Journal of Systems Engineering and Electronics
Vol. 32, No. 6, December 2021, pp.1463 — 1476

Self-organized search-attack mission planning for UAV swarm
based on wolf pack hunting behavior

HU Jingiang', WU Husheng"", ZHAN Renjun', MENASSEL Rafik’, and ZHOU Xuanwu®

1. School of Equipment Management and Support, Armed Police Force Engineering University, Xi’an 710086, China;
2. Department of Mathematics and Computer Science, Tebessa University, Tebessa 12002, Algeria;
3. Foundation Department, Armed Police Command College, Tianjin 300250, China

Abstract: Cooperative search-attack is an important applica-
tion of unmanned aerial vehicle (UAV) swarm in military field. The
coupling between path planning and task allocation, the hetero-
geneity of UAVs, and the dynamic nature of task environment
greatly increase the complexity and difficulty of the UAV swarm
cooperative search-attack mission planning problem. Inspired by
the collaborative hunting behavior of wolf pack, a distributed self-
organizing method for UAV swarm search-attack mission plan-
ning is proposed. First, to solve the multi-target search problem
in unknown environments, a wolf scouting behavior-inspired co-
operative search algorithm for UAV swarm is designed. Second,
a distributed self-organizing task allocation algorithm for UAV
swarm cooperative attacking of targets is proposed by analyz-
ing the flexible labor division behavior of wolves. By abstracting
the UAV as a simple artificial wolf agent, the flexible motion plan-
ning and group task coordinating for UAV swarm can be rea-
lized by self-organizing. The effectiveness of the proposed me-
thod is verified by a set of simulation experiments, the stability
and scalability are evaluated, and the integrated solution for the
coupled path planning and task allocation problems for the UAV
swarm cooperative search-attack task can be well performed.

Keywords: search-attack mission planning, unmanned aerial
vehicle (UAV) swarm, wolf pack, hunting behavior, swarm intelli-
gence, labor division.
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1. Introduction

The unmanned aerial vehicle (UAV) has been widely
used to perform dull, dangerous, and dirty (3D) tasks in
civil and military fields. Due to the capability limitation
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of a single UAV in complex mission environment, UAV
swarm has attracted increasing attention because of its
higher working efficiency, stronger task capability, and
better system robustness [1,2]. In the military field, co-
operative search-attack in unknown environments is an
important application of UAV swarms, and the efficient
mission planning technology is the basis for UAV
swarms to perform the cooperative search-attack task
autonomously [3,4]. Due to the complex and dynamic
nature of task environments, the tight coupling between
UAYV path planning and task allocation, and the hetero-
geneity of UAVs, UAV swarm cooperative mission plan-
ning (USCMP) has become a challenging problem.

Many scholars use the layered decoupling method to
decompose USCMP into two separate issues of task al-
location and path planning [5,6]. In this way, the solution
difficulty of USCMP can be reduced and the calculation
speed can be improved efficiently [7]. However, the task
allocation scheme has weak practicability. Considering
the coupling between task allocation and path planning, it
is feasible to adopt the integrated solving methods for
USCMP [8,9]. By taking the path length of UAVs as a
variable of the task allocation cost function, the flight
paths meeting the restrictions on mobility of UAVs and
the task allocation scheme can be generated simultan-
eously [10]. The centralized integrated algorithms can de-
couple task allocation and path planning preferably
[11-13], while the calculation is completely conducted
on the ground station or a single UAV which acts as the
central node due to the centralized architecture, and the
centralized integrated algorithms have the defects of high
computational cost, strong dependence of communica-
tion link, and easily getting into single-point failure.

By comparison, the distributed integrated algorithms
show the advantages of high system reliability and
scalability [14,15]. Recently, diverse algorithms for
USCMP based on the distributed architecture have been
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proposed, such as the contract network-based algorithm
(CNBA) [16], the distributed ant colony optimization
(DACO) [17], the distributed genetic algorithm (DGA)
[18] and the consensus-based bundle algorithm (CBBA)
[19]. Though the aforementioned algorithms can obtain
the optimal solution for a specific task scenario, their real-
time performance and dynamic response capability are
not ideal because the mission planning problem needs to
be reconstructed when the mission environment changes.

In nature, some social organisms (e.g., ant colony, bee
colony, and wolf pack) are highly similar to UAV swarm
in terms of the distribution of organizational structure, the
simplicity of individuals, the flexibility of action mode
and the emergence of swarm intelligence (SI) [20].
Therefore, some scholars tried to design novel distri-
buted integrated algorithms for USCMP by simulating the
complex and orderly collective behaviors of social orga-
nisms. Kim et al. [21] established an integrated model of
UAV swarm cooperative search-attack task allocation,
and solved it by using the response-threshold model
(RTM). RTM simulates the labor division behavior of ant
colony, and each ant agent can make a probabilistic de-
cision on the task execution autonomously according to
the task stimulus and individual response threshold. Wu
et al. [22] proposed a dynamic ant colony labor division
(DACLD) model to solve the UAV swarm combat task
allocation problem by designing the dynamic task stimu-
lus and response threshold. Kurdi et al. designed the bac-
terial foraging behavior-based [23] and the locust elastic
behavior-based [24] multi-UAV task allocation methods
for pest management and disaster rescue, respectively.
The basic mechanism of these methods is that each UAV
is abstracted and modeled as a simple individual of biolo-
gical groups. Based on the local perception and interac-
tion rule, corresponding optimization and coordination
strategies for individuals to dynamically respond to the
external and internal changes are designed, so as to rea-
lize the self-organized and flexible motion planning and
group task coordinating for UAV swarm. In essence, by
following the bottom-to-up solving idea and simulating
individuals’ behavioral mechanism of dynamic response
to the environment, these algorithms have outstanding ad-
vantages of simple calculation, high degree of self-organ-
ization, and environmental adaptability.

