
Experimental study of path planning problem using EMCOA for
a holonomic mobile robot

MOHSENI Alireza*, DUCHAINE Vincent, and WONG Tony
Department of System Engineering, École de Technologie Supérieure, Montreal QC H3C 1K3, Canada

A∗

Abstract: In this paper, a comparative study of the path plan-
ning problem using evolutionary algorithms, in comparison with
classical methods such as the algorithm, is presented for a
holonomic mobile robot. The configured navigation system,
which consists of the integration of sensors sources, map
formatting, global and local path planners, and the base control-
ler, aims to enable the robot to follow the shortest smooth path
delicately. Grid-based mapping is used for scoring paths effi-
ciently, allowing the determination of collision-free trajectories
from the initial to the target position. This work considers the
evolutionary algorithms, the mutated cuckoo optimization al-
gorithm (MCOA) and the genetic algorithm (GA), as a global
planner to find the shortest safe path among others. A non-uni-
form motion coefficient is introduced for MCOA in order to in-
crease the performance of this algorithm. A series of experi-
ments are accomplished and analyzed to confirm the perform-
ance of the global planner implemented on a holonomic mobile
robot. The results of the experiments show the capacity of the
planner framework with respect to the path planning problem
under various obstacle layouts.

Keywords: holonomic robot, path planning, evolutionary al-
gorithm (EA).

DOI: 10.23919/JSEE.2021.000123

1. Introduction
Motion planning is a term that is used in addressing the
problem of how to devise an algorithm that converts hu-
man rational orders into the low-level meaning of how to
move. For several decades, many methods and al-
gorithms have been proposed for the path planning prob-
lems in various environments with different landmarks
and constraints. In spite of applying many modifications
to classical approaches to allow a better performance in
static environments, these methods are still criticized for
their inept handling of motion planning in environments
under complex conditions. Three common problems en-
countered with more classical methods are slowness,

computational complexity, and trapping in local mini-
mums. These problems have propelled designers to apply
powerful mechanisms to the path planning problems for
better performance. Among such mechanisms, evolution-
ary algorithms (EAs) have gained in popularity because
of their strength in solving complex problems in most
conditions. The most current classical approaches consist
of developed branches of some standard methods such as
the roadmap, cell decomposition, mathematical program-
ming, and potential fields. These techniques can solve
most motion planning problems, but the solutions are not
limited to these methods, and combinations of them are
usually used in developing better path planners. These
techniques generally face problems related to [1]: (i) loc-
al minima: when there is a balance between repul-
sive and attractive fields; (ii) trap situation: this problem
occurs when the robot passes between two objects or
when the robot reaches a dead end, such as the inside of a
U-shaped object or an area; (iii) oscillation: high-speed
movement and sudden changes in direction in narrow
passageways prompt unstable oscillations because the ro-
bot is subjected to repulsive forces from both sides of the
passage. Whereas these problems may be solved using
certain techniques, they do impose a degree of computa-
tional complexity and cost to the algorithm. The applica-
tion of metaheuristic algorithms has recently gained ac-
ceptance in many fields because EAs do not require any
information on the fitness function of the underlying
problem in order to perform well. To alleviate the draw-
backs of classical methods, EAs can either be employed
directly or used with some probabilistic-based ap-
proaches, such as probabilistic roadmaps (PRM), to re-
medy the performance of these methods. In [2], a modi-
fied neural network was represented for a real-time path
planning in non-stationary environments. The disadvant-
age of the proposed algorithm is that global knowledge of
the workspace is always required. In 2011, a genetic al-
gorithm (GA)-based controller was advanced for the mo-
tion planning problem, allowing the robot to identify sta-

Manuscript received November 10, 2020.
*Corresponding author.

Journal of Systems Engineering and Electronics

Vol. 32, No. 6, December 2021, pp.1450 – 1462

D∗

tic and moving objects in the environment [3]. The pro-
posed controller has the ability to reconstruct the current
optimum path while moving toward the target. In 2012, a
global path planning based on a probabilistic GA was
proposed in partially unknown environments including
moving objects [4]. In [5], a new approach was proposed
for facing complex dynamic environments. This ap-
proach employed GAs to generate a global path based on
prior information of the environment. In 2015, the work
by [6] proposed a method that finds a sequence of ac-
tions using a fitness function that evaluates the actions
executed in the current generation. In [7], an autonomous
exploration strategy was developed by combining the
simulation localization and mapping (SLAM) and Voro-
noi methods for mapping the environment and differen-
tial evolution (DE) algorithm for localization. Yu et al.
[8] introduced a hybrid algorithm, a mix of DE algorithm
and a group search optimizer (GSO), for path planning of
UAVs in complex environments. In [9], a method for
global path planning was presented using the DE al-
gorithm and the Voronoi diagram for modeling the envi-
ronment. In 2012, Jati et al. [10] introduced a hybrid mix
of harmony search (HS) and bacterial foraging (BF) for
multi-robot path planning. The proposed method inserts
the chemo-tactic behavior of BF into the state of the HS
for better stability. In 2013, the HS search was first modi-
fied using a quad-tree free space decomposition scheme,
after which the algorithm was applied for a global mo-
tion planning in a grid-based environment [11]. In [12], a
new path planner was planned for a moving target, which
deployed the algorithm as an initial path planner. In
[13], the authors introduced a strategy for the path plan-
ning of multi-robot multi-target in a dynamic environ-
ment. The proposed technique is a combination of two
evolutionary methods. First, artificial bee colony was
used to find initial paths, and then an evolutionary pro-
gramming optimized those solutions to get a short colli-
sion-free path. In [14], a new path planning method de-
veloped based on deep Q-learning combined with a neu-
ral network which was trained by experience data when
the robot intrudes into an unknown environment. This ap-
proach converges to an optimum strategy with less time
and can find a path with fewer steps and greater average
reward in an uncertain environment. In [15], an im-
proved same adjacency crossover operator was proposed
for the GAs to generate an optimal path by optimizing the
energy consumption of the mobile robot in the static en-
vironment. In [16], authors suggested a method to create
smooth paths by optimizing criteria for fitting and
smoothness using DE under distinct modes of initializa-
tion of the population, selection pressure, exploration and
exploitation during sampling, providing a data-driven

