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Abstract: In  this  paper,  a  comparative  study  of  the  path  plan-
ning problem using evolutionary algorithms,  in  comparison with
classical  methods  such  as  the  algorithm,  is  presented  for  a
holonomic  mobile  robot.  The  configured  navigation  system,
which  consists  of  the  integration  of  sensors  sources,  map
formatting, global and local path planners, and the base control-
ler, aims to enable the robot to follow the shortest smooth path
delicately.  Grid-based  mapping  is  used  for  scoring  paths  effi-
ciently,  allowing  the  determination  of  collision-free  trajectories
from  the  initial  to  the  target  position.  This  work  considers  the
evolutionary  algorithms,  the  mutated  cuckoo  optimization  al-
gorithm  (MCOA)  and  the  genetic  algorithm  (GA),  as  a  global
planner to find the shortest safe path among others. A non-uni-
form  motion  coefficient  is  introduced  for  MCOA  in  order  to  in-
crease  the  performance  of  this  algorithm.  A  series  of  experi-
ments  are  accomplished  and  analyzed  to  confirm  the  perform-
ance of the global planner implemented on a holonomic mobile
robot.  The  results  of  the  experiments  show the  capacity  of  the
planner  framework  with  respect  to  the  path  planning  problem
under various obstacle layouts.

Keywords: holonomic  robot,  path  planning,  evolutionary  al-
gorithm (EA).
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1. Introduction
Motion  planning  is  a  term that  is  used  in  addressing  the
problem of how to devise an algorithm that converts hu-
man rational orders into the low-level meaning of how to
move.  For  several  decades,  many  methods  and  al-
gorithms have been proposed for the path planning prob-
lems  in  various  environments  with  different  landmarks
and constraints.  In  spite  of  applying many modifications
to  classical  approaches  to  allow  a  better  performance  in
static environments,  these methods are still  criticized for
their  inept  handling  of  motion  planning  in  environments
under  complex  conditions.  Three  common  problems  en-
countered  with  more  classical  methods  are  slowness,

computational  complexity,  and  trapping  in  local  mini-
mums. These problems have propelled designers to apply
powerful  mechanisms  to  the  path  planning  problems  for
better performance. Among such mechanisms, evolution-
ary  algorithms  (EAs)  have  gained  in  popularity  because
of  their  strength  in  solving  complex  problems  in  most
conditions. The most current classical approaches consist
of developed branches of some standard methods such as
the roadmap, cell decomposition, mathematical program-
ming,  and  potential  fields.  These  techniques  can  solve
most motion planning problems, but the solutions are not
limited  to  these  methods,  and  combinations  of  them  are
usually  used  in  developing  better  path  planners.  These
techniques generally face problems related to [1]: (i) loc-
al  minima:  when  there  is  a  balance  between  repul-
sive and attractive fields; (ii)  trap situation: this problem
occurs  when  the  robot  passes  between  two  objects  or
when the robot reaches a dead end, such as the inside of a
U-shaped  object  or  an  area;  (iii)  oscillation:  high-speed
movement  and  sudden  changes  in  direction  in  narrow
passageways prompt unstable oscillations because the ro-
bot is subjected to repulsive forces from both sides of the
passage.  Whereas  these  problems  may  be  solved  using
certain techniques, they do impose a degree of computa-
tional complexity and cost to the algorithm. The applica-
tion  of  metaheuristic  algorithms  has  recently  gained  ac-
ceptance in many fields because EAs do not  require any
information  on  the  fitness  function  of  the  underlying
problem in order to perform well.  To alleviate the draw-
backs  of  classical  methods,  EAs can either  be  employed
directly  or  used  with  some  probabilistic-based  ap-
proaches,  such  as  probabilistic  roadmaps  (PRM),  to  re-
medy the performance of  these methods.  In  [2],  a  modi-
fied neural  network was represented for  a  real-time path
planning in  non-stationary  environments.  The disadvant-
age of the proposed algorithm is that global knowledge of
the  workspace  is  always  required.  In  2011,  a  genetic  al-
gorithm (GA)-based controller was advanced for the mo-
tion planning problem, allowing the robot to identify sta-
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tic  and  moving objects  in  the  environment  [3].  The  pro-
posed controller has the ability to reconstruct the current
optimum path while moving toward the target. In 2012, a
global  path  planning  based  on  a  probabilistic  GA  was
proposed  in  partially  unknown  environments  including
moving objects [4]. In [5], a new approach was proposed
for  facing  complex  dynamic  environments.  This  ap-
proach employed GAs to generate a global path based on
prior  information  of  the  environment.  In  2015,  the  work
by  [6]  proposed  a  method  that  finds  a  sequence  of  ac-
tions  using  a  fitness  function  that  evaluates  the  actions
executed in the current generation. In [7], an autonomous
exploration  strategy  was  developed  by  combining  the
simulation  localization  and mapping (SLAM) and Voro-
noi  methods  for  mapping  the  environment  and  differen-
tial  evolution  (DE)  algorithm  for  localization.  Yu  et  al.
[8] introduced a hybrid algorithm, a mix of DE algorithm
and a group search optimizer (GSO), for path planning of
UAVs  in  complex  environments.  In  [9],  a  method  for
global  path  planning  was  presented  using  the  DE  al-
gorithm and the Voronoi diagram for modeling the envi-
ronment. In 2012, Jati et al. [10] introduced a hybrid mix
of  harmony  search  (HS)  and  bacterial  foraging  (BF)  for
multi-robot  path  planning.  The  proposed  method  inserts
the chemo-tactic behavior of BF into the state of the HS
for better stability. In 2013, the HS search was first modi-
fied using a quad-tree free space decomposition scheme,
after  which  the  algorithm  was  applied  for  a  global  mo-
tion planning in a grid-based environment [11]. In [12], a
new path planner was planned for a moving target, which
deployed  the  algorithm  as  an  initial  path  planner.  In
[13],  the authors introduced a strategy for  the path plan-
ning  of  multi-robot  multi-target  in  a  dynamic  environ-
ment.  The  proposed  technique  is  a  combination  of  two
evolutionary  methods.  First,  artificial  bee  colony  was
used  to  find  initial  paths,  and  then  an  evolutionary  pro-
gramming optimized  those  solutions  to  get  a  short  colli-
sion-free  path.  In  [14],  a  new  path  planning  method  de-
veloped based on deep Q-learning combined with a neu-
ral  network  which  was  trained  by  experience  data  when
the robot intrudes into an unknown environment. This ap-
proach  converges  to  an  optimum strategy  with  less  time
and can find a path with fewer steps and greater average
reward  in  an  uncertain  environment.  In  [15],  an  im-
proved same adjacency crossover operator was proposed
for the GAs to generate an optimal path by optimizing the
energy consumption of the mobile robot in the static en-
vironment. In [16], authors suggested a method to create
smooth  paths  by  optimizing  criteria  for  fitting  and
smoothness  using  DE under  distinct  modes  of  initializa-
tion of the population, selection pressure, exploration and
exploitation  during  sampling,  providing  a  data-driven
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planning framework for the comfortableness in riding. Li
et  al.  [17]  proposed  a  path  planner  using  the  firefly  al-
gorithm with self-adaptive population size for the mobile
robot path planning problem. The introduced method ada-
ptively  changes  the  number  of  the  firefly  population  to
plan  feasible  solution  in  terms  of  path  stability,  conver-
gence speed, and the algorithm running time. In [18], the
ant colony optimization plus  ( ) algorithm was
introduced by mixing up the ACO and the  search al-
gorithm  for  path  planning  of  autonomous  underwater
vehicles.  Li  et  al.  [19]  introduced  an  adaptive  quantum-
behaved  framework  to  improve  the  weakness  of  the
particle swarm optimization (PSO) algorithm such as pre-
mature  convergence  for  achieving  the  global  optimal
docking  tasks.  In  many  robotic  applications  the  optima-
lity is not only limited to finding an optimal path but also
other  criteria  such  as  safety  and  smoothness  might  be
considered. In [20], a DE algorithm was incorporated in-
to  the  PSO  algorithm  to  make  a  hybrid  multi-objective
method  to  solve  the  path  planning  problem.  In  [21],  a
multi-objective bare bones PSO was mixed up with DE to
solve the path planning of mobile robot considering three
indices of the path length, and the smoothness degree and
the safety degree of a path. In [22], a framework was de-
veloped  in  which  a  multi-objective  ACO  algorithm  is
used to escalate the parameters of a fuzzy system. Then,
this optimized fuzzy system is successfully applied to the
problem of a wall-follower robot. In [23], an artificial po-
tential  field  algorithm  was  used  to  discover  all  feasible
paths in a discrete-grid environment,  and then the multi-
objective  GA  was  employed  to  find  an  optimal  solution
among those  initial  paths  in  continuous  space  using  five
customized crossover and mutation operators. According
to [24] the performance of the GA becomes much worse
as  the  problem  size  increases  or  as  there  are  moving  or
unmapped  but  static  obstacles  in  the  environment.
However,  other algorithms such as the cuckoo optimiza-
tion  algorithm (COA)  perform better  than  the  GA when
the problem size increases [25]. Thus, the modified COA
(MCOA)  algorithm  is  considered  to  be  evaluated  whe-
ther it performs better in searching the optimal path in un-
certain environments with unmapped obstacles.