Wolves are social animals with high intelligence [25].
The cooperative hunting behavior of wolf pack shows
clear division of labor, efficient collaboration, strict or-
ganization, and behavioral flexibility [26,27]. Based on
the wolf pack’s cooperative hunting behavior, this study
proposes a distributed self-organizing search-attack mis-
sion planning method for UAV swarm. The main contri-
butions of this study are as follows: First, to solve the
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multi-target search problem in unknown environments, a
wolf scouting behavior-inspired cooperative covering
search algorithm for UAV swarm is designed. Second, a
distributed self-organizing task allocation algorithm for
UAV swarm cooperatively attacking targets is proposed
by analyzing the flexible labor division behavior of
wolves. Considering the target value, target resource re-
quirement, path cost, and available resources, the artifi-
cial wolf agents can adjust their specific roles and allo-
cate the subtasks flexibly based on the simple rules of lo-
cal interaction and perception, so as to complete integ-
rated solution for path planning and task allocation of the
UAV swarm.

The remainder of this paper is arranged as follows:
Section 2 describes the UAV swarm cooperative search-
attack mission planning problem. Section 3 designs a
wolf scouting behavior-inspired cooperative search al-
gorithm. Section 4 proposes a distributed self-organizing
task allocation algorithm based on wolf pack labor divi-
sion behavior. In Section 5, the performances of the pro-
posed search algorithm and the task allocation algorithm
are evaluated by a set of simulation experiments, and this
study is concluded in Section 6.

2. Description of UAV swarm cooperative
search-attack mission planning problem

There is a heterogeneous UAV swarm composed of N,
reconnaissance UAVs (R-UAVs) U2 = {Uf, ud,---, Ujf,l}
and N, integrated reconnaissance/strike UAVs (RS-
UAVs) U® = {Uf,Uf,--- ,U,{‘,z} in the battlefield, which
aims to search and attack multiple unknown targets. The
heterogeneity of UAVs is mainly reflected in their pay-
loads. Both R-UAVs and RS-UAVs can carry the non-
consumptive reconnaissance resources such as laser irra-
diation and infrared detection equipment, while RS-
UAVs can carry consumptive resources of attack am-
munition. The » types of consumptive resources of the ith
RS-UAV U; are denoted by

RY =(RY,RY,--- . RY), i=1.2,---,N, (D

where R (g =1,2,---,n) is the quantity of the gth type of
resources of U,.

Let T ={T,,T,,---,Ty} be the set of M stationary tar-
gets, and the information of targets is unknown to UAV
swarm at the initial time. m types of resources are re-
quired to destroy the jth target 7';, which are expressed as

R =R/,R),---,R,), j=12,---.M )

where R;’ (p=1,2,---,m) is the quantity of the pth type
of resources required for 7;. Assuming the type of re-
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sources carried by UAVs is the same as that required by
the targets, that is, m = n.

The basic process of UAV swarm cooperatively search-
attack can be divided as two stages of search and attack,
as shown in Fig. 1. At the search stage, UAV swarm per-
forms collaborative search task in the unknown environ-
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ment. When T is detected by U, the position (x",y"),
value V77, and resource requirement R” of T; can be ob-
tained by the UAV swarm, and then the UAV swarm
turns to the attack stage. At the attack stage, the attacking
task of T’ is assigned to RS-UAVs according to the states
of T; and UAVs.

UAV swarm Search stage Attack stage
! N L \'
| vy | H 1
: i B s
| I Find a i E Attack task Attack i
! R-UAVs —{-E—) Search ' llocati vl E
! H target? P allocation cooperatively |
: o b \ :
| 1y | H 1
i T E i i ! l i
i ! E No - Destroy !
1 Communication ! o No !
| ¥ No b target !
) l i 1 H T '
] [N} ! i ]
| 1y | H 1
! i i i Yes !
| i Find a ' 4| Meetresource | 3l  Attack i
i | RS-UAVs ™  Search LY ¥ . '
! H target? [l requirement alone !
' I ! \ !

Fig.1 Basic process of UAV swarm cooperative search-attack

If R >R,T,’,Vp =1,2,---,m, U; attacks T; indepen-
dently without assistance. Otherwise the attacking task of
T; is assigned and then an attacking coalition is formed
using the task allocation algorithm. Because the task al-
location operation mainly occurs in the attack stage, the
optimization objective of the UAV swarm cooperative
search-attack mission planning can be denoted by the
maximum attack efficiency of RS-UAVs. The attack effi-
ciency J is composed of attack reward (target value) and
attack cost (path length cost and time cost).