A∗ ACO-A∗
A∗

planning framework for the comfortableness in riding. Li
et al. [17] proposed a path planner using the firefly al-
gorithm with self-adaptive population size for the mobile
robot path planning problem. The introduced method ada-
ptively changes the number of the firefly population to
plan feasible solution in terms of path stability, conver-
gence speed, and the algorithm running time. In [18], the
ant colony optimization plus () algorithm was
introduced by mixing up the ACO and the search al-
gorithm for path planning of autonomous underwater
vehicles. Li et al. [19] introduced an adaptive quantum-
behaved framework to improve the weakness of the
particle swarm optimization (PSO) algorithm such as pre-
mature convergence for achieving the global optimal
docking tasks. In many robotic applications the optima-
lity is not only limited to finding an optimal path but also
other criteria such as safety and smoothness might be
considered. In [20], a DE algorithm was incorporated in-
to the PSO algorithm to make a hybrid multi-objective
method to solve the path planning problem. In [21], a
multi-objective bare bones PSO was mixed up with DE to
solve the path planning of mobile robot considering three
indices of the path length, and the smoothness degree and
the safety degree of a path. In [22], a framework was de-
veloped in which a multi-objective ACO algorithm is
used to escalate the parameters of a fuzzy system. Then,
this optimized fuzzy system is successfully applied to the
problem of a wall-follower robot. In [23], an artificial po-
tential field algorithm was used to discover all feasible
paths in a discrete-grid environment, and then the multi-
objective GA was employed to find an optimal solution
among those initial paths in continuous space using five
customized crossover and mutation operators. According
to [24] the performance of the GA becomes much worse
as the problem size increases or as there are moving or
unmapped but static obstacles in the environment.
However, other algorithms such as the cuckoo optimiza-
tion algorithm (COA) perform better than the GA when
the problem size increases [25]. Thus, the modified COA
(MCOA) algorithm is considered to be evaluated whe-
ther it performs better in searching the optimal path in un-
certain environments with unmapped obstacles.

A∗

The contribution of this work resides in the implementa-
tion and study of a modification to the MCOA [26]
through extensive experimentation in the mobile robot
application. This modification proposes a new immigra-
tion process for the MCOA in order to advance the al-
gorithm performance. Also, the incompetency of the
algorithm and the GA is discussed and analyzed in a ro-
botic application.

The rest of this paper is structured in chronological se-
quence as follows: In Section 2, the proposed modifica-

MOHSENI Alireza et al.: Experimental study of path planning problem using EMCOA for a holonomic mobile robot 1451

tion and related path planning techniques are discussed
for this work; Section 3 reviews the hardware set-up and
the dynamics of youBot, as well as the navigation configu-
ration used in this work; the results of the implementa-
tion of evolutionary algorithms on youBot for the path
planning problem are presented in Section 4; Section 5
analyzes the inability of the employed algorithms to find
an optimal path; Section 6 concludes and discusses the
results.

2. The proposed approach

2.1 Path planning using EAs

Many different representations can be used for the path
planning problem, one of which is the EA approach. This
paper mainly focuses on MCOA as an optimization met-
hod to discover a collision-free path in both partially un-
known and known environments.

2.1.1 Enhanced MCOA (EMCOA)

MCOA [26], a mutated and self-adaptive COA, is a gene-
ric population-based metaheuristic optimization al-
gorithm, which employs a mutation operator to generate
diverse population. This algorithm mimics the life style
of the cuckoo birds. Cuckoos, as other brood parasitic
birds, spawn eggs in the other birds’ nests. The optimiza-
tion procedure begins by initializing cuckoo mothers as
population. Second, the cuckoo mothers begin making
eggs in the host birds ’ roosts. An area with the highest
rate of survival eggs is recognized as the best nest. The
mature cuckoos build new societies and habitats and then
the other cuckoos emigrate from their current dwellings
to the best area. The process of egg laying, choosing a
new area, and immigration to it constantly continue until
most population get together around the best area.
Briefly, the optimization process of the MCOA is as fol-
lows:

Npop×Nvar

(i) Population initialization: generating the habitat ma-
trix of size . Npop is the number of population
and Nvar is the number of the problem’s variables.

(ii) A probability-based eggs assignment is proposed.(
neggsmax

−neggsmin

) e−ci

nc∑
i=1

e−ci

+neggsmin
(1)

neggsmax
neggsmin

nc

e−ci

nc∑
i=1

e−ci

where , and are the maximum and the
minimum number of eggs, and the whole present num-

bers of cuckoos respectively. The term is the

Boltzmann distribution function and calculated for each

icuckoo . The allocation of eggs to cuckoos as a function
of the Boltzmann distribution function increases the ex-
ploitation that ends up with finding a better solution in-
stead of a random allocation of eggs to each cuckoo [27].
According to the nature of this bird, this egg laying pro-
cess is limited to a maximum distance from the cuckoo
mother nest called ELR and is defined as

ELR = α
neggsc

neggst

(vh− vl) (2)

neggsc
neggst

α

vh

vl

where and are the number of present cuckoo
eggs and the total number of eggs, is an integer which
controls the maximum value of the egg laying radius,
and are respectively the high and low bounds of the
problem parameters [26].

(iii) Immigration process. The mature cuckoos immig-
rate to a better dwelling area on account of spawning
eggs. The new position of the habitat after immigration is
indicated [26] as

xnh = xch+ {U (0,1)min(|xch− vh| , |xch− vl|)} ·
(xbest− xch) (3)

xbest

U (0,1)
where is an individual with the lowest value in the
current iteration and is a random number between
zero and one and xch is the position of the current habitat.
This modification ensures that the next habitat position is
not outside the parameters’ bound nor dose it perch on
the boundary edge. Fig. 1 illustrates a geometric explana-
tion of the motion coefficient boundaries. However, it
should be considered that it is difficult to determine the
boundary values for an actual problem with a high com-
plexity level of the workspace such as the path planning
problem for mobile robots. Therefore, these values are
defined using the values in accordance with the geometry
of the environment extracted from the map. It is a practic-
al solution if the boundary values coordinate with the
boundary areas of initial particles in the adaptive Monte
Carlo localization (AMCL) layer. To decrease the prob-
ability of being stuck in local minima, a mutation opera-
tor is introduced in [26] as follows:

ẋc(t) = xc(t)+σ(t)N(0,1) (4)

σ (t) xc (t)
N

σ (t)

where is the step size of the mutation, is a
mutated solution and is the normal Gaussian distribu-
tion. For the simplest scenario is to set the step size
value as a fixed value. The drawback of this approach is
that a too small value or a too-large value diminishes the
exploitation or the exploitation capability of the al-
gorithm, respectively. Although it is possible to apply a
self-adaptive scheme to the mutation step size, a fixed
value is used here in order to maintain simplicity in the
implementation of the algorithm. For example, the self-

1452 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

adaptive mutation operator introduced in [26] suffers
from heavy-computation processing when the geometry
of the environment is complex. This work introduces a
new motion coefficient (MC) as elaborated in (iv).