A∗

The contribution of this work resides in the implementa-
tion  and  study  of  a  modification  to  the  MCOA  [26]
through  extensive  experimentation  in  the  mobile  robot
application.  This  modification  proposes  a  new  immigra-
tion  process  for  the  MCOA  in  order  to  advance  the  al-
gorithm performance.  Also,  the  incompetency  of  the 
algorithm and the GA is discussed and analyzed in a ro-
botic application.

The rest of this paper is structured in chronological se-
quence  as  follows:  In  Section  2,  the  proposed  modifica-
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tion  and  related  path  planning  techniques  are  discussed
for this work; Section 3 reviews the hardware set-up and
the dynamics of youBot, as well as the navigation configu-
ration  used  in  this  work;  the  results  of  the  implementa-
tion  of  evolutionary  algorithms  on  youBot  for  the  path
planning  problem  are  presented  in  Section  4;  Section  5
analyzes the inability of the employed algorithms to find
an  optimal  path;  Section  6  concludes  and  discusses  the
results. 

2. The proposed approach
 

2.1    Path planning using EAs

Many  different  representations  can  be  used  for  the  path
planning problem, one of which is the EA approach. This
paper mainly focuses on MCOA as an optimization met-
hod to discover a collision-free path in both partially un-
known and known environments. 

2.1.1    Enhanced MCOA (EMCOA)

MCOA [26], a mutated and self-adaptive COA, is a gene-
ric  population-based  metaheuristic  optimization  al-
gorithm,  which  employs  a  mutation  operator  to  generate
diverse  population.  This  algorithm  mimics  the  life  style
of  the  cuckoo  birds.  Cuckoos,  as  other  brood  parasitic
birds, spawn eggs in the other birds’ nests. The optimiza-
tion  procedure  begins  by  initializing  cuckoo  mothers  as
population.  Second,  the  cuckoo  mothers  begin  making
eggs  in  the  host  birds ’  roosts.  An  area  with  the  highest
rate  of  survival  eggs  is  recognized  as  the  best  nest.  The
mature cuckoos build new societies and habitats and then
the  other  cuckoos  emigrate  from  their  current  dwellings
to  the  best  area.  The  process  of  egg  laying,  choosing  a
new area, and immigration to it constantly continue until
most  population  get  together  around  the  best  area.
Briefly, the optimization process of the MCOA is as fol-
lows:

Npop×Nvar

(i) Population initialization: generating the habitat ma-
trix  of  size . Npop is  the  number  of  population
and Nvar is the number of the problem’s variables.

(ii) A probability-based eggs assignment is proposed.(
neggsmax

−neggsmin

) e−ci

nc∑
i=1

e−ci

+neggsmin
(1)

neggsmax
neggsmin

nc

e−ci

nc∑
i=1

e−ci

where ,  and  are  the  maximum  and  the
minimum  number  of  eggs,  and  the  whole  present  num-

bers  of  cuckoos  respectively.  The  term  is  the

Boltzmann  distribution  function and calculated  for  each

icuckoo . The allocation of eggs to cuckoos as a function
of  the  Boltzmann  distribution  function  increases  the  ex-
ploitation  that  ends  up  with  finding  a  better  solution  in-
stead of a random allocation of eggs to each cuckoo [27].
According to the nature of this bird, this egg laying pro-
cess  is  limited  to  a  maximum  distance  from  the  cuckoo
mother nest called ELR and is defined as

ELR = α
neggsc

neggst

(vh− vl) (2)

neggsc
neggst

α

vh

vl

where  and  are  the  number  of  present  cuckoo
eggs and the total number of eggs,  is an integer which
controls the maximum value of the egg laying radius, 
and  are  respectively  the  high  and  low  bounds  of  the
problem parameters [26].