M nl
J=max Y o Vi—w,- Y (dy+y)
j=1 i=1

s.t.

’RU'>RT,J, p=12,.m
;p ! 3)

G(x) <0

where 7/ is the number of UAVs participating in attack-
ing T;. d;; and 7, are the distance and time of U, flying
to T after normalization, respectively. w; and w, are the
weights of attack reward and cost in the objective func-
tion, respectively.

The resource constraint in (3) indicates that the total re-
sources of RS-UAVs in the attacking coalition should sa-

tisfy the resource requirements of 7';. The constraint G(x)
consists of the mobility constraint, the flying distance
constraint of UA Vs, etc.

3. Wolf scouting behavior-inspired coopera-
tive covering search algorithm

3.1 Analysis of wolf scouting behavior

At the beginning of cooperative hunting, several scout
wolves who have shrewd perception capability are sent to
the hunting territory to search the prey widely [25,26,28].
The scouting behavior of scout wolves is simple and effi-
cient, which follows the following three rules:

(i) Scout wolves can mark the searched area efficiently
through the specific odor or trace using urine and feces.

(i1) As the search proceeds, the attraction level of the
searched area decreases. By perceiving the legacy odor or
trace, scout wolves can avoid the searched areas and fur-
ther explore the unsearched areas.

(iii) Based on the real-time interaction between wolves,
the local information obtained by different scout wolves
can be integrated for the whole pack quickly.

3.2 Search environment model

Due to the simple implementation and strong expression
ability, the grid-based method is adopted here to dis-
cretely model the search environment of scout wolves.
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Assuming the search environment is a plane rectangular
region, and the rectangular region is divided into L, XL,
discrete grids, as shown in Fig. 2. Grid,,,, denotes the
grid at the mth row and the nth column, then the search
environment E of scout wolves can be represented by the
set of grids as

E ={Gridpylm=1,2,--- \Lon=1,2--.L}. (4)

Ax
Grid,,, ,
Ay L,
m
T |
! L "

Fig.2 Grided search environment of scout wolves

In Fig. 2, Ax and Ay are the length and width of a
single square grid, respectively, which can be represen-
ted as the flight distance of UAVs in a time step at an ave-
rage speed. At time ¢, the state of Grid,,, can be ex-
pressed as

State(m,n)(t) = [ﬂ(m,n)’ ,Z(m,n)a n(m,n)(t)] (5)

where p,., is the center point coordinate of Grid,,,.
Lmmy €10,1} is the target existence status of Grid,,,
Lmny =1 indicates that there exists a target in Grid,,,
and ¢, =0 indicates that there exists no target in
Grid . M) €{0,1,2,---,h} is the times that Grid,,
has been searched by UAVs.

3.3 UAYV movement model

By taking a UAV as a particle moving in the two-dimen-
sional plane, UAVs can move from the center point of its
current grid to the center point of the neighbored grid un-
der the mobility constraint and search the grids within its
detection range in each time step.

Let state,(r) be the state of U; at time ¢, which is ex-
pressed as

state,(t) = [A(1),0,1)] (6)

where A;(¢) = (x,(2),y:(t)) = (m;(t),n;(r)) is the discrete po-

sition coordinate of U, in E at time ¢, and the grid index

of this coordinate is (m;(1),n;(t)). 0,(t) and Ao;(t) are the

course angle and yaw angle of U at time ¢, respectively.
The movement model of U, can be given as

X (t+1)=x;(®)+INT[V-Az-cos(o;(t+ 1))/ Ax]
yi(t+1)=y; (1) +INT[v- Az-sin(o;(z + 1))/ Ay] 7
0i(t+ 1) = 0,(t) + Aoy(¢)
where Aoi(t) € [~AOmax> AOpax], AOmax 1S the maximum
turning angle of UAVs, and 7 is the average speed of U..
INT[ -] is a rounding operator which aims at mapping the
flight distance of UAVs into grid index increment
(Am,An) in the grided search region.

In the grided search environment, o,(f) can be denoted
as 0,(t)€{0,1,2,3,4,5,6,7} with quantization operation
as Fig. 3. Assuming Ao, =45°, and then the relation-
ship between the current course angle and the next op-
tional course angle of UAVs under the UAV mobility
constraint can be defined as

oi(t+ 1) € {0i(t) = 1,0,(8),0:(t) + 1} mod 8 )
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Fig. 3 Relationship between the current course angle and the next
optional course angle of UAVs

3.4 UAV search strategy based on stimulus updating

To quantify UAVs’ perception of the dynamic search en-
vironment information, a search stimulus c,, is de-
signed for each grid. The value of ¢, represents the
search attractive level of Grid, for UAVs. As the
search proceeds, the value of ¢, is constantly updated by

C(m,n)(t) = Conn (0) ’ amm"”(t) (9)
where c¢(,.,(0) is the initial search stimulus of Grid,,,,
and 17.,,,(?) is defined as (5). @ € (0,1) is the stimulus at-
tenuation coefficient.

