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Abstract: In order to improve the autonomous ability of un-
manned aerial vehicles (UAV) to implement air combat mission,
many artificial intelligence-based autonomous air combat mane-
uver decision-making studies have been carried out, but these
studies are often aimed at individual decision-making in 1v1
scenarios which rarely happen in actual air combat. Based on
the research of the 1v1 autonomous air combat maneuver de-
cision, this paper builds a multi-UAV cooperative air combat
maneuver decision model based on multi-agent reinforcement
learning. Firstly, a bidirectional recurrent neural network (BRNN)
is used to achieve communication between UAV individuals, and
the multi-UAV cooperative air combat maneuver decision model
under the actor-critic architecture is established. Secondly,
through combining with target allocation and air combat situ-
ation assessment, the tactical goal of the formation is merged
with the reinforcement learning goal of every UAV, and a coope-
rative tactical maneuver policy is generated. The simulation re-
sults prove that the multi-UAV cooperative air combat maneuver
decision model established in this paper can obtain the cooper-
ative maneuver policy through reinforcement learning, the co-
operative maneuver policy can guide UAVs to obtain the overall
situational advantage and defeat the opponents under tactical
cooperation.
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1. Introduction

The world has been shocked by the advent of the un-
manned aerial vehicle (UAV) because it has had a signi-
ficant impact on war patterns in high-tech local wars in
recent decades [1]. However, by reason of limitations of
the communication technology, UAV cannot be used to
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perform air combat missions through ground-based re-
mote control operations [2,3], so it is the future of UAV
air combat to let UAVs make autonomous air combat
maneuvering decisions based on the situation environ-
ment, and it is also an important development direction of
UAV intelligence [4].

Autonomous air combat maneuver decision refers to
the process of automatically generating flight control
commands to gain the advantage during air combat con-
frontation based on mathematical optimization, artificial
intelligence, and other methods. At present, the research
methods of autonomous air combat maneuver decision
can be mainly divided into three categories based on the
game theory [5,6], the optimization method [7-9], and
the artificial intelligence [10—15] method. The methods
based on the game theory and optimization algorithms
mostly divide the actions of the aircraft into a limited
number of maneuver actions and then calculate the effect
of each action on the situation to select the best ma-
neuver action execution. The established model based on
these methods can intuitively reflect the main factors of
air combat confrontation. However, due to the limitation
of real-time computing, the set of mobile actions is often
simple and sparse, and it is impossible to achieve com-
plex tactical actions in air combat. The methods based on
artificial intelligence mainly include expert system me-
thod [10], neural network method [11], and reinforce-
ment learning methods [12—17]. The core of the expert
system method [10] is to summarize the pilot’s flight ex-
perience into a rule library, and the flight control com-
mands are generated by the rules in the rule library, while
the neural network method stores the rules in the form of
network parameters, so compared with table lookup tra-
versal, the neural network has a faster response speed and
stronger robustness, but the training of the neural net-
work still requires a lot of rule data, and air combat is a
highly complex game process, so it is difficult to build a
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complete rule base. Reinforcement learning is a machine
learning method for agents to learn action policy by inter-
acting with the environment. The learning process does
not require sample data, so it is an effective method to
solve sequential decision problems that lack prior models
[18]. Scholars have researched air combat maneuver de-
cision-making based on reinforcement learning [12—18].
In [12], an air combat maneuver decision model is estab-
lished by combining fuzzy logic and Q-learning, and in
[13—17], an air combat maneuver decision model is con-
structed by using deep reinforcement learning algorithms.