(iii) Immigration process. The mature cuckoos immig-
rate  to  a  better  dwelling  area  on  account  of  spawning
eggs. The new position of the habitat after immigration is
indicated [26] as

xnh = xch+ {U (0,1)min(|xch− vh| , |xch− vl|)} ·
(xbest− xch) (3)

xbest

U (0,1)
where  is  an  individual  with  the  lowest  value  in  the
current iteration and  is a random number between
zero and one and xch is the position of the current habitat.
This modification ensures that the next habitat position is
not  outside  the  parameters’ bound  nor  dose  it  perch  on
the boundary edge. Fig. 1 illustrates a geometric explana-
tion  of  the  motion  coefficient  boundaries.  However,  it
should  be  considered  that  it  is  difficult  to  determine  the
boundary values for an actual problem with a high com-
plexity level  of  the workspace such as the path planning
problem  for  mobile  robots.  Therefore,  these  values  are
defined using the values in accordance with the geometry
of the environment extracted from the map. It is a practic-
al  solution  if  the  boundary  values  coordinate  with  the
boundary  areas  of  initial  particles  in  the  adaptive  Monte
Carlo  localization  (AMCL)  layer.  To  decrease  the  prob-
ability of being stuck in local minima, a mutation opera-
tor is introduced in [26] as follows:

ẋc(t) = xc(t)+σ(t)N(0,1) (4)

σ (t) xc (t)
N

σ (t)

where  is  the  step  size  of  the  mutation,  is  a
mutated solution and  is  the normal Gaussian distribu-
tion. For  the simplest scenario is to set the step size
value as a fixed value. The drawback of this approach is
that a too small value or a too-large value diminishes the
exploitation  or  the  exploitation  capability  of  the  al-
gorithm,  respectively.  Although  it  is  possible  to  apply  a
self-adaptive  scheme  to  the  mutation  step  size,  a  fixed
value  is  used  here  in  order  to  maintain  simplicity  in  the
implementation  of  the  algorithm.  For  example,  the  self-
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adaptive  mutation  operator  introduced  in  [26]  suffers
from  heavy-computation  processing  when  the  geometry
of  the  environment  is  complex.  This  work  introduces  a
new motion coefficient (MC) as elaborated in (iv).

  
vl

xch−vl vl−xch

vh

Current position
of a cuckoo, xch

Global point

The next position
of a cuckoo after
immigration with
a high value of the
constant migration

coefficient

Fig. 1    A geometric explanation of MC boundaries
 

(iv)  MC.  MC  is  the  main  operator  of  the  COA  al-
gorithm  which  plays  a  vital  role  in  the  performance  of
this algorithm such as accuracy, fast convergence, prema-
ture  convergence  avoidance,  and  the  local  minimum  es-
caping. Equation (3) leads all  current particles (cuckoos)
of each group to randomly move towards the best particle
(the position of the best current habitat). Although a ran-
dom movement is a less complicated method and it gives
an equal chance of selection to all individuals, it is a time-
consuming  process  of  research.  In  this  case,  there  is  no
guarantee  that  the  offered solutions  are  optimal  and uni-
versal,  especially when the geometry of the environment
is complex and multimodal. Here the suggested immigra-
tion  factor  has  a  non-uniform  scheme  to  ensure  that  the
immigration process actively searches the problem work-
space  for  finding  the  optimum  solution.  The  H-spread
measure  is  adopted  to  determine  the  pattern  of  distribu-
tion of particles within and outside the best current habi-
tat. The advantage of the H-spread measure is that it does
not  make  assumptions  about  the  distribution  of  particles
meaning  that  it  does  not  depend  on  the  standard  devi-
ation  or  mean  of  the  data.  The  following  modification
helps  maintain  the  fine-tuning  capability  of  the  explora-
tion and the exploitation of the algorithm, ending up with
conducting an efficient global and local search for the fi-
nal  solution.  When  the  particles  are  located  outside  the
region of the best current habitat, the immigration coeffi-
cient is greater than that when they are located inside the
region  of  the  best  current  habitat.  This  region  is  deter-
mined by the H-spread measure. When a particle is close
to  the  best  current  solution,  it  needs  a  small  MC  value.
Otherwise, a large value causes the particles to move to-

ward  a  region  far  away  from  the  current  position  of  the
optimum solution  which  reduces  the  performance  of  the
algorithm. The offered modification is defined by

MC =



∣∣∣∣∣∣
(
1− U(0,1)

b

)∣∣∣∣∣∣b, xch > Q1−1.5IQR or

xch < Q3−1.5IQR∣∣∣∣∣∣
(
1− U(0,1)

b

)∣∣∣∣∣∣−b−1

, otherwise

(5)

b ∈ (0.5,2]where  is  a  parameter  defining  the  degree  of
non-uniformity, Q1 and Q2 denote  the  first  and  third
quartiles  of  the  particles  of  the  best  current  habitat,  and
IQR = Q3 − Q1, where IQR is the interquartile range, or a
measure of statistical dispersion.

According to (5) and Fig. 2, when a particle (particle A
or B)  falls  on  a  region  where  it  is  outside  the  neighbor
group of the best habitat (Group 1) a large MC scheme is
selected. Otherwise, a small value for MC is required be-
cause,  for  example,  the  particle  (particle C)  is  getting
close to the best current particle (the best current solution
defined by the red star) within the region of the best habi-
tat. A smaller value of the MC for particles while they are
approaching the goal point increases exploitation capabi-
lity of the algorithm.
 
 

Group 3

Group 2

Group 1

A

B

C

Q3−1.5IQR Q3+1.5IQRQ1 Q3

IQR

: Particles of group 1; : Particles of group 2;
: Particles of group 3; : The best particle.

Fig. 2    Illustration of the mutated MC
 

b = 1For instance, choosing  for (5) could lead to

MC =


0.5, xch > Q1−1.5IQR or

xch < Q1−1.5IQR.

4, otherwise
(6)

Equation  (6)  implies  that  a  small  value  for  the  MC is
assigned to particles close to the current global point. 

2.1.2    GA

The GA is among the earliest forms of EAs that is based
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on the genome conception. The main operators of the GA
are selection, reproduction, mutation, and crossover. The
preparation process of applying the GA for the path plan-
ning typically comes up with several phases: an apt chro-
mosome depiction of the paths, separate mechanisms for
both  path  guidance  and  static  obstacle  avoidance,  and  a
suitable  constrain  definition.  The  main  processes  of  the
algorithm involved in the GA is as follows:

(i)  Initialization.  The population is  typically  randomly
generated, which contains individuals, as a set of chromo-
somes.