As for U,, U, will select the grid with the largest search
stimulus as its next search point at time ¢, then

(mi(t+1),n;(t+1)) =arg (mf{tl)z}ft)} Clmi(0)ni(1)) (10)

where (m;(t+1),n;(r+1)) is the grid index of the next
search point selected by U..

According to (9), the search stimuli of the searched
grids gradually decrease, and the more times the grids are
searched, the smaller the value of their search stimuli.
Under the action of (10), UAVs always tend to move to-
wards the grids with relatively large search stimuli, and
the unsearched area can be explored and the repeated
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search can be avoided effectively. In this way, the high
search covering rate and search efficiency can be guaran-
teed. Moreover, the searching decision strategy of UAVs
presented in (9) and (10) have the characteristics of
simple calculation and easy implementation, which helps
to improve the search speed of UAV in uncertain envi-
ronment. The search decision process of UAVs is shown
as Fig. 4.

Start search stage

Search area discretization

l

Initialize search stimulus for each grid

l

UAVs select the first search point

Turn to
attack stage

Find a target?

A

Update search stimulus as (9)

A

UAVs select the next search point with
the largest search stimulus as (10)

Fig. 4 Search decision process of UAVs

To facilitate the study, we make the following assump-
tions.

(1) There is at most one target in each grid.

(i)) UAVs have the autonomous obstacle avoidance
ability, so the obstacles in the task environment are not
considered.

(i) Each UAV can communicate with each other
without considering the communication delay.
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4. Wolf pack labor division behavior-based
task allocation algorithm

4.1 Analysis of wolf pack’s role-task matching labor
division mechanism

Labor division behavior refers to different individuals
performing different tasks. It is distributed throughout the
social biological groups. Labor division is an impor-
tant swarm intelligence behavior, which is instructive to
solve complex multi-task allocation problems with high
efficiency in dynamic environments [29,30].

Wolves have role differentiations in cooperative hunt-
ing, that is, individuals with different roles perform spe-
cific subtasks that match their roles [26,27]. The basic
mechanism of labor division in wolf pack is a role match-
ing task. An intelligent and experienced individual acts as
the leader wolf to command the group action, the percept-
ive individuals act as the scout wolves to search for prey,
the swift individuals act as the fierce wolves to ha-
rass the prey group, and the strong and aggressive indi-
viduals act as the giant wolves to besiege the single prey
[31,32].

Moreover, wolves can switch their roles flexibly to
meet the changing task requirements [33]. For example, if
giant wolves cannot kill the prey, several scout wolves
and fierce wolves convert to giant wolves immediately to
assist to complete the besieging task. Through the flexi-
ble transformation and dynamic reorganization of indi-
vidual roles, the subtasks of command, search, harass,
and besieging can be allocated and performed with high
efficiency.

In essence, the role-task matching labor division is an
oriented task allocation, and the flexible role transforma-
tion and task adjustment of wolf pack can be seen as the
dynamic task re-allocation.

4.2 Wolf pack labor division model (WPLDM)

Based on the role-task matching mechanism, the WPLDM
is built as Fig. 5.

\ \
‘ Task, , ‘ Task, Task,,,
l ' l < ”‘”””’) >
A e
" B Stnk-vk \/ Sth ke 1 Sth ket 1:4+2 Smax
' lndividyal— e Positive % Guiding factor €— Negative 4 Individual-
environment interaction

guiding factor

guiding factor individual interaction

Fig.5 WPLDM
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Let Task = {Task,, Task,,---,Task,,} be the set of m
tasks, and Task.(k=1,2,---,m) is the kth subtask. The
wolf pack composed of m different types of roles is rep-
resented as Wolf = {Wolf,, Wolf;, --- , Wolf,}, and Wolf;,
(k=1,2,--- ,m) is the set of wolves with the kth type of
roles. Wolf, matches and performs the kth subtask. Let
Wolf; be the ith wolf in Wolf, and s;; € (Sps—1:45 Sthkeks1)
be the role state variable of Wolf; ;.

To respond to the change of task requirement, wolves
need to shift their roles by adjusting their role state vari-
ables. The adjustment of the role state variable s;; of
Wolf,; can be expressed as

500+ 1) = f(51,(0, 60,(0) (1n)
where ¢, ; is the guiding factor which denotes the guiding
effect of tasks on s;; at time ¢.

The guiding factor § reflects the comprehensive re-
sults of individual-individual interaction and individual-
environment interaction. Let 6* be the positive guiding
factor to measure the individual-environment interaction
and 6~ be the negative guiding factor to measure the indi-
vidual-individual interaction of wolves, respectively.
Then 6 can be obtained by 6 = ¢*/6~, and the maximum
guiding effect on s,; can be expressed as

6" =arg max (67 /6) (12)
where £* is the sequence number of the task that has the
greatest guiding effect on ;.