The above-mentioned UAV air combat maneuvering
decision-making researches are carried out in the context
of 1vl air combat. However, real air combat is usually a
cooperative operation between multiple aircraft forma-
tions [19]. Multi-aircraft cooperative air combat is a
closely coupled coupling process of three aspects [20]: air
combat situation assessment, target allocation, and ma-
neuvering decision. Compared with the maneuvering de-
cision of the 1vl confrontation, in addition to the in-
crease in the number of aircraft, the tactical cooperation
between the aircraft should be considered in multi-air-
craft cooperative air combat, so the decision model is
more complicated. The research on multi-aircraft coope-
rative air combat decision-making can be divided into
centralized and distributed ones. The centralized method
is to calculate the actions of all aircraft in the formation
by a single center. The parameter scale of this type of
model increases sharply with the increase in the number
of aircraft, so the calculation complexity is very large.
For example, the decision model established through the
differential game method in [21,22], although the model
can be realized in principle, it is very difficult to solve
complex nonlinear differential game models. In [23], a
training and evaluation model for mid-range cooperative
air combat is established, and the correlation between mid-
range air combat and cooperative decision-making is ana-
lyzed from the perspective of mid-range air combat tac-
tics. However, there is still a problem of insufficient real-
time performance in solving the model. The idea of the
distributed method is that each aircraft in the formation
calculates its maneuvers based on target allocation,
thereby reducing the complexity of the model and achiev-
ing the coordination of formation tasks through target al-
location. The current distributed methods mostly use tar-
get allocation to transform many-to-many cooperative air
combat into multiple one-to-one confrontations [24—27].
This method cannot effectively play the multi-target at-
tack capability and tactical coordination of formation ope-
rations. Therefore, the combat effectiveness of 1 + 1> 2
cannot be achieved.

Based on the research of 1vl autonomous air combat

maneuver decision and the distributed multi-agent rein-
forcement learning idea, a multi-UAV cooperative air
combat maneuver decision model is established. In terms
of model architecture, a bidirectional recurrent neural net-
work is used to construct the UAV formation communi-
cation network, which connects the individual stand-
alone actor-critic air combat maneuver decision models
into a formation model. Through communication, the
maneuver decisions made by each UAV in the model
consider not only the state of their own but also the state
of other teammates, thereby achieving collaboration on
the organizational structure. In terms of tactical collabor-
ation, a target assignment method is designed according
to the characteristics of multi-target attacking, and each
UAV’s reinforcement learning reward value is calculated
through combining the target assignment method and the
air combat situation evaluation value, the individual’s re-
inforcement learning process is guided by its reward
value, making the combat goal of formation unified with
the learning policy of every UAV. The simulation results
prove that the multi-UAV cooperative air combat ma-
neuver decision model established in this paper can inde-
pendently learn to obtain cooperative air combat ma-
neuver policy, and the policy makes UAVs achieve tacti-
cal cooperation in the air combat process to get the over-
all formation advantage and defeat the opponents.

The following part of the paper is arranged as follows.
The research of the 1vl maneuver decision is introduced
in Section 2, and the multi-aircraft air combat maneuver
decision model is introduced in Section 3. Section 4 in-
troduces the training and testing of the model through
simulation analysis. Finally, Section 5 concludes the full
text.

2. Related work

In the previous research on air combat maneuver de-
cision based on reinforcement learning, UAV’s 1vl air
combat maneuver decision model was established based
on deep deterministic policy gradient (DDPG) [16] and
deep Q network (DQN) [17] respectively. The modeling
framework is shown as Fig. 1.
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Fig. 1  UAYV short-range air combat maneuver decision model
framework based on reinforcement learning[17]
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In the process of establishing the air combat maneuver
decision model, firstly, a one-to-one air combat environ-
ment model was established. Secondly, the state space,
action space and reward function of the reinforcement
learning model were designed according to the air com-
bat environment model. The reward of the reinforcement
learning mode was calculated based on the air combat
situation evaluation value, so as to guide the UAV to
learn the maneuver policy that can obtain the advantage
of air combat. In this paper, we will build a multi-to-multi
cooperative air combat maneuver decision reinforcement
learning model based on this modeling idea.

The training process of reinforcement learning models
is prone to failure due to sparse rewards. In [17], we pro-
posed a “basic-confrontation” training method, which ef-
fectively improved the training effect of reinforcement
learning through a reasonable arrangement of the train-
ing process. In this paper, we will continue to use this
training method in the training of the UAV cooperative
air combat maneuver decision model.

3. Multi-UAV cooperative air combat ma-
neuver decision model

In this section, firstly, a multi-to-multi air combat envi-
ronment model is established to clarify the state space,
action space and reward value of the decision model.
Secondly, the proposed target assignment algorithm is in-
troduced as a key step of maneuver policy coordination.
Finally, the multi-UAV cooperative air combat ma-
neuver decision model based on multi-agent reinforce-
ment learning is introduced.

3.1 Air combat environment

3.1.1 Aircraft motion model

The motion model of the aircraft is the basis of the air
combat model. The control commands for maneuver de-
cisions are executed through the motion model to change
the position and speed of the aircraft, thereby changing
the air combat situation. The maneuver decision mainly
considers the positional relationship and velocity vectors
of the two sides in the 3D space, while the body attitude
has little influence on the maneuver decision. Therefore,
a three-degree-of-freedom particle model is used as the
aircraft motion model.

