

       with one pop-up threat

(a3) APF algorithm in environments

       with two pop-up threat

(b1) DQN algorithm in environments

        with no pop-up threat 

(b2) DQN algorithm in environments

        with one pop-up threat

(b3) DQN algorithm in environments

        with two pop-up threat

(c1) DQN with DA1 algorithm in environ-

        ments with no pop-up threat

(c2) DQN with DA1 algorithm in environ-

        ments with one pop-up threat

(c3) DQN with DA1 algorithm in environ-

        ments with two pop-up threat
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(iii)  Experiment  III:  testing in a  dynamic environment
with moving threats

In this  experiment,  all  the  threats  are  set  to  move at  a
certain  speed  and  the  controller  has  to  be  as  flexible  as
enough to avoid the UAV colliding with these ubiquitous
threats.  For  comparison,  we  initialize  the  threats  with
three  kinds  of  speed,  i.e.,  low-speed,  medium-speed  and
high-speed.  In  the  low-speed  case,  each  threat  is  distri-
buted with a randomly generated speed that obeys a uni-
form  distribution U(0,  5  m/s),  while  the  medium-speed
and high-speed obey uniform distribution U(5 m/s, 10 m/s)
and U(10 m/s,15 m/s), respectively. Here, the high-speed,
medium-speed,  and  low-speed  are  defined  relative  to
UAV’s speed.  The five  controllers  are  used to  guide the
UAV  from  the  same  departure  to  the  same  target  while
crossing  the  dynamic  environments.  The  results  are
shown in Fig. 11 and Table 5.

In Fig. 11, the rows represent controllers and from top
to  bottom  are  DQN,  DQN  with  DA1,  DQN  with  DA2,
DQN with DA3, respectively. The columns represent dif-
ferent circumstances with no low-speed threats, with me-

dium-speed threats, and with high-speed threats. As illus-
trated  in Fig.11,  in  the  low-speed  case,  all  the  five  con-
trollers successfully guide the UAV to the target without
any  collision  (Fig.11(a1)−Fig.11(e1)).  However,  the
DQN with  DA3 provides  the  UAV a  more  efficient  tra-
jectory.  When  the  speeds  of  the  threats  increase  to  the
medium-speed range, the DQN-based controller and APF-
based controller fail and the other three manage to avoid
the  moving  threats  and  finish  the  mission  (Fig.11(a2)−
Fig.11(e2)).  As  the  threat’s speed  goes  to  a  high-speed
range,  only  DQN  with  DA3  makes  it  and  all  the  APF,
DQN, DQN with DA1, and DQN with DA2 fail to adapt
to  the  dynamic environment  (Fig.11(a3)−Fig.11(e3)).  As
we can observe, our DA policy provides the UAV better
adaptability to dynamic environments. However, we also
have to admit that our policy could not adapt in all cases.
In fact, in our tests, when the speeds of the treats are set
too  large,  the  UAV will  collide  with  a  threat  because  of
its limited mobility. Also, Table 5 directly reflects the ef-
fect of the DA policy proposed in this paper from the per-
spective of flight time and path length.

 

(d1) DQN with DA2 algorithm in environ-

        ments with no pop-up threat

(d2) DQN with DA2 algorithm in environ-

        ments with one pop-up threat

(d3) DQN with DA2 algorithm in environ-

        ments with two pop-up threat

(e1) DQN with DA3 algorithm in environ-

        ments with no pop-up threat

(e2) DQN with DA3 algorithm in environ-

        ments with one pop-up threat

(e3) DQN with DA3 algorithm in environ-

        ments with two pop-up threat

Fig. 10    Trajectories of the UAV with different controllers while facing pop-up threats

 

Table 4    Trajectory parameters of the four controllers

Controller No pop-up threat One pop-up threat Two pop-up threats
Flight time/s Path length/m Flight time/s Path length/m Flight time/s Path length/m