The role state variable s,; of Wolf}; is updated by

sei () +T-exp tanh( 8, ), 85> 1k >k
sit+1) =1 s (O)-1exp tanh( S’k‘j, ), 5’;;, >k <k

s () +1rand(—1,1), otherwise
(13)
where k is the sequence number of the task currently
executed by Wolf,;, 7 and [, are step adjustment coeffi-
cient and role adjust threshold, respectively.

According to (13), if 5f exceeds [, and k* is greater
than %, s;, increases. If Sf exceeds [, and k* is smaller
than k, s;; decreases. Otherwise s;,; moves in random to
prevent deadlock. The greater the Sf:, the faster the role
transition.

Based on the role-task matching mechanism, Wolf,;
transforms its role according the updated s;; and then it
performs the new task that matches the updated role.

Tasky 1, Swirinez > Ski > Sthkket

new_Task = Taske_;, Swnr-u-1 > Ski > Stma-1 (14)

Task,, otherwise

As can be seen from (14), when s;; updates and moves
to the interval of (Syr1» Sthrs1:442)> the role of Wolf, ; con-
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verts to Wolf,,, and then Wolf,; chooses and executes
Task;, ;. When the updated s,; moves to the interval of
(Sthk—nk-1»> Str_1:¢), the role of Wolf,,; converts to Wolf,_,,
and then Wolf,; executes Task; ;. When the updated s,
remains in the interval of (Sy_i4 Sikis1), the role of
Wolf;; remains unchanged, and then Wolf; executes its
previously assigned Task;.

4.3 Task allocation strategy based on WPLDM

The division labor model constructed in Subection 4.2 is
a general multi-task allocation approach, while the task
allocation for the discovered T; only involves a single
target and a single attack task. The attack task execution
state of U, can be expressed as
0iy=10,1}, i=1,2,--- Ny j=1,2,--- M (15)
where 6, ; =1 indicates that Uj attacks T, 6 ; =0 indi-
cates that U; does not attack T';.
As for the UAV swarm cooperative attack task alloca-
tion problem when T, has been searched, the positive

guiding factor 67 can be transformed as
L — (16)
Y wydijtwy -k
where V' is the value of T;. d;; and 7; are the norma-
lized distance cost and time cost of U, flying to 7; under
mobility restrictions, respectively. w, and w, are weight
coefficients and w, + w, = 1.

In (16), 67 reflects the interaction result between U,
and T;, which can be seen as the attractive effect of U,
performing T';.

Similarly, the negative guiding factor ¢ can be trans-

formed as
j

n.
0 =— 17
ey (17)

where @/ is the completion degree of T; as defined in
(18). n! is the number of UAVs participating in attacking
T,.

In (17), ¢ reflects the interaction result between
UAVs, which can be seen as the repulsive effect of U,

performing T';.
DR

UG R — (18)
AT
p=1

where R;’(O) and R;f(t) are the resource requirements of

T; at the initial time and time ¢, respectively.

Let s;; be the role state variable of U,. Assume that the
attack task execution state of U, is 6;; = 0 at time ¢, then
the role transformation and task adjustment of U, in the
next time step is shown as Fig. 6.
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U, U; Uin
Smin Sthi-2:i-1 ¢A4 S}x\]m¢ Sth it1:42 Smax
L o >
<] r--» "~

0 =1 05 =0 O =

1 ‘

——» : Task attack; ~ ---—-—---- ¥ : Role transformation.

Fig. 6 Role transformation and task adjustment of U;

In Fig. 6, the value of 6, ;, switches from 0 to 1 by the
role transformation of U, and then U, is selected to at-
tack T;. The role transformation and task adjustment of
U, are realized by (19) and (20), respectively.

s;;(Ox7-exptanh(6;;), ;> 1,
Sh/(t+ 1): (19)

s;;(t)+7-rand(-1,1), otherwise

1, S € (Sthi:i+l7sth i+|,i+2)0r(sthi—2:i—l7Sth i-1:4)
i = (20)

0, otherwise

From the perspective of theoretical analysis, the pro-
posed WPLDM-based task allocation method has the fol-
lowing two potential advantages:

(i) Balance between solution quality and solving speed.
Conventional intelligent optimization algorithms, such as
particle swarm optimization (PSO), ant colony optimiza-
tion (ACO) and genetic algorithm (GA), all have a con-
tradiction between algorithm speed and accuracy and of-
ten need to sacrifice the computational speed to obtain the
optimal solution [34,35]. Moreover, these algorithms
need to evaluate all feasible solutions to obtain the opti-
mal solution with large computation cost.

The proposed task allocation algorithm is based on the
stimulus-response mode, which simulates the individuals’
quick response to the task and environment through local
perception and interaction. UAVs only need to make de-
cisions according to its own state, friendly UAVs states,
and the task state, and the task allocation calculation is
very simple, which results in the good real-time perform-
ance and high solving efficiency. Furthermore, through
the comprehensive consideration of task value, resource
requirement of tasks, remaining resources of UAVs, task
completion degree and the number of UAVs performing
the task as shown in (16)—(18), the task allocation solu-
tion has good operability and rationality. In this way, the
proposed algorithm can obtain a high quality task alloca-
tion scheme with fast speed.