In the ground coordinate system, the ox axis takes the
east, the oy axis takes the north, and the oz axis takes the
vertical direction. The motion model of the aircraft in the
coordinate system is shown in

X =vcosysiny
Y =VCcosycosys (1)
z=vsiny

where x, y, and z represent the position of the aircraft in
the coordinate system. v represents speed, and x, y, and z
represent values of speed v on three coordinate axes. The
track angle y represents the angle between the velocity
vector and the horizontal plane o-x-y. The heading angle
¥ represents the angle between the projection V' of the
velocity vector on the o-x-y plane and the oy axis. In the
same coordinate system, the dynamic model of the air-
craft is shown in

v =g(n,—siny)

. _8

V= " (n,cosp—cosy) ?)
. gnsinu

~ vcosy

where g represents the acceleration of gravity.[n,,n.,u] is
a set of the control variables that control the aircraft to
maneuver. n, is the overload in the velocity direction,
representing the thrust and deceleration of the aircraft. n,
represents the overload in the pitch direction, which is the
normal overload. u is the roll angle around the velocity
vector. n, controls the speed of the aircraft, while n, and
p control the direction of the velocity vector, thereby
controlling the aircraft to perform maneuvers. The para-
meters of the aircraft particle model are shown in Fig. 2.
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Fig. 2 Aircraft three-degree-of-freedom particle model

3.1.2 Situation evaluation model

(i) One-to-one scene

The purpose of the maneuver is to try to make the tar-
get into UAV’s attack range while avoiding the UAV
from entering the target’s attack range, so that UAV can
enter an advantageous position from any situation. In
modern short-range air combat, air-to-air missiles can in-
tercept and lock the target which is in the field of view of
the seeker, and the missile can be launched after the tar-
get is intercepted. This paper sets the missile to have only
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the tail attack capability, and the missile interception area
is shown in Fig. 3. In the figure, vy and v; represent the
velocity of the UAV and the target, D is the distance vec-
tor, indicating the positional relationship between the
UAV and the target, ay and a; represent the angle
between the UAV velocity vector and the target velocity
vector and D respectively.

UAV

Fig.3 One-to-one short-range air combat situation

Assuming that the maximum interception distance of
the missile is D,, and the angle of view is ¢,,, the inter-
ception area of the missile is a cone area Q. The goal of
UAV maneuvering in air combat is to make the target
enter the UAV intercept area £, while avoiding the UAV
entering the target intercept area Qr.

Air combat situation evaluation is to quantitatively
characterize the pros and cons of UAV in the current situ-
ation. According to the definition of the missile intercep-
tion area, if the target is in the UAV’s missile intercep-
tion area, it means that UAV can launch weapons to at-
tack the target, so UAV is in an advantageous situation.
Define the advantage value when UAV intercepts the tar-
get:

T
n ={ Re, (xryrzr)€Quiar<s 3)

0, otherwise

Similarly, the target can get the advantage value 7
when the UAYV is intercepted by it. In air combat, the ad-
vantage value obtained by UAV based on interception
opportunities is defined as

Ma =My —TMNr- “4)
Besides, in the close one-to-one air combat, due to the
small field of view of the cannon and some missiles, the
weapon launch conditions can generally be formed only
in the case of tail-chasing, so the requirements for the
angle relationship are more stringent, therefore, the ad-
vantage value calculated based on the angle parameters
and distance parameters of both sides is defined as
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n—ay—ar
— D<D,
M=\ nm—ay—ay _wom? . )
— e % , D>D,
(L

It can be seen from (5) that when the UAV is chasing
the target, the advantage value will be 1, on the contrary,
when the UAV is chased by the target, the advantage
value will be —1. Also, when the distance between the
two sides is greater than the longest interception distance
of the missile, the advantage value decays exponentially.
Based on (4) and (5), the evaluation function of the UAV
air combat situation is

1=1a+1s. (6)
(i1) Multi-to-multi scene
As shown in Fig. 4, in multi-aircraft air combat, set the
number of UAVs to n, respectively recorded as UAV;
(i=1, 2, ---, n), and the number of targets to m, respect-
ively recorded as Target; (j=1, 2, ---, m). The number of
targets is set to be not greater than the number of UAVs,
that is to say, m < n. The multi-aircraft air combat envi-
ronment will be analyzed from three aspects of state
space, action space, and reward value. In the follow-up
content, we set a prerequisite, that is, each UAV is com-
pletely observable to the status of other individuals in the
air combat environment. The focus of this paper is on the
cooperative air combat maneuvering decision problem
under the premise that the individual UAV status is fully
observable.