vl

xch−vl vl−xch

vh

Current position
of a cuckoo, xch

Global point

The next position
of a cuckoo after
immigration with
a high value of the
constant migration

coefficient

Fig. 1 A geometric explanation of MC boundaries

(iv) MC. MC is the main operator of the COA al-
gorithm which plays a vital role in the performance of
this algorithm such as accuracy, fast convergence, prema-
ture convergence avoidance, and the local minimum es-
caping. Equation (3) leads all current particles (cuckoos)
of each group to randomly move towards the best particle
(the position of the best current habitat). Although a ran-
dom movement is a less complicated method and it gives
an equal chance of selection to all individuals, it is a time-
consuming process of research. In this case, there is no
guarantee that the offered solutions are optimal and uni-
versal, especially when the geometry of the environment
is complex and multimodal. Here the suggested immigra-
tion factor has a non-uniform scheme to ensure that the
immigration process actively searches the problem work-
space for finding the optimum solution. The H-spread
measure is adopted to determine the pattern of distribu-
tion of particles within and outside the best current habi-
tat. The advantage of the H-spread measure is that it does
not make assumptions about the distribution of particles
meaning that it does not depend on the standard devi-
ation or mean of the data. The following modification
helps maintain the fine-tuning capability of the explora-
tion and the exploitation of the algorithm, ending up with
conducting an efficient global and local search for the fi-
nal solution. When the particles are located outside the
region of the best current habitat, the immigration coeffi-
cient is greater than that when they are located inside the
region of the best current habitat. This region is deter-
mined by the H-spread measure. When a particle is close
to the best current solution, it needs a small MC value.
Otherwise, a large value causes the particles to move to-

ward a region far away from the current position of the
optimum solution which reduces the performance of the
algorithm. The offered modification is defined by

MC =



∣∣∣∣∣∣
(
1− U(0,1)

b

)∣∣∣∣∣∣b, xch > Q1−1.5IQR or

xch < Q3−1.5IQR∣∣∣∣∣∣
(
1− U(0,1)

b

)∣∣∣∣∣∣−b−1

, otherwise

(5)

b ∈ (0.5,2]where is a parameter defining the degree of
non-uniformity, Q1 and Q2 denote the first and third
quartiles of the particles of the best current habitat, and
IQR = Q3 − Q1, where IQR is the interquartile range, or a
measure of statistical dispersion.

According to (5) and Fig. 2, when a particle (particle A
or B) falls on a region where it is outside the neighbor
group of the best habitat (Group 1) a large MC scheme is
selected. Otherwise, a small value for MC is required be-
cause, for example, the particle (particle C) is getting
close to the best current particle (the best current solution
defined by the red star) within the region of the best habi-
tat. A smaller value of the MC for particles while they are
approaching the goal point increases exploitation capabi-
lity of the algorithm.

Group 3

Group 2

Group 1

A

B

C

Q3−1.5IQR Q3+1.5IQRQ1 Q3

IQR

: Particles of group 1; : Particles of group 2;
: Particles of group 3; : The best particle.

Fig. 2 Illustration of the mutated MC

b = 1For instance, choosing for (5) could lead to

MC =


0.5, xch > Q1−1.5IQR or

xch < Q1−1.5IQR.

4, otherwise
(6)

Equation (6) implies that a small value for the MC is
assigned to particles close to the current global point.

2.1.2 GA

The GA is among the earliest forms of EAs that is based

MOHSENI Alireza et al.: Experimental study of path planning problem using EMCOA for a holonomic mobile robot 1453

on the genome conception. The main operators of the GA
are selection, reproduction, mutation, and crossover. The
preparation process of applying the GA for the path plan-
ning typically comes up with several phases: an apt chro-
mosome depiction of the paths, separate mechanisms for
both path guidance and static obstacle avoidance, and a
suitable constrain definition. The main processes of the
algorithm involved in the GA is as follows:

(i) Initialization. The population is typically randomly
generated, which contains individuals, as a set of chromo-
somes.

(ii) Fitness function. Each individual of the population
is then evaluated by how well the solution fits with the
desired requirements.

(iii) Selection. To maintain proper diversity within the
population and to avoid early convergence, parents are
selected with high fitness and recombined to create off-
springs for the following generation.

(iv) Crossover. This operator is similar to reproduction
to create suitable children that inherit the best characteri-
stic from their parents.

(v) Mutation. This operator is defined as adding ran-
domness into the chromosome to increase genetic di-
versity. To avert the distortion of the highly fitted indi-
viduals, mutation usually is applied with a low probability.

The floating-point representation, which describes
variables with a real-valued type, is used for describing
the chromosome data type in order to maximize their
sum. Generally, different chromosomal data types could
be deployed to exploit the chromosome to achieve a bet-
ter solution. The floating-point representation helps avoid
premature convergence. The advantage of this representa-
tion is that an explicit encoding mechanism is not re-
quired. Since the chromosome representation directly af-
fects the mutation or crossover operation performance,
the chosen chromosomal data type could work worse or
better for a specific problem such as a path planning
problem. However, exploring the performance of other
chromosome representations does not come within the
purview of this work. In this paper, the GA did not imple-
ment within the robot operating system (ROS) frame-
work as a node. Indeed, the GA interacts with the ROS
instance using ZeroMQ messages. A message containing
genome information is used by ROS to perform an evalua-
tion. Upon completion of the evaluation, the fitness value
as well as the genome ID will be returned to the GA. An
ROS instance includes two nodes: adder-transporter and
adder-worker nodes. The adder-transporter node man-
ages the communication between the GA and the adder-
worker node. The adder-worker node performs the actual
summation of the genome and then returns the value to

the adder-transporter node. Finally, fitness is sent back to
the GA, along with the genome ID by the adder-trans-
porter node.

2.2 Environment representation

There are two sources of information for a robot to use:
the idiothetic and the allothetic sources. The former refers
to self-proposition of the robot using the number of evolu-
tions of the wheels, hinging on the cumulative error. The
latter hints at the mounted sensors on the robot, such as a
camera, a light detection and ranging (LiDAR), and so
on. The problem of allothetic sources is that two differ-
ent places can be noticed as the same. To tackle these de-
ficiencies, a topological framework of the environment,
which includes places and distance between them, is em-
ployed. A technique is needed to score possible trajecto-
ries, and so, in this work, the map grid is used. For each
control cycle, a grid is generated around the robot loca-
tion and then global path is partitioned into this area.
Some certain cells with zero distance to the initial posi-
tion and the goal point and the path point between them
are marked. Then, all other cells are marked based on
their Manhattan distance to those zero marked points.

The fitness function: The fitness function places im-
portance on the algorithm’s stability and performance
such that an inadequate function may prompt the al-
gorithm to either trap in local minima or oscillate around
an optimum solution. Fitness functions are usually
formed by the aggregation of weighted sub-functions in-
cluding a path length sub-function and a collision avoid-
ance term as a penalty. Equation (7) denotes this cost
function fc as follows:

fc =

n∑
i=1

pli−
ncollision∑

j=0

γ ·max
(
0,ro−d j

)
(7)

pli n
d j

ro γ

γ

where is the distance between two sequence nodes ,
 is the distance between the path and the edge of object,

and is the radius of the object. The value of , a colli-
sion constant for the penalty term, is considered such that
no collision-free path is discovered when this value is too
high. To keep balance between finding an optimal path
and a collision-free path, the value of is one for all
tests.