In practice, the core of the UAV swarm search-attack
mission planning in uncertain battle environment is to
properly allocate the appropriate tasks to the appropriate
UAVs in real-time. Therefore, the proposed algorithm has
good practicability due to its good balance between solv-
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ing speed and solution quality.

(i1) Robustness and scalability. The efficiency of the
conventional intelligent optimization algorithm is highly
related to the diversity and size of the population [36],
while it is difficult to maintain the population diversity in
the iterations. If the population size is small or the popu-
lation distribution is not evenly enough in the search
space, the solution quality cannot be guaranteed. Due to
the centralized solving architecture, the robustness and
scalability performance of these algorithms are dissatis-
factory.

The proposed task allocation algorithm is based on the
distributed solving architecture, each UAV is designed as
an agent with a certain degree of independent decision-
making ability. Moreover, the design idea of the al-
gorithm originates from the flexible transformation of
wolves’ roles according to the characteristics of the task
and the adaptive adjustment of the group task of wolf
pack, the algorithm is very similar to biological characte-
ristics and interpretable. Therefore, the change of the
number of tasks and UAVs has little effect on the per-
formance of the algorithm, which reflects the good ro-
bustness and scalability of the proposed algorithm.

4.4 Basic processes of wolf hunting behavior-based
mission planning algorithm for UAV swarm
cooperative search-attack

Based on the previous analyses, the mapping relationship
between wolf pack hunting behavior and UAV swarm co-
operative search-attack can be constructed as Table 1.

Table 1  Mapping relationship between wolf pack hunting and
UAYV swarm cooperative search-attack

Behavior Wolf pack UAYV swarm cooperative
characteristics hunting search-attack
Wolf pack UAV swarm
Behavior actor
Prey Target

Hunting territory Task environment
Behavior space

Scouting Search target

Labor division Attack task allocation
Specific behavior

Besieging Coordinated attack

As can be seen from Table 1, the corresponding map-
ping relationship can be described as follows:

(1) Each UAV is equivalent to a wolf;

(i1) The prey is regarded as the target;

(iii) The scouting behavior of wolves can be seen as
the search stage of UAVs;

(iv) The labor division of wolves in cooperatively
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hunting is modeled as the attack task allocation among
RS-UAVs;

(v) The role transformation and task adjustment among
wolves is regarded as the flexible attack task re-allocation.

The basic processes of wolf hunting behavior-based
mission planning algorithm for UAV swarm cooperative
search-attack are shown in Fig. 7 and corresponding de-
scriptions are shown as follows.

7777777777777777777777777777777777777777777777777777

Start search stage

| Search area discretization

]

Initialize search stimulus for each grid

|

UAVs select the first search point

Search stage

Update search stimulus as (9)

Yes

[UAVSs select the next search point with
the largest search stimulus as (10)

L | U, attacks T; independently
without assistance

Allocate the attack task

I

Calculate (16)—(18)

I

Transform the roles of UAVs as (19) |

l

Update the attack task execution
states of UAVs as (20)

]

| Form the attack coalition |

UAVs fly to 7} and attack
cooperatively

Attack stage

No

All targets
are destroyed?

Fig. 7
planning algorithm for UAV swarm cooperative search-attack

Basic processes of wolf hunting behavior-based mission

Step 1 UAV swarm searches tasks in unknown envi-
ronment based on the wolf scouting behavior-inspired co-
operative covering search algorithm as defined in Sec-
tion 3.

Step 2 Compare the resource requirement R of T
and the available resources RY of U; when T is searched
by U..

Step 3If RY' > R,T,’,\/p =1,2,---,m, U, attacks T, inde-
pendently without assistance. Otherwise the attack task of
T is assigned using the wolf pack labor division behavior-
based task allocation algorithm as Section 4.

Step 4 UAVs assign the attack task flying to 7; and
perform the attack task cooperatively. UAVs that do not
perform the attack task continue to search the unexplored
environment.

Step S If a new target is searched, turn to Step 2. If all
targets have been discovered and destroyed, turn to ter-
mination.

5. Simulation experiments and
results analyses

The performances of the proposed algorithm for UAV
swarm cooperative search-attack mission planning are
verified by three groups of independent experiments. In
the first group experiment, the effectiveness and feasibi-
lity of the proposed algorithm are tested using six hetero-
geneous UAVs to search and attack three unknown tar-
gets. Based on the Monte-Carlo method, the influence of
UAVs and targets number on the proposed algorithm is
analyzed in the second group experiment, and its stabi-
lity and scalability are evaluated as well. The perform-
ance of the proposed wolf scouting behavior-inspired
search algorithm is tested in the third group experiment.
All simulation experiments are conducted on Matlab
2017b.

5.1 Effectiveness and feasibility experiment

The UAV swarm, composed of two R-UAVs and four
RS-UAVs, aims to search and attack three unknown tar-
gets. Corresponding parameters of UAVs and targets are
shown in Table 2 and Table 3, respectively. The combat
environment is a 2 000 mx2 000 m plan region which is
divided into 50x50 discrete square grids. The detection
radius of RS-UAVs is 60 m, that is, R-UAVs can search
nine grids centered on their current grids for a certain
time step. The detection radius of R-UAVs is 20 m, and
R-UAVs can only search its located grid. Each UAV
moves with the speed as defined in Section 3.