(ii) Fitness function. Each individual of the population
is  then  evaluated  by  how  well  the  solution  fits  with  the
desired requirements.

(iii) Selection. To maintain proper diversity within the
population  and  to  avoid  early  convergence,  parents  are
selected  with  high  fitness  and  recombined  to  create  off-
springs for the following generation.

(iv) Crossover. This operator is similar to reproduction
to create suitable children that inherit the best characteri-
stic from their parents.

(v)  Mutation.  This  operator  is  defined  as  adding  ran-
domness  into  the  chromosome  to  increase  genetic  di-
versity.  To  avert  the  distortion  of  the  highly  fitted  indi-
viduals, mutation usually is applied with a low probability.

The  floating-point  representation,  which  describes
variables  with  a  real-valued  type,  is  used  for  describing
the  chromosome  data  type  in  order  to  maximize  their
sum.  Generally,  different  chromosomal  data  types  could
be deployed to exploit the chromosome to achieve a bet-
ter solution. The floating-point representation helps avoid
premature convergence. The advantage of this representa-
tion  is  that  an  explicit  encoding  mechanism  is  not  re-
quired. Since the chromosome representation directly af-
fects  the  mutation  or  crossover  operation  performance,
the  chosen  chromosomal  data  type  could  work  worse  or
better  for  a  specific  problem  such  as  a  path  planning
problem.  However,  exploring  the  performance  of  other
chromosome  representations  does  not  come  within  the
purview of this work. In this paper, the GA did not imple-
ment  within  the  robot  operating  system  (ROS)  frame-
work  as  a  node.  Indeed,  the  GA  interacts  with  the  ROS
instance using ZeroMQ messages. A message containing
genome information is used by ROS to perform an evalua-
tion. Upon completion of the evaluation, the fitness value
as well as the genome ID will be returned to the GA. An
ROS  instance  includes  two  nodes:  adder-transporter  and
adder-worker  nodes.  The  adder-transporter  node  man-
ages  the  communication between the  GA and the  adder-
worker node. The adder-worker node performs the actual
summation  of  the  genome  and  then  returns  the  value  to

the adder-transporter node. Finally, fitness is sent back to
the  GA,  along  with  the  genome  ID  by  the  adder-trans-
porter node. 

2.2    Environment representation

There  are  two sources  of  information for  a  robot  to  use:
the idiothetic and the allothetic sources. The former refers
to self-proposition of the robot using the number of evolu-
tions of the wheels, hinging on the cumulative error. The
latter hints at the mounted sensors on the robot, such as a
camera,  a  light  detection  and  ranging  (LiDAR),  and  so
on.  The  problem of  allothetic  sources  is  that  two  differ-
ent places can be noticed as the same. To tackle these de-
ficiencies,  a  topological  framework  of  the  environment,
which includes places and distance between them, is em-
ployed. A technique is needed to score possible trajecto-
ries, and so, in this work, the map grid is used. For each
control  cycle,  a  grid  is  generated  around  the  robot  loca-
tion  and  then  global  path  is  partitioned  into  this  area.
Some  certain  cells  with  zero  distance  to  the  initial  posi-
tion and the goal  point  and the path point  between them
are  marked.  Then,  all  other  cells  are  marked  based  on
their Manhattan distance to those zero marked points.

The  fitness  function:  The  fitness  function  places  im-
portance  on  the  algorithm’s stability  and  performance
such  that  an  inadequate  function  may  prompt  the  al-
gorithm to either trap in local minima or oscillate around
an  optimum  solution.  Fitness  functions  are  usually
formed by the aggregation of weighted sub-functions in-
cluding a path length sub-function and a collision avoid-
ance  term  as  a  penalty.  Equation  (7)  denotes  this  cost
function fc as follows:

fc =

n∑
i=1

pli−
ncollision∑

j=0

γ ·max
(
0,ro−d j

)
(7)

pli n
d j

ro γ

γ

where  is the distance between two sequence nodes ,
 is the distance between the path and the edge of object,

and  is the radius of the object. The value of , a colli-
sion constant for the penalty term, is considered such that
no collision-free path is discovered when this value is too
high.  To  keep  balance  between  finding  an  optimal  path
and  a  collision-free  path,  the  value  of  is  one  for  all
tests. 

3. Experimentation
 

3.1    Experimental setup

The mobile  robot  such as  the youBot  from the company
KUKA,  which  is  a  commercial  product  designed  for  re-
search, incorporates the adroitness of a five-degree robotic
arm into the adaptability of a mobile platform with a ca-
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pacity to integrate several sensors to develop efficient al-
gorithms  for  autonomous  robotics  purposes.  The  base
platform hosts an on-board PC, an Intel Atom D510 Dual
Core 1.66 GHz, a 2 GB Ram, a 32 GB SSD storage, and
a 12 V DC Input. The youBot arm is equipped with a two-
finger  gripper.  The  arms  can  be  mounted  on  the  mobile
platform and controlled by the on-board PC, or, they can
be  controlled  via  an  Ethernet  cable. Fig.  3 shows  the
youBot with an onboard laptop and a 2-D LiDAR moun-
ted  on  the  head  of  it.  The  base  platform has  four  meca-
num wheels,  enabling  the  base  platform to  move  in  any
direction. Table 1 indicates some detailed specifications of
the robot base. Fig.  4 indicates the geometry of the base
as A=74.87 mm, B=100 mm, C=471 mm, D=300.46 mm,
E=28 mm [28].

 
 

Fig.  3     KUKA youBot equipped with a 2-D LiDAR and on-board
laptop
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Fig. 4    Base geometry
  

3.2    Mecanum wheel

The  youBot  employs  mecanum wheels,  which  allow the
base  platform  to  make  rotational  and  transitional  move-
ments  or  a  mix  of  both  at  the  same  time.  It  means  that
each wheel has 3 degrees of freedom (3-DOF) including
the wheel rotation, the rolling rotation, and the rotational
slip where it contacts with the ground.

45

Each mecanum wheel is composed of the six rollers at-
tached  to  the  circumference  of  the  wheel  center.  All
rollers  are  orientated  at  from the  rotation  axis  of  the
wheel. 