Target,

. a
Target,, “ee Lo,

! UAV

n

Fig. 4 Multi-UAYV air combat state variables

3.1.3 State space

Compared with the one-to-one air combat maneuver de-
cision model, due to the increasement of the number of
UAVs and targets in multi-aircraft air combat, each UAV
needs to consider the relative state with all other aircraft
(targets and friends) when making maneuver decisions.
According to [17], the relative situation of a UAV and
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target in air combat can be fully described by a 13-D vec-
tor space s=[vy, Yu, Yu, Vr, Yr> Y1, D, Yp, ¥p, @y, ar,
Zu, Zr], where D =||D||, yp represents the angle between
D and the o-x-y plane, and ¥, represents the angle
between the projection vector of D on the o-x-y plane and
the oy axis. Thus the relative state between UAV, and
Target; is denoted as s;; = [vu,, Yu,» Yu,, Vr,> V1, ¥1,> Dijs
Yo,» ¥p,» @Qu,, r,, Zu, Zr;], and the relative state
between UAV,; and any friend UAV, is denoted as
sa=[vu,» Yu.» Yu.» V1> Y15 Y15 Dics Yoo ¥, Qu,s 1,
Zu,» Zr, ], then the observation state of UAV; in multi-air-
craft air combat is

S = [Usij j=12,m s USik |k=1,2,~-,n(k#i) ] 7

3.1.4 Action space

In the process of multi-aircraft air combat, each UAV
makes its own maneuver decision according to its situ-
ation in the air combat environment. According to the air-
craft dynamics model described in (2), UAV controls the
flight through three variables n,, n,, and u, so the action
space of UAV;, is A, = [ny,n,, 1]

3.1.5 Situation evaluation

In multi-aircraft cooperative air combat, the situation
evaluation values 7, and 7z between each UAV and each
target can be calculated according to (4) and (5) respect-
ively, and the situation evaluation values between UAV;
and Target; can be noted as 7,, and 7,,. Besides, the in-
fluence of the relative state of the UAV, and its friend
UAV, on its situation should also be considered. If the
distance between the UAV; and UAV, is too close, it will
increase the risk of collision, so the situation evaluation
function of UAV, and UAV, is defined as
—-P, Dy < D,

e :{ 0, othékrwiseSafe ®)
where Dy is the minimum safety distance and P is a
large positive value.

3.2 Target assignment

In multi-aircraft cooperative air combat, from the overall
perspective of air combat, UAV formation has the
greatest advantage in air combat, which means that each
target can be attacked by UAV weapons, but each UAV
can only be maneuvered against one target at a time.
Therefore, in multi-aircraft cooperative air combat, UAV
must make target assignments while making maneuver
decisions to achieve tactical coordination.

Target assignment methods can be divided into two
types: centralized and distributed ones. The centralized
method has high requirements on the computing and

communication capabilities of the assignment center, but
compared with the distribution method, the centralized
method has stronger real-time performance and reliabi-
lity and is more suitable for target assignment in air com-
bat. This paper designs a target assignment algorithm for
multi-UAV formation based on the Hungarian algorithm
[28].

3.2.1 Target assignment model

In air combat, n UAVs fight against m targets, and
n > m. Note that the target assignment matrix is X = [x;],
when x;; = 1, it means that Target; is assigned to UAV,,
and when x;; = 0, it means that Target; is not assigned to
UAYV;,. In the process of multi-aircraft air combat, there
may be situations that multiple targets are simulta-
neously in the attack area of an UAV. Therefore, the mo-
del sets that each UAV can simultaneously launch
weapons against L targets in the attack zone, that is,

Zx,-_,- < L. In addition, each target should be assigned at

J=1 u

least one UAYV to attack, that is, Z x; > 1, and all UAVs

-1
‘ m

should be put into combat, that is, Zx,- ;> 0. Taking the

.. . . . j=1
maximization of the situation advantage of UAVs as the
assignment goal, the target assignment model is estab-
lished as follows:

m n
w333

j=1 =1

s.t. 0<3 <L 9)