3. Experimentation

3.1 Experimental setup

The mobile robot such as the youBot from the company
KUKA, which is a commercial product designed for re-
search, incorporates the adroitness of a five-degree robotic
arm into the adaptability of a mobile platform with a ca-

1454 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

pacity to integrate several sensors to develop efficient al-
gorithms for autonomous robotics purposes. The base
platform hosts an on-board PC, an Intel Atom D510 Dual
Core 1.66 GHz, a 2 GB Ram, a 32 GB SSD storage, and
a 12 V DC Input. The youBot arm is equipped with a two-
finger gripper. The arms can be mounted on the mobile
platform and controlled by the on-board PC, or, they can
be controlled via an Ethernet cable. Fig. 3 shows the
youBot with an onboard laptop and a 2-D LiDAR moun-
ted on the head of it. The base platform has four meca-
num wheels, enabling the base platform to move in any
direction. Table 1 indicates some detailed specifications of
the robot base. Fig. 4 indicates the geometry of the base
as A=74.87 mm, B=100 mm, C=471 mm, D=300.46 mm,
E=28 mm [28].

Fig. 3 KUKA youBot equipped with a 2-D LiDAR and on-board
laptop

D

3

4

Y
R

1

2

B

B

A

E

E

P

C

Fig. 4 Base geometry

3.2 Mecanum wheel

The youBot employs mecanum wheels, which allow the
base platform to make rotational and transitional move-
ments or a mix of both at the same time. It means that
each wheel has 3 degrees of freedom (3-DOF) including
the wheel rotation, the rolling rotation, and the rotational
slip where it contacts with the ground.

45

Each mecanum wheel is composed of the six rollers at-
tached to the circumference of the wheel center. All
rollers are orientated at from the rotation axis of the
wheel.

3.3 Robot kinematics

Jωi i

The base’s Jacobian matrix consists of four Jacobian
matrices located on the axis of each wheel. The Jacobian
matrix for the wheel is denoted [29] as

Jωi
=

 Risin θR
ωi

risin(θR
ωi
+ηi) dR

ωiy

Ricos θR
ωi

ricos(θR
ωi
+ηi) dR

ωix

0 0 1

 (8)

Ri i ri

η1 = η2 = −45
η2 = η4 = 45 dR

ωi

R i

where is the perimeter of main wheel , is the roller’s
perimeter of the same wheel, and ° and

°. represents the distance between the ro-
bot’s frame and the wheel’s frame in Cartesian co-
ordinate system. The movement of the mecanum wheels
proceeds to the motion of the robot base. The final Jaco-
bian matrix as a transform matrix for the velocity of the
base is defined as

J =


Jω1 0 0 0
0 Jω2 0 0
0 0 Jω3 0
0 0 0 Jω4

 . (9)

3.4 Navigation configuration

Three fundamental components of the mobile robots’
navigation system are the map builder, the motion and

Table 1 YouBot detailed base specifications

Parameter Value

Motor

Nominal voltage/V 24

Nominal current/A 2.32

Nominal torque/mN·m 82.7

Moment of inertia/kg·mm2
13.5

Rated speed/rpm 5 250

Gearbox
Reduction ratio 26

Moment of inertia/kg·mm2
0.14

Encoder Counts per revolution 4 000

MOHSENI Alireza et al.: Experimental study of path planning problem using EMCOA for a holonomic mobile robot 1455

local planners, and the platform controller. Fig. 5 shows
the block diagram of navigation system’s components im-
plemented on the youBot. This navigation setup uses
ROS environment. In the following, the components of
this navigation system are described.

AMCL

Pose

estimates

Odometry

source

Start and

goal points

Global

planner

Inter-path

command

Local

planner

Velocity command

Base

controller

Global

costmap

Laser scan
data

Local

costmap

Map

server

Sensor

sources

(LiDAR)

Fig. 5 Navigation setup for the youBot

Ma = 240 T s = 100
ra = 360

◦
/1 024

(i) Sensor sources. Generally, the navigation system
needs information obtained by sensors to avoid obstacles
in the robot environment. A few sensor types can be used
in this navigation system, two of which are laser light-
based and point cloud-based sensors. In this work, a laser
light sensor, Hokuyo URG-04LX-UG01, is used. This
sensor detects objects by illuminating them with a laser
light. As shown in Fig. 3, it has been mounted in the front
of the youBot. Some main characteristics of this sensor
are: detectable range dr = is from 20 mm to 5 600 mm;
measuring area °; scanning time ms;
angular resolution steps; noise N =
25 dB; power source V = 5±5% volts of direct current.

(ii) Odometry source. In robotics, motion sensors give
data, known as odometry, to estimate changes in the posi-
tion of the robot through time. The youBot has rotary en-
coders on its wheels which count 4 000 per revolution.
These encoders measure the number of rotations by a
wheel. In the youBot, the location of the robot is deter-
mined by transform frame (tf) and odometry source pub-
lishes transform and velocity information.

(iii) AMCL. AMCL is a probabilistic localization al-
gorithm for a robot moving in the 2-D environment using
a particle filter. The particle filter describes a distribution
which estimates where the robot is. The algorithm distri-
butes particles throughout the configuration space while
the robot has no information on where it is. When the ro-
bot moves and receives information about the environ-
ment, it causes the particles to shift and predict the new
state of the robot after it moves. When the robot senses
an object, the particles are resampled using recursive

Bayesian estimation to relate the actual captured data to
the predicted state.

(iv) Costmap configuration. The costmaps stores in-
formation of obstacles in the robot’s environment. A cost-
map is used for generating global planning throughout the
robot’s environment, and other costmap for localization
and obstacle avoidance. The global costmap has several
parameters such as global frame, which determines the
frame in which the costmap should be executed, and the
update frequency parameter, which defines the update
loop frequency and the static map parameter indicates if
the costmap needs to be initialized using the map served
or not. The local costmap has the same parameters as the
global costmap as well as others such as the rolling win-
dow. When this parameter is set to true, the costmap
frame moves with the robot centered on it. The other
parameters set the width, the height, and the resolution of
the costmap.

(v) Base controller. The purpose of a control unit in a
robotic system is to ensure that the system completes its
tasks while it is self-reliant to perform in a complex en-
vironment. The control scheme is required for a reacti-
vely fast response to changes in real time as well as to
maintain its stability and robustness. The base controller
includes the robot driver and a proportional-integral-de-
rivative (PID) controller, which rectifies the wheel velo-
cities based on the difference error between the actual and
desired velocity. At the upper level of abstraction, the
defined target position and orientation of the robot with
respect to some frame of reference original position is
given to another ROS package, leading the robot to the
goal position.