The parameters of the proposed algorithm in the expe-
riment are set as follows: the initial search stimulus
Cwmn(0) =100, stimulus attenuation coefficient @ = 0.1,
step adjustment coefficient 7=0.5, and role adjust
threshold /,=0.8, s,;,=1, Spax=10, ®,=0.5 and »,=0.5.
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Table 2 Parameters of heterogeneous UAVs

UAV T Initial Initial position Initial course angle
U) ype resource (x;, y)/m 0/()
U, (1,2,1) (180,20) 45
U, (2,1,0) (500,20) 90
RS-UAV
U @20 (820,20) 135
U, (1,1,3) (1 180,20) 45
Us (0,0,0) (1500,20) 90
R-UAV
Us (0,0,0) (1 820,20) 135

Table 3 Parameters of targets

Target (7)) Initial resource requirement  Position(x;, y;)/m ~ Value
T, (32,1 (780,780) 3
7, 23,1 (1 620,980) 5
T (1,0,2) (980,1 620) 4

The complete operation process of six heterogeneous
UAVs cooperatively searching and attacking three tar-
gets is shown as Fig. 8. At the beginning, UAVs start
from their initial positions to search the unknown targets
based on the wolf scouting behavior-inspired search al-
gorithm, separately.

The initial states of UAVs and targets are shown as
Fig. 8(a). At =16.9 s, T, is discovered by U as shown in
Fig. 6(b). Because Us is an R-UAV and its attack re-
source vector is (0,0,0), which means Uy cannot perform
the attack task of 7. In this case, the task allocation ope-
ration is triggered, and then T) is assigned to U; and U,
quickly based on the proposed wolf pack labor division-
based task allocation algorithm. U; and U, arrive at T, at
t=18.2 s and =19.4 s respectively to cooperatively attack
T, as Fig. 8(c).

As shown in Fig. 8(d), T, is discovered by U, at =
19.2 s. Since the available resources (1,2,1) of U, cannot
satisfy the resource requirement (3,2,1) of T}, the attack
task of T is assigned to U, simultaneously. U, arrives at
T, at =21.4 s to assist U, to destroy T as Fig. 5(e). At
t=25.7 s, T; is discovered by Uj as Fig. 8(f), and U, is as-
signed to attack 75 as shown in Fig. 8(g). The remaining
resources (1,0,3) of U, meet the resource requirement
(1,0,2) of T3, that is, U, can destroy T; without assistance.
Overall, the complete search and attack process of UAVs
is very compact. Once a target is found, it can be quickly
attacked and destroyed. The total time for UAV swarm to
complete all targets is 28.8 s, which reflects that the pro-
posed search and attack task allocation algorithms have
good real-time performance.

To further analyze the effectiveness of the task alloca-
tion results, the resource requirements of targets and the
available resources of RS-UAVs in different time points

are presented in Table 4.

In Table 4, the time points when the targets are at-
tacked by RS-UAVs are presented in the first column,
and the resource requirements of targets and the avail-
able resources of RS-UAVs at each attacking time point
can be seen from the third and fourth columns, respec-
tively. From Table 4, it can be concluded that the total re-
sources of RS-UAVs can well meet the resource require-
ments of their assigned target, which means that the tar-
gets can be destroyed successfully and the task allocation
results are effective.
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Fig. 8  Complete operation process of six UAVs cooperative

searching and attacking three targets

Table 4 Resource requirements of targets and UAV resources in
different time points

Target resource Remaining

Time/s  Target requirement UAV resource resource
182 I, (2,3,1) Uy(2,2,1) (0,0,0)
19.4 (0,1,0) Uy(1,1,3) (1,0,3)
19.2 T (3.2,1) Uy(1,2,1) (0,0,0)
214 (2,0,0) Uy(2,1,0) 0,1,0)
28.8 T, 1,0,2) Uy(1,0,3) 0,0,1)

5.2 Stability and scalability experiment

To evaluate the stability and scalability of the proposed
algorithm under the effect of different numbers of UAVs
and targets, 12 groups of independent experiments with 5,
10, 15, and 20 UAVs and 5, 10, and 15 targets are con-
ducted for 50 times, respectively. The combination ratio
between R-UAVs and RS-UAVs in the experiments are
set as Table 5.

Table 5 Combination ratio between R-UAVs and RS-UAVs

UAV swarm Number of UAVs
R-UAVs 1 2 3 4
RS-UAVs 4 8 12 16

For fairness concerning, the DACLD [22] and the hier-
archical mission planning method (HMPM) [37] are se-
lected as comparison algorithms. DACLD is an ant
colony labor division-inspired task allocation algorithm,
and HMPM is a contract network-based task allocation
algorithm. Both DACLD and HMPM present outstand-
ing performances for UAV swarm cooperative search-at-
tack mission planning.