3.2.2 Target assignment method

The purpose of UAV maneuvering in air combat is to let
the target enter the attack zone to launch weapons. There-
fore, in the process of target assignment, the targets in the
attack zone should be assigned first, and then the targets
outside the attack zone can be allocated. Therefore, the
target assignment method is divided into the following
two steps.
(1) Targets in the attack zone assigned first

Construct two n x m-dimensional matrices H, and Hy
with i, and np_aselements, H, = [nA ] ,Hy = [nB ] .
/ Y Y dnxm Y Inxm

According to (3), if Target; is in the attack area of UAV,,
na, =Re, otherwise 7, <O0. Therefore, let H, =

I:T]A”]nxm — [Re],.xm, then the targets numbered with column
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coordinates of all 0 elements in the matrix H,, are in the
attack area of the UAVs numbered with the row coordi-
nate, so the corresponding target should be assigned to
the corresponding UAV, and set the corresponding x;; =
1. If the number X of targets in the attack zone of UAV;
exceeds L, X > L, then compare the element values of
these X targets with UAV; in the H matrix and select
the targets with the L largest values to be assigned to
UAV,.

(ii) Targets assigned outside the attack zone

For UAV,, if a target within its attack zone has been
assigned, it can no longer be assigned to a target outside
the attack zone, and for multiple targets outside the at-
tack zone, UAV cannot make maneuvers to make mul-
tiple targets enter the attack zone, therefore, when the tar-
gets are outside the attack zone, only one target can be as-
signed to the UAV. Therefore, after the assignment to the
targets in the attack zone is completed, the remaining tar-
get assignment work is to assign a target to the unas-
signed UAV, and the assignment can be achieved by us-
ing the Hungarian algorithm. First, according to the cur-
rent target assignment matrix X =[x;] . if x;= 1, all
elements on the ith row and the jth column of H; are de-
leted to obtain matrix Hj . Based on Hp, , the Hungarian
algorithm is used to calculate the target allocation. Since
n>m and L>0, if the number of rows in Hp is greater
than the number of columns, the Hungarian algorithm is
completed by using the complement method [28] to
achieve the target assignment, and set the corresponding
i =L

After completing the above two steps, the target as-
signments are completed and the target assignment ma-
trix X =[x;] ., is obtained. The operation logic pseudo
code of the target assignment method is shown in Al-
gorithm 1.

Algorithm 1 Cooperative air combat target assign-
ment algorithm

Calculate each n,, and 7, according to (4) and (5), re-
spectively.

Initialize Hy=[ny,| , Hy=[ns,| , X=
[OTm -

Set Hy, =[ns,]  —[Rel,,
for i from 1 to n do
for j from 1 to m do
if Hy, (i, j))==0
set x;;=1
for i from 1 to n do

ifixij>Ld0

=

while )" x> L do

J=1

X,

['xij]nxm =
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Select min Hjy(i, j), set x;;=1
for x;; in X do
if x;; == 1 do
Delete the ith row and the jth column of Hj;, geta
new matrix Hp, .
Based on the matrix Hp, using the Hungarian al-
gorithm to complete the remaining target allocation.
Obtain the final target assignment matrix X.

3.3 Maneuver decision

Multi-UAV cooperative air combat is a multi-agent sys-
tem where each agent makes its own decision based on its
state observation and cooperation with other agents.

In the multi-agent environment, the traditional rein-
forcement learning method can no longer be used di-
rectly. On the one hand, the policy of each agent changes
with the training process, so from the perspective of any
agent, the change in environmental state is not entirely
caused by its own actions, that is, the environment be-
comes no longer stable. It is a serious challenge for the
stability of each agent learning process. On the other
hand, a completely discrete decision model cannot
achieve information interaction between agents, so col-
laboration between agents cannot be achieved.

In the centralized decision-making model, as the num-
ber of agents increases, the parameter space of the model
will increase exponentially. Compared with the centra-
lized model, the distributed multi-agent system can ef-
fectively deal with the change of the number of agents
and can organize the learning behavior of the individual
agents into group collaboration through the coordination
mechanism. Therefore, this paper creates a communica-
tion-based distributed multi-agent learning system to real-
ize the maneuver decision of multi-UAV cooperative air
combat.