APF 26.2 524 Crash Crash Crash Crash
DQN 23.0 460 Crash Crash Crash Crash

DQN with DA1 21.0 420 Crash Crash Crash Crash
DQN with DA2 19.1 382 20.1 402 Crash Crash
DQN with DA3 18.9 378 19.6 392 22.1 442
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(a1)  APF algorithm in environments

         with low-speed threats

(a2) APF algorithm in environments

        with medium-speed threats

(a3) APF algorithm in environments

        with high-speed threats

(b1)  DQN algorithm in environments

         with low-speed threats

(b2) DQN algorithm in environments

        with medium-speed threats

(b3) DQN algorithm in environments

        with high -speed threats

(c1) DQN with D1 algorithm in environ-

        ments with low-speed threats

(c2) DQN with D1 algorithm in environ-

        ments with low medium-speed threats

(c3) DQN with D1 algorithm in environ-

        ments with low high -speed threats

(d1) DQN with DA2 algorithm in environ-

        ments with low-speed threats

(d2) DQN with DA2 algorithm in environ-

        ments with medium-speed threats

(d3) DQN with DA2 algorithm in environ-

        ments with high -speed threats

(e1) DQN with DA3 algorithm in environ-

        ments with low-speed threats

(e2) DQN with DA3 algorithm in environ-

        ments with medium-speed threats

(e3) DQN with DA3 algorithm in environ-

        ments with high -speed threats

Fig. 11    Trajectories of the UAV with different controllers while facing moving threats
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Table 5    Trajectory parameters of the four controllers

Controller Low-speed threat Medium-speed threat High-speed threat
Flight time/s Path length/m Flight time/s Path length/m Flight time/s Path length/m

APF 22.2 444 Crash Crash Crash Crash
DQN 20.3 406 Crash Crash Crash Crash

DQN with DA1 19.2 384 18.7 374 Crash Crash
DQN with DA2 19.1 382 18.2 364 Crash Crash
DQN with DA3 18.7 374 17.9 358 18.5 370

 

(iv)  Experiment  IV: testing in a  dynamic environment
with moving target

In this test, the target is set as movable, and the UAV is
required to track a moving target. As comparison, the tar-
get is set to perform a uniform linear motion with a con-
stant  velocity  of  10  m/s  (lowspeed),  15  m/s  (medium
speed) and 20 m/s (highspeed), respectively. Once it hits
the  boundary,  the  target  obtains  a  new  reflective  direc-
tion.  In Fig.  12,  we  present  some  screenshots  of  the  re-
sults  of  the  experiments.  The  rows  represent  controllers
and from top to bottom are APF, DQN, DQN with DA1,
DQN  with  DA2,  DQN  with  DA3,  respectively.  The
columns  represent  different  circumstances  with  a  low-
speed  target,  a  medium-speed  target,  and  a  high-speed

target.
From the screenshots in Fig.12, we can see that all five

controllers  work  well  when  the  target  moves  at  a  relati-
vely low-speed. In the process of tracking, the UAV can
normally  avoid  treats  until  finally  reach  the  moving  tar-
get  (Fig.12(a1)−Fig.12(e1)).  When the  target  moves  at  a
medium speed of 15 m/s, DQN with DA2 and DQN with
DA3 show greater advantages because they take less time
to  finally  reach  the  moving  target,  but  APF,  DQN  with
DA1, and DQN also complete the mission despite taking
more  time (Fig.12(a2)−Fig.12(e2)).  It  is  a  real  challenge
for  the  UAV when  the  target  moves  at  a  high-speed  (as
fast as the UAV), because both the DQN and DQN with
DA1 fail and crashs (Fig.12(b3)−Fig.12(c3)).