(vi) Map server. Map server is a ROS node that gives
the stated information of a map via a ROS service used
by the navigation system. This map server encodes the
map image data into the occupancy values.

(vii) Global and local planners. The planner aims at
creating a kinematic path for the robot to reach a goal loca-
tion from a start position. This goal is achieved using a
combination of two sub-planners: global and local plan-
ners.

A∗

A∗

A global planner is an algorithm that tries to find the
most cost-effective path among all possible solutions.
There are some famous methods such as the and Dijk-
stra’s algorithms, which are the process of discovering a
path between multiple nodes. It is known that these two
algorithms are reasonably the optimal greedy algorithms
for finding the shortest path in graphs search. A greedy
algorithm is referred to any algorithm that adheres to the
heuristic of finding the optimal solutions locally at each
stage. In the algorithm, the search for an optimal solu-
tion is carried out among possible paths, and the ones that

1456 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

f (nl) = g (nl)+h (nl) nl

g (nl)
h (nl)

g (nl)

appear to meet the optimality criteria are first considered.
This method builds a tree of solutions starting from a par-
ticular staring point, known as a node, and then expands
the paths until one of these paths reaches the predefined
goal node. The best solution is the path that minimizes

. is the final node on the path,
 is the total path cost from the start node to the final

node, and is a heuristic that estimates the smallest
path cost from to the goal position. Dijkstra’s al-
gorithm is also a method used to find the smallest trajec-
tory between nodes in a graph. The algorithm comes in
many variants: the original variant finds the paths
between two nodes, while a more common alternative
constructs a shortest-path tree between a node as a source
and others.

In local planners, the goal is to localize the robot such
that the robot safely avoids collision with obstacles. The
dynamic window approach (DWA) and the trajectory rol-
lout are two examples of the few number of techniques
used to this end. The dynamic window approach con-
siders the velocity space of the robot for handling control
commands. This method involves the dynamics of the ro-
bot to reduce the complexity of the search space to those
velocities that are safe with respect to the dynamic con-
straints and the limited accelerations of the robot. The
second step of this method concerns the maximization of
the objective function. This function includes three crite-
ria: the distance to the nearest obstacle on the path, a
measure which indicates the alignment of the robot with
the goal direction, and the transitional and rotational velo-
cities of the robot. The value of this function encodes the
traversing costs through the grid cells. The controller’s
job is to employ this value to determine changes in velo-
city and then send an appropriate command to the robot.
In each control cycle, a number of trajectories are gene-
rated, and then the collision-free trajectories are rated to
select the best one.

4. Experimental results

A∗

A∗

One of the greatest challenges for a mobile robot is to
avoid being trapping in a concave-shaped obstacle while
facing some unmapped objects. This situation can be con-
sidered for the algorithm as trapping in a local minimum.
In this section, experimental results using the youBot are
shown. The average of the CPU running time of the EM-
COA, the GA, and the algorithm is about 2.5 s, 2.4 s,
and 6 s, respectively. They are measured at the beginning
of each test when each algorithm tries to find the best
global plan for the first time. The GA and the al-
gorithm are implemented as base methods to be com-
pared with the EMCOA algorithm. To evaluate the per-
formance of the path planner, the configurations of two

different environments are considered: known environ-
ments and partially unknown environments. In known en-
vironments all objects are fixed and mapped. In partially
unknown environments, for a challenging assessment,
some unmapped objects are added to the robot’s work-
space. To examine the effect of the proposed motion
coefficient on the performance of the algorithm, a test is
first conducted. As explained, (5) adaptively changes the
MC value of particles corresponding to their distances
from the best current particle location. This strategy miti-
gates the algorithm’s susceptibility to the premature con-
vergence and trapping in local minimums, and also the al-
gorithm’s inability to find an optimal path. The environ-
ment has two walls with an in-between split, followed by
an angled corner where the target position is located.
Fig. 6 makes a comparison of two path planner methods:
the EMCOA algorithm (Path 1) and the original MCOA
algorithm (Path 2) in a known environment. The known
environment includes two walls with an in-between split
followed by an angled corner.

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0
0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

y/
m

x/m

A′

: Path 1; : Path 2; : Start point;

: Stop point; : Goal point.

Fig. 6 Traversed path representation of the EMCOA algorithm
compared with the MCOA algorithm in a known environment

The robot equipped with the EMCOA shows far better
performance compared with the MCOA. The MCOA al-
gorithm has a fixed value for the MC (MC = 0.8). The ro-
bot smoothly passes through two non-aligned splits with
no oscillation (Path 1) and no premature convergence as
the MC has an adaptive scheme. The MCOA algorithm
could not generate a path allowing the robot to traverse
the environment without getting stuck into the local mini-
mum, since a low value for the MC was chosen (MC =
0.8); a low value of the MC provides less exploration

MOHSENI Alireza et al.: Experimental study of path planning problem using EMCOA for a holonomic mobile robot 1457

ability of the searching, causing the MCOA algorithm to
converge a local solution. Before stopping at the end of
Path 2 (indicated by the blue square in Fig. 6), the robot
rotates around its center axis at point A' for few seconds
to scan the environment and to regenerate a new path. In
comparison with the EMCOA algorithm, this test demon-
strates that the MCOA algorithm is incompetent to over-
come the local minimum problem for the path planning.
The EMCOA is used as a global planner for the rest of
the paper. Table 2 lists the values for the EMCOA para-
meters.

Table 2 Values for parameters of the EMCOA algorithm

Parameter Value
Npop 14
vl/m 0

neggsmax 6
vh/m 5

neggsmin 3
a 5
b 1
σ 0.09

σ

The inflation radius is set at 0.6 m to incur the cost of a
safe path from obstacles. This implies that the robot con-
siders all paths that remain 0.6 m or more away from
obstacles are having equivalent obstacle costs. For this
study, for the purpose of the optimality and smooth path
planning, the value of the mutation rate for the EMCOA
algorithm is kept low at 0.09 (in (4)) for all tests.

4.1 Known environments

For this situation, the algorithm was implemented on a
robot that used a grid map built from laser data. In Fig. 7
and Fig. 8, the environment is assumed to be known with
stationary obstacles. The global planner starts path plan-
ning based on information on the map while getting
through the environment.

0

−1

−1.0 −0.5 0 0.5 1.0 1.5

−2

−3

−4

−5

−6

A

: Start point; : Stop point; : GA;

: EMCOA; : Goal point.