3.3.1 Policy coordination mechanism

Multi-UAV cooperative air combat can be regarded as a
competitive game between n UAVs and m targets. An air
combat model is established based on the framework of a
random game which can be represented by a tuple
(SH{ANL, ABYL, , T,{R}"). S represents the state space
of the current game, which can be shared by all agents.
The action space of UAV, is defined as A;, and action
space of Target; is defined as B;. T:SXA"XB" - §
represents the deterministic transfer function of the envi-
ronment, and R; : SX A" X B" — R represents the reward
value function of UAV,. In the research of cooperative air
combat, it is assumed that the performance of both sides
are the same, so the aircraft in their respective formations
have the same action space, that is, A;=A and B,=B
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for UAV; (i€[l,n]) and Target; (j<[1,m]), respect-
ively.

The situation of UAV formation should be evaluated
by the situation of all UAVs. The global reward value of
the UAV formation is defined as the average value of
each UAV reward value,

1 n

r(s,a,b) = ;;Ri(s,a,b). (10)

For simplicity, the time subscript ¢ of the global re-
ward value r(s,a,b) is omitted. r(s,a,b) represents the
reward value obtained by the UAV formation at time ¢
when the environmental state is s, the UAV formation
takes action a € A", and the target formation takes action
b e B". The goal of the UAV formation is to learn a
policy to maximize the expected sum of the discount re-

+00

wards, i.e., E Z/lkmk , where 0 < A< 1 is the discount

factor, indicatlrli:gf) the uncertainty of future rewards. Con-
trary to UAV formations, the action policy of the target
formation is to minimize the expected sum of the dis-
count rewards of UAVs. In summary, the following mini-
max game can be obtained:

Q' (s,a.b)=
r(s,a,b)+/lm§1xrrgnQ* (s as(s"),by(s))  (11)
where s’ = s""!, which is determined by the state transi-
tion function 7T (s,a,b), representing the state at time #+1.
Q" (s,a,b) represents the optimal state-action value
which follows the Bellman optimization equation. Sup-
pose the UAV formation uses the parameterized deter-
ministic policy a, : S — A", and the target formation uses
the parameterized deterministic policy b,:S — B",
where 6 and ¢ are the parameters of the policy function.
To simplify the problem, the policy of target is set to be
fixed, that is, the target performs the same maneuver un-
der the same state, and the effect of the target policy is
not considered in the subsequent research, so the random
game defined by (11) can be transformed into a Markov
decision problem[29]:

Q' (s,a)=r(s,a)+Amax 0" (s",a(s). (12

The global reward defined by (10) can reflect the over-
all situation of the UAV formation, but the global reward
does not reflect the role of each UAV individual in co-
ordination. The global coordination is driven by the goals
of each individual. Therefore, the reward value of each
UAV is defined as

n(k#i)

Vi(S,a,b)ZinjUij"‘ZUc,k (13)
= =0
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which is used to characterize the reward of UAV;, at the
time ¢, under the conditions that environmental state is s,
UAYV formation takes action a € A", and target forma-

tion takes action b€ B". Zx,-jnl- ; represents the situ-
j=1
ation evaluation value of UAV;, relative to the targets as-
n(k#i)

signed to it, and Z nc, represents a penalty term which
k=0
is used to constrain the distance between UAV, and its

teammates. Based on (13), for n UAV individuals, there
are n Bellman equations as shown in (14), where the
policy function a, has the same parameters 6.

0; (5, = r,(5,@)+ Aax 0; (s'.a, (s (14)

In the training process of reinforcement learning,
through the distribution of reward values, the behavior
feedback of each UAV in target assignment, situation ad-
vantage, and collision avoidance are defined. After train-
ing, there is policy coordination that can be achieved
which makes the behavior of each UAV reach a tacit
agreement, and it is not necessary to carry out a centra-
lized target assignment.

3.3.2 Policy learning mechanism

The premise of achieving cooperation is information in-
teraction between individuals. Therefore, this paper
builds a multi-UAV maneuver decision model based on a
bidirectional recurrent neural network to ensure the in-
formation interaction between UAVs and achieve the co-
ordination of the formation maneuvering.