3.3    Robot kinematics

Jωi i

The  base’s Jacobian  matrix  consists  of  four  Jacobian
matrices located on the axis of each wheel. The Jacobian
matrix  for the wheel  is denoted [29] as

Jωi
=

 Risin θR
ωi

risin(θR
ωi
+ηi) dR

ωiy

Ricos θR
ωi

ricos(θR
ωi
+ηi) dR

ωix

0 0 1

 (8)

Ri i ri

η1 = η2 = −45
η2 = η4 = 45 dR

ωi

R i

where  is the perimeter of main wheel ,  is the roller’s
perimeter  of  the  same  wheel,  and °  and

°.  represents the distance between the ro-
bot’s frame  and  the  wheel’s frame  in  Cartesian  co-
ordinate  system.  The movement  of  the mecanum wheels
proceeds to the motion of the robot base. The final Jaco-
bian matrix as  a  transform matrix for  the velocity of  the
base is defined as

J =


Jω1 0 0 0
0 Jω2 0 0
0 0 Jω3 0
0 0 0 Jω4

 . (9)

 

3.4    Navigation configuration

Three  fundamental  components  of  the  mobile  robots’
navigation  system  are  the  map  builder,  the  motion  and

 

Table 1    YouBot detailed base specifications

Parameter Value

Motor

Nominal voltage/V 24

Nominal current/A 2.32

Nominal torque/mN·m 82.7

Moment of inertia/kg·mm2
13.5

Rated speed/rpm 5 250

Gearbox
Reduction ratio 26

Moment of inertia/kg·mm2
0.14

Encoder Counts per revolution 4 000
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local  planners,  and the  platform controller. Fig.  5 shows
the block diagram of navigation system’s components im-
plemented  on  the  youBot.  This  navigation  setup  uses
ROS  environment.  In  the  following,  the  components  of
this navigation system are described.
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Fig. 5    Navigation setup for the youBot
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(i)  Sensor  sources.  Generally,  the  navigation  system
needs information obtained by sensors to avoid obstacles
in the robot environment. A few sensor types can be used
in  this  navigation  system,  two  of  which  are  laser  light-
based and point cloud-based sensors. In this work, a laser
light  sensor,  Hokuyo  URG-04LX-UG01,  is  used.  This
sensor  detects  objects  by  illuminating  them  with  a  laser
light. As shown in Fig. 3, it has been mounted in the front
of  the  youBot.  Some  main  characteristics  of  this  sensor
are:  detectable  range dr =  is  from 20  mm to  5  600  mm;
measuring  area °;  scanning  time  ms;
angular  resolution  steps;  noise N =
25 dB; power source V = 5±5% volts of direct current.

(ii) Odometry source. In robotics, motion sensors give
data, known as odometry, to estimate changes in the posi-
tion of the robot through time. The youBot has rotary en-
coders  on  its  wheels  which  count 4 000 per  revolution.
These  encoders  measure  the  number  of  rotations  by  a
wheel.  In  the  youBot,  the  location  of  the  robot  is  deter-
mined by transform frame (tf) and odometry source pub-
lishes transform and velocity information.

(iii)  AMCL.  AMCL  is  a  probabilistic  localization  al-
gorithm for a robot moving in the 2-D environment using
a particle filter. The particle filter describes a distribution
which estimates where the robot is. The algorithm distri-
butes  particles  throughout  the  configuration  space  while
the robot has no information on where it is. When the ro-
bot  moves  and  receives  information  about  the  environ-
ment,  it  causes  the  particles  to  shift  and predict  the  new
state  of  the  robot  after  it  moves.  When  the  robot  senses
an  object,  the  particles  are  resampled  using  recursive

Bayesian  estimation  to  relate  the  actual  captured  data  to
the predicted state.

(iv)  Costmap  configuration.  The  costmaps  stores  in-
formation of obstacles in the robot’s environment. A cost-
map is used for generating global planning throughout the
robot’s environment,  and  other  costmap  for  localization
and  obstacle  avoidance.  The  global  costmap  has  several
parameters  such  as  global  frame,  which  determines  the
frame in which the costmap should be executed,  and the
update  frequency  parameter,  which  defines  the  update
loop frequency and the  static  map parameter  indicates  if
the costmap needs to be initialized using the map served
or not. The local costmap has the same parameters as the
global costmap as well as others such as the rolling win-
dow.  When  this  parameter  is  set  to  true,  the  costmap
frame  moves  with  the  robot  centered  on  it.  The  other
parameters set the width, the height, and the resolution of
the costmap.

(v) Base controller.  The purpose of a control unit  in a
robotic system is  to ensure that  the system completes its
tasks  while  it  is  self-reliant  to  perform in  a  complex en-
vironment.  The  control  scheme  is  required  for  a  reacti-
vely  fast  response  to  changes  in  real  time  as  well  as  to
maintain its  stability  and robustness.  The base controller
includes  the  robot  driver  and  a  proportional-integral-de-
rivative (PID) controller,  which rectifies  the  wheel  velo-
cities based on the difference error between the actual and
desired  velocity.  At  the  upper  level  of  abstraction,  the
defined  target  position  and  orientation  of  the  robot  with
respect  to  some  frame  of  reference  original  position  is
given  to  another  ROS  package,  leading  the  robot  to  the
goal position.

(vi)  Map server.  Map server is  a ROS node that gives
the  stated  information  of  a  map  via  a  ROS service  used
by  the  navigation  system.  This  map  server  encodes  the
map image data into the occupancy values.

(vii)  Global  and  local  planners.  The  planner  aims  at
creating a kinematic path for the robot to reach a goal loca-
tion  from  a  start  position.  This  goal  is  achieved  using  a
combination  of  two  sub-planners:  global  and  local  plan-
ners.

A∗

A∗

A global  planner  is  an  algorithm that  tries  to  find  the
most  cost-effective  path  among  all  possible  solutions.
There are some famous methods such as the  and Dijk-
stra’s algorithms, which are the process of discovering a
path  between multiple  nodes.  It  is  known that  these  two
algorithms are  reasonably  the  optimal  greedy algorithms
for  finding  the  shortest  path  in  graphs  search.  A  greedy
algorithm is referred to any algorithm that adheres to the
heuristic  of  finding  the  optimal  solutions  locally  at  each
stage. In the  algorithm, the search for an optimal solu-
tion is carried out among possible paths, and the ones that
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g (nl)
h (nl)

g (nl)

appear to meet the optimality criteria are first considered.
This method builds a tree of solutions starting from a par-
ticular staring point,  known as a node, and then expands
the paths  until  one of  these paths  reaches the predefined
goal  node.  The  best  solution  is  the  path  that  minimizes

.  is  the  final  node  on  the  path,
 is the total path cost from the start node to the final

node,  and  is  a  heuristic  that  estimates  the  smallest
path  cost  from  to  the  goal  position.  Dijkstra’s al-
gorithm is also a method used to find the smallest trajec-
tory  between  nodes  in  a  graph.  The  algorithm  comes  in
many  variants:  the  original  variant  finds  the  paths
between  two  nodes,  while  a  more  common  alternative
constructs a shortest-path tree between a node as a source
and others.