The average mission completion rate (AMCR) and the
average mission completion time (AMCT) are computed
as comparison indicators. AMCR is the average value of
the ratio of the number of successfully destroyed targets
to the total number of targets in a predetermined mission
time range in 50 independent experiments. AMCT is the
average time taken for destroying all targets in 50 inde-
pendent experiments. The termination condition of the
three algorithms is that all targets have been successfully
searched and destroyed, or the operating time reaches the
maximum mission time 300 s. The task environment and
algorithm parameters are the same as Subsection 5.1.

The results of AMCRs of the three algorithms with dif-
ferent numbers of UAVs and targets are shown as Fig. 9.
As can be seen from Fig. 9, when the numbers of targets
are fixed, the AMCRs of the three algorithms rise with
the increase of the numbers of UAVs. When the numbers
of UAVs are fixed, the AMCRs of the three algorithms
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decrease with the increase of the numbers of targets. It
can be seen from Fig. 9(a) that the proposed algorithm
can achieve 100% AMCR values with 15 and 20 UAVs
when the number of targets is 5, while HMPM and
DACLD need 20 UAVs to achieve 100% AMCR values.
As can be seen from Fig. 9(b) and Fig. 9(c), when the
number of targets is larger than 10, none of the three al-
gorithms can achieve 100% AMCR values. In general,
compared with HMPM and DACLD, the proposed al-
gorithm can achieve the best AMCR results in all cases.
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Fig. 9 AMCRs of the three algorithms with different numbers of
UAVs and targets

The results of AMCTs of the three algorithms with diff-
erent numbers of UAVs and targets are shown as

Fig. 10.

As can be seen from Fig. 10, when the numbers of tar-
gets are fixed, the AMCTs of the three algorithms de-
crease with the increase of the numbers of UAVs. When
the numbers of UAVs are fixed, the AMCTs of the three
algorithms increase with the increase of the target num-
ber. In general, the proposed algorithm takes the shortest
mission completion time among the three algorithms in
all cases.
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In HMPM, the random search strategy is adopted in the
UAYV search stage, the phenomenon of repeated search is
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serious and UAVs take a relatively long time to search
for all targets, which results in the relatively long time for
completing searching and attacking tasks. In DACLD, the
task allocation strategy is based on the ant colony labor
division model and UAVs perform tasks with the probab-
ility-based decision-making strategy, which results in that
the algorithm takes a long time to find the most suitable
RS-UAVs to attack a discovered target. In comparison,
the proposed algorithm adopts the wolf hunting behavior-
inspired search strategy in the UAV search stage, the re-
peated search can be avoided and the search efficiency
can be developed effectively. Moreover, the target attack
tasks are assigned to UAVs based on the simple interac-
tion rules, and UAVs can make decisions quickly, which
results in the good real-time performance of the proposed
task allocation algorithm.

From Fig. 9 and Fig. 10, it can be concluded that the
proposed algorithm performs better than the compared al-
gorithms in terms of AMCR and AMCT. The effects of
UAYV and target number on the proposed algorithm are
not significant, which shows that the proposed algorithm
has superior stability and scalability.

5.3 Search performance experiment

To test the performance of the proposed wolf hunting be-
havior-inspired search algorithm, the search performance
experiment is conducted by comparing with random
search and the parallel search methods. The search envi-
ronment is the same as Subsection 5.1, and the search
time limitation is 300 s. In the comparison experiment,
the numbers of UAVs are set as 5, 10, 15, and 20 and the
average coverage rate (ACR) of the three search algori-
thms is compared. ACR is the average value of the rate of
the number of searched grids to the total number of grids
of 50 independent experiments, which is given by

L, .
Grid,, )

> 1. 21
LxL,’ n(m,n) (21)

1<
ACR=%;

The curves of ACRs with the search time of the three
search algorithms are presented in Fig. 11.
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Fig. 11 Curves of ACRs of the three search algorithms with differ-
ent numbers of UAVs

As can be seen from Fig. 11, the ACRs of the three
search algorithms rise as the search proceeds. In general,
the proposed algorithm can obtain the largest ACR value,
followed by parallel search, and then random search. It
can be concluded that the proposed wolf hunting behavior-
inspired search algorithm has competitive search effi-
ciency and a high area covering level.

6. Conclusions

Inspired by the collaborative hunting behavior of wolf
pack, a distributed and “bottom-up” self-organizing me-
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thod for UAV swarm search-attack mission planning is
proposed. In the search stage, UAVs can avoid repeated
search efficiently using the wolf scouting behavior-in-
spired search algorithm. In the attack task allocation
stage, UAVs can quickly assign the attack tasks by self-
organizing using the proposed wolf pack labor division
behavior-based task allocation algorithm.

The effectiveness, stability, and scalability of the pro-
posed search and task allocation algorithms are verified
by a set of simulation experiments. Our future research
will focus on the in-depth theory analysis of the algo-
rithm performance and the effect of parameter setting.
Moreover, the algorithm performance for the large-scale
UAV swarm in more complex and dynamic mission en-
vironment is also a promising research issue.
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