Start

Final

y/
m

x/m

Fig. 7 Path-traversed representation of the EMCOA and GA in a
maze environment

4.1.1 A narrow zigzag corridor

(0,0)
(−5.76,−1.04)

(0.66,−3.06)

0.95

One of the most well-known limitations of some algo-
rithms, such as the potential field methods, is the insuffi-
ciency of their motion stability while passing through a
narrow passage. This instability usually occurs following
a sudden disturbance, causing an oscillation reaction in
the robot. This environment is employed here as a test
plant to challenge the algorithms further. In this configura-
tion, Fig. 7, the robot has to move from a relatively wide
and long corridor to the other side through a narrow,
twisty corridor. The start position and the goal point

 are outlined for the robot in the map. The
width of the corridor is 70 cm on average which makes it
a relatively narrow corridor as for the dimension of the
robot according to Fig. 4. In area A, for the EMCOA, the
robot changes its current orientation by moving back-
wards in the opposite direction to find a new feasible path
to the goal, before resuming its navigation. In this area,
such a maneuver occurs when the robot is guided by the
genetic algorithm. However, the robot stops at coordi-
nate , which constitutes a local minimum.
When the GA is trapped into a local minimum, it means
that the premature convergence occurs. Some techniques
could be considered preventing the GA from reaching
premature convergence such as increasing the population
size, using a high crossover probability, and increasing
the mutation rate. In the following test, the population
size of the GA is significantly increased from fifty indi-
viduals (Fig. 7) to six hundred ones (Fig. 8). Also, the
crossover probability value is increased to .

0

0.5

−0.5

0−0.5 0.5 1.0 1.5 2.0 2.5

−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

: A* algorithm; : GA; : EMCOA;

: Starting point; : Goal point.

Start

Final

W1

W4

W2

W3

W5

AB

C

1

5

6

4
2

3

y/
m

x/m

∗Fig. 8 Path-traversed representation of EMCOA, GA, and A al-
gorithms in a known environment

4.1.2 A concave shaped obstacle

As shown in Fig. 8, the environment includes a U-shaped
obstacle at the bottom of the map, near the goal/final posi-
tion. The environment also includes some objects with

1458 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

(0,0)
(1.67,−3.24)

A∗

A∗

A∗

A∗

A∗

A∗

different shapes and dimensions. The starting point
and the goal point are defined beforehand
for the robot. The walls W1 to W5 and objects 1 to 6 are
fixed and mapped. The worst-case scenario is when the
robot reaches and gets inside the U-shaped obstacle but
cannot get out of it. Otherwise, it needs to change its direc-
tion to find a sub-optimal path towards the final point. In
the best scenario, the robot detects the obstacle and the
path planner finds the shortest path, detouring the U-
shaped object to the goal position. In the beginning, the
robot has to first deal with the problem of passing
through a relatively short but narrow corridor, and then a
doorframe situation. In this condition, no going across
closely spaced obstacles may happen or the robot turns
away. Indeed, Fig. 8 represents an environment in which
there is a mix of different situations, including a door
frame, a narrow passage, a U-shaped obstacle, and a few
different shaped objects. According to Fig. 8 and Table 3,
the EMCOA algorithm could find the shortest collision-
free path successfully while the robot is moving across
the environment, with averaged run over thirty times. The

 algorithm could also generate a collision-free path,
which is 12.3% or 1.45 m longer than the path planned by
EMCOA. It takes also the robot 3.35 s more to follow the
path created by the algorithm. On the first attempt, the
GA algorithm fails to plan a collision-free path, allowing
the robot to reach the goal. At point A, the algorithm
starts re-planning to find a collision-free path by stepping
back over the area it has passed, and then turning back to
point A, and continuing on an onward path through ob-
jects to the final pose. Both GA and the algorithm fail
to get to the final point. The GA exceeds it, whereas the

 algorithm cannot reach it. Although an increase in the
population size and the crossover probability value
helped the GA to escape from the local minimum, the
path generated by this algorithm is not optimal at all; the
performance of this algorithm still needs to be improved
by deploying other factors such as tuning mutation rate,
and deploying a preselection method to remove the same
individuals from the population. In terms of video game
path-finding, an absolute best path to the target is not
needed; finding a fairly good path quickly is good
enough. However, in realistic implementation of the
algorithm such as robotics, there is a trade-off between
the speed and accuracy. One of the widely used candi-
date functions for the heuristic, which is used in this
study, is a linear function that represents a distance
between two nodes using the Pythagorean theorem. Al-
though this simple heuristic function helps the al-
gorithm to perform fast, it is not a sufficiently precise
function in order for the algorithm to find an accurately
optimal path.

∗
Table 3 Best-traversed time and path length associated with EM-
COA, GA and A algorithms (in Fig. 8)

Algorithm Traversed time/s Path length/m

EMCOA 21.46 6.68

GA 32.67 10.48

A∗ 24.81 8.13

4.2 Partially unknown environments

A∗

A∗

In most robotics applications, a navigation system needs
to adopt a strategy that is sufficiently able to handle unex-
pected or unmapped obstacles. This test (Fig. 9) concen-
trates on the performance of the EMCOA and the analy-
sis of its behavior in a complicated situation instead of
demonstrating the behavior of the other used methods.
However, the GA and the algorithm’s performance is
provided in terms of the path length and the traversed
time compared with the EMCOA in Table 4 to show that
the overall performance of the EMCOA is more effective
than that of the GA and the algorithm. In this section,
the global path planning was implemented in a partially
unknown environment based on the initial information
about the mapped objects in the environment and begin-
ning and final goal positions. Since the details about
some obstacles, such as their positions and dimensions,
are unknown, it is not possible to draw an exact optimal
path beforehand using only terrain information on the
current existing map. When there is no dissimilarity
between the prior map and the terrain, the robot follows
the optimal path planned by the global planner. Other-
wise, the global planner needs to cooperate with the local
planner to modify the path to detour around the un-
mapped obstacles. Like Sub-section 4.1, the starting point
and the goal point are defined beforehand for the robot.
The walls W1 to W5 and Object 1 and Object 2 are fixed
and mapped, but Objects 2, 4, 5, and 6 are unmapped.
The robot does not have any prior information on the loc-
ation and dimensions of unmapped objects.

0

0.5

−0.5

0−0.5 0.5 1.0 1.5 2.0 2.5

−1.0

−1.5

−2.0

−2.5

−3.0

−3.5

: Starting point; : Leading path;

: The goal point.

: Scenario A;

: Scenario B;

: Scenario E;

: Scenario C; : Scenario D;

Start

Final

W1

W4
W2

W3

W5

A

B
C

D

1

5

6

4
2

3

y/
m

x/m

Fig. 9 Best-traversed paths using the EMCOA algorithm as a
global path planner in a partially unknown environment

MOHSENI Alireza et al.: Experimental study of path planning problem using EMCOA for a holonomic mobile robot 1459

According to Fig. 9, the robot starts moving from the
pose (0,0) and then goes through the corridor passage by
following the black line planned by global planner
without any oscillation. When it reaches point A, it could
face the following different scenarios:

(i) Scenario A: If there are no unmapped objects, the
planner leads the robot to the shortest path indicated by
the yellow line.