In local planners, the goal is to localize the robot such
that  the robot safely avoids collision with obstacles.  The
dynamic window approach (DWA) and the trajectory rol-
lout  are  two  examples  of  the  few  number  of  techniques
used  to  this  end.  The  dynamic  window  approach  con-
siders the velocity space of the robot for handling control
commands. This method involves the dynamics of the ro-
bot to reduce the complexity of the search space to those
velocities  that  are  safe  with  respect  to  the  dynamic  con-
straints  and  the  limited  accelerations  of  the  robot.  The
second step of this method concerns the maximization of
the objective function. This function includes three crite-
ria:  the  distance  to  the  nearest  obstacle  on  the  path,  a
measure which indicates the alignment of  the robot  with
the goal direction, and the transitional and rotational velo-
cities of the robot. The value of this function encodes the
traversing  costs  through  the  grid  cells.  The  controller’s
job is to employ this value to determine changes in velo-
city and then send an appropriate command to the robot.
In  each control  cycle,  a  number  of  trajectories  are  gene-
rated,  and then the  collision-free  trajectories  are  rated  to
select the best one. 

4. Experimental results

A∗

A∗

One  of  the  greatest  challenges  for  a  mobile  robot  is  to
avoid being trapping in a concave-shaped obstacle while
facing some unmapped objects. This situation can be con-
sidered for the algorithm as trapping in a local minimum.
In this section, experimental results using the youBot are
shown. The average of the CPU running time of the EM-
COA, the GA, and the  algorithm is about 2.5 s, 2.4 s,
and 6 s, respectively. They are measured at the beginning
of  each  test  when  each  algorithm  tries  to  find  the  best
global  plan  for  the  first  time.  The  GA  and  the  al-
gorithm  are  implemented  as  base  methods  to  be  com-
pared  with  the  EMCOA  algorithm.  To  evaluate  the  per-
formance  of  the  path  planner,  the  configurations  of  two

different  environments  are  considered:  known  environ-
ments and partially unknown environments. In known en-
vironments all objects are fixed and mapped. In partially
unknown  environments,  for  a  challenging  assessment,
some  unmapped  objects  are  added  to  the  robot’s work-
space.  To  examine  the  effect  of  the  proposed  motion
coefficient on the performance of the algorithm, a test is
first conducted. As explained, (5) adaptively changes the
MC  value  of  particles  corresponding  to  their  distances
from the best current particle location. This strategy miti-
gates the algorithm’s susceptibility to the premature con-
vergence and trapping in local minimums, and also the al-
gorithm’s inability to find an optimal path.  The environ-
ment has two walls with an in-between split, followed by
an  angled  corner  where  the  target  position  is  located.
Fig. 6 makes a comparison of two path planner methods:
the EMCOA algorithm (Path 1)  and the original  MCOA
algorithm (Path  2)  in  a  known environment.  The  known
environment includes two walls with an in-between split
followed by an angled corner.
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Fig.  6      Traversed  path  representation  of  the  EMCOA  algorithm
compared with the MCOA algorithm in a known environment
 

The robot equipped with the EMCOA shows far better
performance compared with the MCOA. The MCOA al-
gorithm has a fixed value for the MC (MC = 0.8). The ro-
bot  smoothly passes through two non-aligned splits  with
no oscillation (Path 1)  and no premature convergence as
the  MC  has  an  adaptive  scheme.  The  MCOA  algorithm
could  not  generate  a  path  allowing  the  robot  to  traverse
the environment without getting stuck into the local mini-
mum,  since  a  low value  for  the  MC was  chosen  (MC =
0.8);  a  low  value  of  the  MC  provides  less  exploration
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ability of the searching, causing the MCOA algorithm to
converge  a  local  solution.  Before  stopping  at  the  end  of
Path 2 (indicated by the blue square in Fig. 6), the robot
rotates around its  center axis at  point A' for few seconds
to scan the environment and to regenerate a new path. In
comparison with the EMCOA algorithm, this test demon-
strates that the MCOA algorithm is incompetent to over-
come the  local  minimum problem for  the  path  planning.
The  EMCOA  is  used  as  a  global  planner  for  the  rest  of
the paper. Table 2 lists the values for the EMCOA para-
meters.
  

Table 2    Values for parameters of the EMCOA algorithm

Parameter Value
Npop 14
vl/m 0

neggsmax 6
vh/m 5

neggsmin 3
a 5
b 1
σ 0.09

 

σ

The inflation radius is set at 0.6 m to incur the cost of a
safe path from obstacles. This implies that the robot con-
siders  all  paths  that  remain  0.6  m  or  more  away  from
obstacles  are  having  equivalent  obstacle  costs.  For  this
study, for the purpose of the optimality and smooth path
planning, the value of the mutation rate for the EMCOA
algorithm is kept low at 0.09 (  in (4)) for all tests. 

4.1    Known environments

For  this  situation,  the  algorithm  was  implemented  on  a
robot that used a grid map built from laser data. In Fig. 7
and Fig. 8, the environment is assumed to be known with
stationary obstacles.  The global  planner  starts  path plan-
ning  based  on  information  on  the  map  while  getting
through the environment.
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Fig. 7    Path-traversed representation of the EMCOA and GA in a
maze environment 

4.1.1    A narrow zigzag corridor

(0,0)
(−5.76,−1.04)

(0.66,−3.06)

0.95

One  of  the  most  well-known  limitations  of  some  algo-
rithms, such as the potential field methods, is the insuffi-
ciency  of  their  motion  stability  while  passing  through  a
narrow passage. This instability usually occurs following
a  sudden  disturbance,  causing  an  oscillation  reaction  in
the  robot.  This  environment  is  employed  here  as  a  test
plant to challenge the algorithms further. In this configura-
tion, Fig. 7, the robot has to move from a relatively wide
and  long  corridor  to  the  other  side  through  a  narrow,
twisty corridor. The start position  and the goal point

 are outlined for the robot in the map. The
width of the corridor is 70 cm on average which makes it
a  relatively  narrow  corridor  as  for  the  dimension  of  the
robot according to Fig. 4. In area A, for the EMCOA, the
robot  changes  its  current  orientation  by  moving  back-
wards in the opposite direction to find a new feasible path
to  the  goal,  before  resuming  its  navigation.  In  this  area,
such a maneuver occurs when the robot is guided by the
genetic  algorithm.  However,  the  robot  stops  at  coordi-
nate ,  which  constitutes  a  local  minimum.
When the GA is trapped into a local minimum, it  means
that the premature convergence occurs. Some techniques
could  be  considered  preventing  the  GA  from  reaching
premature convergence such as increasing the population
size,  using  a  high  crossover  probability,  and  increasing
the  mutation  rate.  In  the  following  test,  the  population
size  of  the  GA is  significantly  increased from fifty  indi-
viduals  (Fig.  7)  to  six  hundred  ones  (Fig.  8).  Also,  the
crossover probability value is increased to .
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∗Fig. 8    Path-traversed representation of EMCOA, GA, and A  al-
gorithms in a known environment
  