 

(a1) APF algorithm in environments

       with a low-speed target

(a2) APF algorithm in environments

        with a medium -speed target

(a3) APF algorithm in environments

        with a high-speed target

(b1) DQN algorithm in environments

        with a low-speed target

(b2) DQN algorithm in environments

        with a medium -speed target

(b3) DQN algorithm in environments

        with a high -speed target

(c1) DQN with DA1 algorithm in environ-

        ments with a low-speed target

(c2) DQN with DA1 algorithm in environ-

        ments with a medium -speed target

(c3) DQN with DA1 algorithm in environ-

        ments with a high -speed target
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Fortunately,  APF,  DQN  with  DA2,  and  DQN  with
DA3  eventually  catch  up  and  hit  the  target,  although  it
takes  a  lot  of  detours  ((a3),  (d3),  (e3)).  This  experiment
turns the target search mission (trained one) into a target
track mission (test one), but as we can observe, the UAV
adapts  it  very  well  without  any  retraining  process.  The
same conclusion can be obtained from the trajectory para-

meters of the four controllers in Table 6. We can also find
that  the  traditional  APF  method  works  well  in  all  three
circumstances,  even  when  the  target  moves  at  a  high-
speed. This result illustrates a fact that the APF method is
not  sensitive  to  the  target  speed,  it  even  provides  better
adaptability than DQN and DQN with DA1.
 

 
 

Table 6    Trajectory parameters of the four controllers

Controller
Low-speed target (10 m/s) Medium-speed target (15 m/s) High-speed target (20 m/s)

Flight time/s Path length/m Flight time/s Path length/m Flight time/s Path length/m

APF 24.5 490 20.8 416 48.1 962

DQN 22.0 440 30.8 616 Crash Crash

DQN with DA1 19.3 386 25.6 512 Crash Crash

DQN with DA2 17.3 346 16.0 320 61.9 1 238

DQN with DA3 16.9 338 14.6 292 43.9 878
 

From all the four exploiting tests, we can conclude that
the  DRL  is  a  powerful  method  for  providing  the  UAV
with  AMC  capabilities  in  unknown  dynamic  environ-
ments  and  the  DA  policy  can  further  enhance  the  effi-
ciency of the traditional DRL algorithms. 

6. Conclusions
This paper presents a DRL-based end-to-end motion con-
troller for UAVs to autonomously fly across dynamic un-
known environments.  The framework uses  four  modules
working  together  to  maintain  a  stable  motion-control  of
the UAV.

Two  DA-based  learning  strategies  are  introduced  into

traditional  DRL  to  construct  novel  DRL  algorithms  for
motion  planning.  An  improved  LGVF algorithm is  used
to  handle  the  trajectory-tracking  problem  and  turn  high-
level  actions  into  guidance-control  commands  for  the
UAV.  A  general  UAV  mission  environment  is  built  in
this study for the controller’s training and testing.

The  training  experiments  demonstrate  that  the  al-
gorithms  in  this  paper  make  great  contributions  to  the
performance  improvement  of  UAVs,  and  the  testing  ex-
periments  show  that  our  DRL-based  controller  provides
the UAV with good adaptability to different dynamic en-
vironments.

In  future  research,  we  plan  to  extend  the  autonomous

 

(e1) DQN with DA3 algorithm in environ-

        ments with a low-speed target

(e2) DQN with DA3 algorithm in environ-

        ments with a medium -speed target

(e3) DQN with DA3 algorithm in environ-

        ments with a high -speed target

(d1) DQN with DA2 algorithm in environ-

        ments with a low-speed target

(d2) DQN with DA2 algorithm in environ-

        ments with a medium -speed target

(d3) DQN with DA2 algorithm in environ-

        ments with a high -speed target

Fig. 12    Trajectories of the UAV with different controllers while facing the moving target

1506 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021



motion-control problem to a 3D space, that is, we intend
to provide the  UAV with altitude control.  Moreover,  we
intend  to  control  the  UAV  in  a  continuous  action  space
and use  policy-based DRL algorithms to  develop intelli-
gent controllers.
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