(ii) Scenario B: If unmapped Object 2 exists, it is de-
tected by the LiDAR sensor at point A, and so the plan-
ner generates a new path and the robot trails the black
path and then the green line, up to the goal point. In this sce-
nario, the robot is not trapped in the local minimum when
faced with the U-shaped and unmapped objects.

(iii) Scenario C: Unmapped Object 2 and Object 4 are
present. In this condition, Object 4 is detected at point B,
and the planner generates a new path. The robot there-
fore pursues the blue path to stay away from the collision.

(iv) Scenario D: Unmapped Object 5 is added. There is
almost no collision-free path between Object 3 and Ob-
ject 4; therefore, the planner had to make a collision-free
trajectory between Object 4 and Object 5. Point C is
where that the robot reduces its speed with a small pause,
changes its direction, passes through both objects suc-
cessfully, and then reaches the final pose by following the
purple path.

(v) Scenario E: In this situation, unmapped Object 6 is
present along with the others. When the robot detects Ob-
ject 6, it changes its direction at point D to avoid the col-
lision with it, and then it follows its path indicated by the
red line to the final point.

A∗

A∗

To evaluate the performance of the EMCOA, the GA
and the algorithm are employed. Table 4 compares the
length and time of the path traversed by the robot for each
algorithm. The GA algorithm fails to give a solution as a
path planner in a partially unknown environment when
reaching Object 4. In contrast to the GA, the al-
gorithm could generate a collision-free trajectory, guid-
ing the robot to the final position with a longer traversed
time and path length than those of the EMCOA.

Table 4 Traversed time and path length associated with three al-
gorithms in a partially unknown environment

Algorithm Traversed time/s Path length/m

EMCOA 23.46 7.31

GA >>45 N/A

A∗ 30.82 8.39

5. Discussion and analysis
A∗It has been known for a long time that the algorithm

has no limits on its performance, but the test illustrated by
Fig. 8 shows that poor performance might happen in

A∗

A∗

A∗

A∗

practice. The achievement of the algorithm relies sig-
nificantly on the applied heuristic function. There are
proper heuristics and improper heuristics for any given
application that might be required to apply to the al-
gorithm. A proper one would make it possible for this al-
gorithm to run fast and find the optimal solution. An im-
proper one could be so bad that it misleads the algorithm
into finding sub-optimal solutions or even not finding
any. An admissible heuristic guarantees that the al-
gorithm discovers the optimal solution. When a heuristic
is admissible, it does not misconstrue the cost of reach-
ing the goal. It implies that an over-estimating heuristic
considers the cost of an optimal solution higher than
other sub-solutions; therefore, the optimal one will be
overlooked in the selection of the best solution. The ROS
navigation package uses Euclidean distance function for
the heuristic in the algorithm. As presented results in
Fig. 8, the algorithm needs a more accurate heuristic
to discover the shortest path. However, in reality such a
very accurate heuristic requires considerable computa-
tion, which is almost impossible to get.

As for the limitation of the GA, plenty of works have
discussed the effect of parameters tuning on the perform-
ance of this algorithm [25,26]. In the GA, mutation opera-
tor is used to carry out the exploration; crossover opera-
tor is primarily used to lead the individuals to converge
on the one of the found optimum solutions so far. Con-
sequently, while the crossover tries to converge the al-
gorithm into an optimal point in the workspace, the muta-
tion aims at avoiding premature convergence and explor-
ing the problem’s landscape more. Although the mecha-
nism of the mutation and crossover operators is exten-
sively studied in constrained optimization problems,
choosing the best values for these operators is very prob-
lem specific. One may consider other techniques such as
Niching scheme or Crowding to maintain the diversity
among species of the population.

The GA is a population-based algorithm that includes a
set of chromosomes rather than a single solution, imply-
ing that compared with the EMCOA algorithm, it is more
complex and difficult to implement. Thus, in some ap-
plications such as control and robotics, in comparison
with the GA method, the EMCOA approach gives better
trade-offs midst simplicity, precision, and computational
cost. In view of complexity, EMCOA is less complex
since it only deploys the immigration process as an opera
tor.

6. Conclusions
In this paper, the efficiency of the EMCOA for the glo-
bal path planning problem is studied. The main contribu-
tion consists of investigating a new scheme for the MC of
the MCOA algorithm as compared to some well-known

1460 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

classical algorithms. The EMCOA is employed for path
planning in the grid environments and its performance is
evaluated under different circumstances and situations,
including those with mapped and unmapped objects.

In Section 4.1.1, Fig. 7 illustrates the simulation re-
sults for a typical local-minimum setting (zig-zag), dur-
ing which the EMCOA has shown to be adequate to
guide the robot to the target, leaving the local-minimum
behind.

A∗

In Sub-section 4.1.2, the EMCOA shows its capacity as
a global planner to tackle three environments set-ups
comprising different shapes, such as U-shaped or cylin-
der objects. The experimental results indicate that the GA
has difficulty generating a short collision-free path. The

algorithm is successful in finding a collision-free path
which is neither shorter nor more time efficient than the
EMCOA.

A∗

In Sub-section 4.2, the capability of the path planners
is evaluated in dealing with an uncertain environment
consisting in unmapped objects and not having prior in-
formation on objects locations. Fig. 9 demonstrates that
the EMCOA handles the path planning problem well
when there are a few unmapped objects. The planner ad-
aptively replans the shortest path step by step when an
unmapped obstacle is detected by the LiDAR sensor, up
to the final goal. The path generated by the EMCOA is
shorter, and takes less time to traverse as compared to the
GA and the algorithm.

It is shown that the EMCOA is fairly well-suited for
finding an optimal solution for the path planning prob-
lem. Further work could focus on investigating some
modifications in the local planner to improve its perform-
ance, especially for the localization in uncertain environ-
ments including noise in range sensor data.

References
 LAVALLE S M. Planning algorithms. Cambridge: Cam-
bridge University Press, 2006.

[1]

 QU H, YANG X S, WILLMS A R, et al. Real-time robot
path planning based on a modified pulse-coupled neural net-
work model. IEEE Trans. On Neural Networks, 2009,
20(11): 1724–1739.

[2]

 YUN S C, PARASURAMAN S, GANAPATHY V. Dyna-
mic path planning algorithm in mobile robot navigation.
Proc. of the IEEE Symposium on Industrial Electronics and
Applications, 2011: 364–369.

[3]

 YAZDANI H, FALLAH A, HOSEINI S M. A new approach
for robot path planning with genetic algorithms. Journal of
Basic and Applied Scientific Research, 2012, 4: 4122–4129.

[4]

 TAXIR M L, AZOUAUI O, HAZERCHI M, et al. Mobile
robot path planning for complex dynamic environments.
Proc. of the International Conference on Advanced Robotics,
2015: 200–206.