4.1.2    A concave shaped obstacle

As shown in Fig. 8, the environment includes a U-shaped
obstacle at the bottom of the map, near the goal/final posi-
tion.  The  environment  also  includes  some  objects  with
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(0,0)
(1.67,−3.24)

A∗

A∗

A∗

A∗

A∗

A∗

different shapes and dimensions. The starting point 
and  the  goal  point  are  defined  beforehand
for the robot. The walls W1 to W5 and objects 1 to 6 are
fixed  and  mapped.  The  worst-case  scenario  is  when  the
robot  reaches  and  gets  inside  the  U-shaped  obstacle  but
cannot get out of it. Otherwise, it needs to change its direc-
tion to find a sub-optimal path towards the final point. In
the  best  scenario,  the  robot  detects  the  obstacle  and  the
path  planner  finds  the  shortest  path,  detouring  the  U-
shaped  object  to  the  goal  position.  In  the  beginning,  the
robot  has  to  first  deal  with  the  problem  of  passing
through a relatively short but narrow corridor, and then a
doorframe  situation.  In  this  condition,  no  going  across
closely  spaced  obstacles  may  happen  or  the  robot  turns
away. Indeed, Fig. 8 represents an environment in which
there  is  a  mix  of  different  situations,  including  a  door
frame, a narrow passage, a U-shaped obstacle, and a few
different shaped objects. According to Fig. 8 and Table 3,
the  EMCOA algorithm could  find  the  shortest  collision-
free  path  successfully  while  the  robot  is  moving  across
the environment, with averaged run over thirty times. The

 algorithm  could  also  generate  a  collision-free  path,
which is 12.3% or 1.45 m longer than the path planned by
EMCOA. It takes also the robot 3.35 s more to follow the
path created by the  algorithm. On the first attempt, the
GA algorithm fails to plan a collision-free path, allowing
the  robot  to  reach  the  goal.  At  point A,  the  algorithm
starts re-planning to find a collision-free path by stepping
back over the area it has passed, and then turning back to
point A,  and  continuing  on  an  onward  path  through  ob-
jects to the final pose. Both GA and the  algorithm fail
to get to the final point. The GA exceeds it,  whereas the

 algorithm cannot reach it. Although an increase in the
population  size  and  the  crossover  probability  value
helped  the  GA  to  escape  from  the  local  minimum,  the
path generated by this algorithm is not optimal at all; the
performance of this algorithm still  needs to be improved
by  deploying  other  factors  such  as  tuning  mutation  rate,
and deploying a preselection method to remove the same
individuals  from the  population.  In  terms of  video game
path-finding,  an  absolute  best  path  to  the  target  is  not
needed;  finding  a  fairly  good  path  quickly  is  good
enough.  However,  in  realistic  implementation  of  the 
algorithm  such  as  robotics,  there  is  a  trade-off  between
the  speed  and  accuracy.  One  of  the  widely  used  candi-
date  functions  for  the  heuristic,  which  is  used  in  this
study,  is  a  linear  function  that  represents  a  distance
between  two  nodes  using  the  Pythagorean  theorem.  Al-
though  this  simple  heuristic  function  helps  the  al-
gorithm  to  perform  fast,  it  is  not  a  sufficiently  precise
function  in  order  for  the  algorithm to  find  an  accurately
optimal path. 

∗
Table 3    Best-traversed time and path length associated with EM-
COA, GA and A  algorithms (in Fig. 8)

Algorithm Traversed time/s Path length/m

EMCOA 21.46 6.68

GA 32.67 10.48

A∗ 24.81 8.13
 

4.2    Partially unknown environments

A∗

A∗

In  most  robotics  applications,  a  navigation system needs
to adopt a strategy that is sufficiently able to handle unex-
pected or unmapped obstacles. This test (Fig. 9) concen-
trates on the performance of the EMCOA and the analy-
sis  of  its  behavior  in  a  complicated  situation  instead  of
demonstrating  the  behavior  of  the  other  used  methods.
However, the GA and the  algorithm’s performance is
provided  in  terms  of  the  path  length  and  the  traversed
time compared with the EMCOA in Table 4 to show that
the overall performance of the EMCOA is more effective
than that of the GA and the  algorithm. In this section,
the  global  path  planning  was  implemented  in  a  partially
unknown  environment  based  on  the  initial  information
about the mapped objects  in the environment and begin-
ning  and  final  goal  positions.  Since  the  details  about
some  obstacles,  such  as  their  positions  and  dimensions,
are unknown, it  is  not possible to draw an exact optimal
path  beforehand  using  only  terrain  information  on  the
current  existing  map.  When  there  is  no  dissimilarity
between the  prior  map and the  terrain,  the  robot  follows
the  optimal  path  planned  by  the  global  planner.  Other-
wise, the global planner needs to cooperate with the local
planner  to  modify  the  path  to  detour  around  the  un-
mapped obstacles. Like Sub-section 4.1, the starting point
and  the  goal  point  are  defined  beforehand  for  the  robot.
The walls W1 to W5 and Object 1 and Object 2 are fixed
and  mapped,  but  Objects  2,  4,  5,  and  6  are  unmapped.
The robot does not have any prior information on the loc-
ation and dimensions of unmapped objects.
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global path planner in a partially unknown environment
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According  to Fig.  9,  the  robot  starts  moving  from the
pose (0,0) and then goes through the corridor passage by
following  the  black  line  planned  by  global  planner
without any oscillation. When it reaches point A, it could
face the following different scenarios:

(i)  Scenario  A:  If  there  are  no  unmapped  objects,  the
planner  leads  the  robot  to  the  shortest  path  indicated  by
the yellow line.

(ii)  Scenario  B:  If  unmapped Object  2  exists,  it  is  de-
tected by the LiDAR sensor  at  point A,  and so the plan-
ner  generates  a  new  path  and  the  robot  trails  the  black
path and then the green line, up to the goal point. In this sce-
nario, the robot is not trapped in the local minimum when
faced with the U-shaped and unmapped objects.