[5]

 DE CARVALJO SANTOS V, FABIANO MOTTA
TOLEDO C, SANTOS OSORIO F. An exploratory path
planning method based on genetic algorithm for autonomous
mobile robots. Proc. of the 2015 IEEE Congress on Evolu-
tionary Computation, 2015: 62–69.

[6]

 GARRIDO S, BLANCO D, MORENO L. SLAM and explo-
ration using differential evolution and fast marching.
InTechOpen, 2011.

[7]

 YU C Q, WANG Z R. UAV path planning using gso-de al-
gorithm. Proc. of the 2013 IEEE International Conference of
IEEE Region, 2013: 1–4.

[8]

 MO H W, MENG L L. Robot path planning based on differ-
ential evolution in static environment. International Journal
of Digital Content Technology and its Applications, 2012,
6(20): 122–129.

[9]

 JATI A, SINGH G, RAKSHIT P, et al. A hybridisation of
improved harmony search and bacterial foraging for multi-ro-
bot motion planning. Proc. of the IEEE Congress on Evolu-
tionary Computation, 2012: 1–8.

[10]

 PANOV S, KOCESKI S. Harmony search-based algorithm
for mobile robot global path planning. Proc. of the 2nd Medi-
terranean Conference on Embedded Computing, 2013:
168–171.

[11]

 DRAKE D, KOZIOL S, CHABOT E. Mobile robot path
planning with a moving goal. IEEE Access, 2018, 6:
12800–12814.

[12]

 FARIDI A Q, SHARMA S, SHUKLA A, et al. Multi-robot
multi-target dynamic path planning using artificial bee
colony and evolutionary programming in unknown environ-
ment. Intelligent Service Robotics, 2018, 11(2): 171–186.

[13]

 JIANG L, HUANG H Y, DING Z H. Path planning for intel-
ligent robots based on deep q-learning with experience re-
play and heuristic knowledge. IEEE/CAA Journal of Auto-
matica Sinica, 2019, 7(4): 1179–1189.

[14]

 LAMINI C, BENHLIMA S, ELBEKRI A. Genetic algorithm-
based approach for autonomous mobile robot path planning.
Procedia Computer Science, 2018, 127: 180–189.

[15]

 PARQUE V, MIYASHITA T. Smooth curve fitting of mo-
bile robot trajectories using differential evolution. IEEE Ac-
cess, 2020, 8: 82855–82866.

[16]

 LI F L, FAN X J, HOU Z X. A firefly algorithm with self-ada-
ptive population size for global path planning of mobile ro-
bot. IEEE Access, 2020, 8: 168951–168964.

[17]

 YU X, CHEN W N, GU T L, et al. ACO-A*: ant colony op-
timization plus A* for 3-D traveling in environments with
dense obstacles. IEEE Trans on Evolutionary Computation,
2019, 23(4): 617–631.

[18]

 LI Z Y, LIU W D, GAO L E, et al. Path planning method for
AUV docking based on adaptive quantum-behaved particle
swarm optimization. IEEE Access, 2019: 78665–78674.

[19]

 ZHANG J H, ZHANG Y, ZHOU Y. Path planning of mobile
robot based on hybrid multi-objective bare bones particle
swarm optimization with differential evolution. IEEE Access,
2018, 6: 44542–44555.

[20]

 JUAN C F, LIN C H, AND BUI T B. Multi-objective rule-
based cooperative continuous ant colony optimized fuzzy
systems with a robot control application. IEEE Trans. on Cy-
bernetics, 2018, 50(2): 650–663.

[21]

 JUANG C F, LIN C H, BUI T B. Multi-objective rule-based
cooperative continuous ant colony optimized fuzzy systems
with a robot control application. IEEE Trans. on Cybernetics,
2019, 115: 106–120.

[22]

 NAZARAHARI M, KHANMIRZA E, DOOSTIE S. Multi-
objective multi-robot path planning in continuous environ-
ment using an enhanced genetic algorithm. Expert Systems
with Applications, 2019, 115: 106–120.

[23]

 YANG X S. Nature-inspired optimization algorithms.
Waltham: Academic Press, 2020.

[24]

 MOHSENI A, DUCHAIN V, WONG T. A comparative
study of the optimal control design using evolutionary al-
gorithms: application on a close-loop system. Proc. of the In-
telligent Systems Conference, 2017: 942–948.

[25]

MOHSENI Alireza et al.: Experimental study of path planning problem using EMCOA for a holonomic mobile robot 1461

 MOHSENI A, WONG T, DUCHAIN V. MCOA: mutated
and self-adaptive cuckoo optimization algorithm. Evolution-
ary Intelligence, 2016, 9(1/2): 21–36.

[26]

 RAJABIOUN R. Cuckoo optimization algorithm. Applied
Soft Computing, 2011, 11(8): 5508–5518.

[27]

 Youbot. Youbot detailed specifications –detailed base geo-
metry. 2014. http://www.youbot-store.com/wiki/index.php/
File:MeasurementData.png

[28]

 DE GREEF F. Kuka youbot simulation. Amsterdam, Nether-
lands: University of Amsterdam, 2015.

[29]

 Biographies
MOHSENI Alireza received his B.E. degree in
electrical engineering from the Islamic Azad Uni-
versity (IAU), Tehran, Iran, in 2003, and his M.S.
degree in mechatronics engineering from the IAU,
Science and Research Branch, Tehran, in 2007.
He was a researcher with the Multimedia Uni-
versity Cyberjaya, Malaysia, from 2008 to 2010.
He is currently working toward his Ph.D. degree

in automated manufacturing engineering focusing on robotics at École
de Technologie Supérieure, Montreal, Canada. His research interests are
industrial control systems, machine learning, computational intelli-
gence, and robotic motion planning.
E-mail: ar.mohseni@yahoo.com

DUCHAINE Vincent received his B.E. and
Ph.D. degrees in mechanical engineering from
Université Laval, Quebec, Canada, in 2005 and
2010, respectively. He joined the Biomimetics
Dexterous Manipulation Laboratory, Stanford
University, Stanford, USA, as a post-doctoral fel-
low. He is one of the cofounders of Robotiq, Inc.,
a Canadian company that designs and manufac-

tures flexible robotic grippers. He is currently a professor with the De-
partment of Automated Manufacturing Engineering, École de Technolo-
gie Supérieure, Montreal, Canada. His current research interests include
control and sensor design for improving intuitiveness and safety of
physical human-robot interaction.
E-mail: vincent.duchaine@etsmtl.ca

WONG Tony holds his B.E. and M.E. degrees
from École de Technologie supérieure in electric-
al engineering. He received his Ph.D. degree in
computer engineering from École Polytechnique
de Montréal. He joined the Systems Engineering
Department of École de Technologie Supérieure
in 1999. His research interests are multi-objective
chance-constrained evolutionary algorithms, ma-

chine learning methods, and their application to service and manufactur-
ing problems.
E-mail: tony.wong@etsmtl.ca

1462 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