(iii) Scenario C: Unmapped Object 2 and Object 4 are
present. In this condition, Object 4 is detected at point B,
and  the  planner  generates  a  new  path.  The  robot  there-
fore pursues the blue path to stay away from the collision.

(iv) Scenario D: Unmapped Object 5 is added. There is
almost  no  collision-free  path  between  Object  3  and  Ob-
ject 4; therefore, the planner had to make a collision-free
trajectory  between  Object  4  and  Object  5.  Point C is
where that the robot reduces its speed with a small pause,
changes  its  direction,  passes  through  both  objects  suc-
cessfully, and then reaches the final pose by following the
purple path.

(v) Scenario E: In this situation, unmapped Object 6 is
present along with the others. When the robot detects Ob-
ject 6, it changes its direction at point D to avoid the col-
lision with it, and then it follows its path indicated by the
red line to the final point.

A∗

A∗

To evaluate  the  performance  of  the  EMCOA,  the  GA
and the  algorithm are employed. Table 4 compares the
length and time of the path traversed by the robot for each
algorithm. The GA algorithm fails to give a solution as a
path  planner  in  a  partially  unknown  environment  when
reaching  Object  4.  In  contrast  to  the  GA,  the  al-
gorithm  could  generate  a  collision-free  trajectory,  guid-
ing the robot to the final position with a longer traversed
time and path length than those of the EMCOA.
  
Table 4    Traversed time and path length associated with three al-
gorithms in a partially unknown environment

Algorithm Traversed time/s Path length/m

EMCOA 23.46 7.31

GA >>45 N/A

A∗ 30.82 8.39
 

5. Discussion and analysis
A∗It  has been known for a long time that  the  algorithm

has no limits on its performance, but the test illustrated by
Fig.  8 shows  that  poor  performance  might  happen  in

A∗

A∗

A∗

A∗

practice. The achievement of the  algorithm relies sig-
nificantly  on  the  applied  heuristic  function.  There  are
proper  heuristics  and  improper  heuristics  for  any  given
application that  might  be required to  apply to  the  al-
gorithm. A proper one would make it possible for this al-
gorithm to run fast and find the optimal solution. An im-
proper one could be so bad that it misleads the algorithm
into  finding  sub-optimal  solutions  or  even  not  finding
any.  An  admissible  heuristic  guarantees  that  the  al-
gorithm discovers the optimal solution. When a heuristic
is  admissible,  it  does  not  misconstrue  the  cost  of  reach-
ing  the  goal.  It  implies  that  an  over-estimating  heuristic
considers  the  cost  of  an  optimal  solution  higher  than
other  sub-solutions;  therefore,  the  optimal  one  will  be
overlooked in the selection of the best solution. The ROS
navigation  package  uses  Euclidean  distance  function  for
the heuristic in the  algorithm. As presented results in
Fig.  8,  the  algorithm needs a more accurate heuristic
to  discover  the  shortest  path.  However,  in  reality  such  a
very  accurate  heuristic  requires  considerable  computa-
tion, which is almost impossible to get.

As for  the limitation of  the GA, plenty of  works have
discussed the effect of parameters tuning on the perform-
ance of this algorithm [25,26]. In the GA, mutation opera-
tor is  used to carry out  the exploration;  crossover opera-
tor  is  primarily  used  to  lead  the  individuals  to  converge
on  the  one  of  the  found  optimum solutions  so  far.  Con-
sequently,  while  the  crossover  tries  to  converge  the  al-
gorithm into an optimal point in the workspace, the muta-
tion aims at avoiding premature convergence and explor-
ing  the  problem’s landscape  more.  Although the  mecha-
nism  of  the  mutation  and  crossover  operators  is  exten-
sively  studied  in  constrained  optimization  problems,
choosing the best values for these operators is very prob-
lem specific. One may consider other techniques such as
Niching  scheme  or  Crowding  to  maintain  the  diversity
among species of the population.

The GA is a population-based algorithm that includes a
set  of chromosomes rather than a single solution,  imply-
ing that compared with the EMCOA algorithm, it is more
complex  and  difficult  to  implement.  Thus,  in  some  ap-
plications  such  as  control  and  robotics,  in  comparison
with the GA method, the EMCOA approach gives better
trade-offs  midst  simplicity,  precision,  and  computational
cost.  In  view  of  complexity,  EMCOA  is  less  complex
since it only deploys the immigration process as an opera
tor. 

6. Conclusions
In  this  paper,  the  efficiency  of  the  EMCOA for  the  glo-
bal path planning problem is studied. The main contribu-
tion consists of investigating a new scheme for the MC of
the  MCOA  algorithm  as  compared  to  some  well-known
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classical  algorithms.  The  EMCOA  is  employed  for  path
planning in the grid environments and its performance is
evaluated  under  different  circumstances  and  situations,
including those with mapped and unmapped objects.

In  Section  4.1.1, Fig.  7 illustrates  the  simulation  re-
sults  for  a  typical  local-minimum  setting  (zig-zag),  dur-
ing  which  the  EMCOA  has  shown  to  be  adequate  to
guide  the  robot  to  the  target,  leaving the  local-minimum
behind.

A∗

In Sub-section 4.1.2, the EMCOA shows its capacity as
a  global  planner  to  tackle  three  environments  set-ups
comprising  different  shapes,  such  as  U-shaped  or  cylin-
der objects. The experimental results indicate that the GA
has  difficulty  generating  a  short  collision-free  path.  The

algorithm is successful in finding a collision-free path
which is  neither  shorter  nor  more time efficient  than the
EMCOA.

A∗

In  Sub-section  4.2,  the  capability  of  the  path  planners
is  evaluated  in  dealing  with  an  uncertain  environment
consisting  in  unmapped  objects  and  not  having  prior  in-
formation  on  objects  locations. Fig.  9 demonstrates  that
the  EMCOA  handles  the  path  planning  problem  well
when there are a few unmapped objects. The planner ad-
aptively  replans  the  shortest  path  step  by  step  when  an
unmapped obstacle  is  detected by the LiDAR sensor,  up
to  the  final  goal.  The  path  generated  by  the  EMCOA  is
shorter, and takes less time to traverse as compared to the
GA and the  algorithm.

It  is  shown  that  the  EMCOA  is  fairly  well-suited  for
finding  an  optimal  solution  for  the  path  planning  prob-
lem.  Further  work  could  focus  on  investigating  some
modifications in the local planner to improve its perform-
ance, especially for the localization in uncertain environ-
ments including noise in range sensor data.
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