As shown in Fig. 5, the single UAV air combat ma-
neuvering decision model based on DDPG includes the
Actor and Critic network modules. On this basis, a multi-
UAYV air combat maneuver decision model is constructed
by connecting multiple single UAV models through the
communication network, and the model is shown in Fig. 6.
The multi-UAV air combat maneuver decision model is
composed of the Actor network and the Critic network,
and the Actor network and the Critic network are respect-
ively formed by connecting the Actor and the Critic net-
work of each UAV through bidirectional recurrent neural
network (BRNN). In the model, the hidden layers in the
policy network (Actor) and Q network (Critic) of the
single UAV decision model are set as the recurrent unit
of the BRNN, and then the BRNN is expanded according
to the number of UAVs. The policy network inputs the
current air combat state and outputs the action values of
each UAV. Since BRNN can not only realize the commu-
nication between UAV individuals but also serve as a
memory unit, UAV can save the individual action policy
while exchanging state information with teammates.
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Fig. 5 Actor-Critic model framework for single UAV air combat
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Since the model is constructed based on BRNN, the
idea of network parameter learning is to expand the net-
work into n (UAV number) sub-networks to calculate the
reverse gradient, and then update the network parameters
based on the time-based backpropagation algorithm. The
gradient is propagated in the Q; function and policy func-
tion of each UAV individual. During model learning, the
reward value of each UAV affects the actions of each
UAV, and then the resulting gradient is backpropagated
and the model parameters are updated [29].

The objective function of the individual UAV; is
defined as J;(0) = EM;H [7;(s,ay(s))], which represents
the expected sum of the reward r;, p[, represents the state
distribution obtained by adopting the action a, under the
state transition function 7. The state distribution is a ge-
nerally stable distribution during the traversed Markov
decision process, so the objective function of n UAVs
can be denoted as J(6).

Critic network

_>(=Q—/

I
|
v

—_—— e e —

: Actor;

. : Input units; . : BRNN units; . : Action output units;

\4

: Critic;

: Q-value output units.

Fig. 6 Model structure of BRNN-based multi-UAYV air combat maneuver decision

n

J(O) =B, [Z ri(s,a (s))]

i=1

(15)

The multiagent deterministic policy gradient theorem

(MDPGT) is derived based on the deterministic policy
gradient theory [30,31]. According to MDPGT, for the
objective function J(6) of n UAVs described in (15), the
gradient of the policy network parameter 6 is
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non

Vol ) =Bo g | > ) Vottj(8)- V., O (s,a0(s)|. (16)

=1 j=1

The deterministic off-policy actor-critic algorithm can
reduce the variance. The parameterized critic function
Q¢ (s,a) is used to estimate the state-action value func-
tion O in (16). And the square sum loss function is used
for training the critic. The gradient of the parameterized
critic function Q¢ (s,a) is shown in (17), where ¢ is the
parameter of the Q network.

VeL(©) =
By | ) (ri(5,a () + QL (57, a4 (5')) -

i=1
0 (5,a4(5))) - Vae O (5,4 (5))] (17)

Based on (16) and (17), the stochastic gradient descent
method is used to optimize the actor and critic network.
In the process of interactive learning, the network para-
meters are updated through the data obtained by trial and
error to complete the optimization of the cooperative air
combat policy.

3.3.3 Cooperative air combat maneuver decision model

According to the policy coordination mechanism and
policy learning mechanism, we design the reinforcement
learning process of the multi-UAV cooperative air com-
bat maneuver decision model as follows.

First, initialize the model. Randomly initialize the on-
line network parameters of Actor and Critic, and then as-
sign the online network parameters to their correspond-
ing target network parameters, namely & « 6 and & « &,
where 6" and ¢ are the parameters of Actor and Critic
target network respectively. Initialize the experience re-
play space R to save the experience data obtained from
the exploration interaction. Initialize a random process &,
which is used to explore the action value.

Second, determine the initial state of the training, that
is, the relative situation at the beginning of the air com-
bat. Set the initial position state and speed state of each
aircraft in the UAV formation and target formation. Ac-
cording to the definition of state space, the initial state s'
of air combat is calculated.

Finally, repeat the multi-episode training according to
the initial state, and perform the following operations in
each episode air combat simulation. First, based on the
target assignment algorithm described in Table 1, the tar-
get assignment matrix X’ is calculated according to the
current situation §’. Then each UAV, generates an action
value a} =a;,(s")+¢, based on the state s and the ran-
dom process & and executes it. At the same time, accord-

ing to the predefined policy, each Target; in the target
formation executes action b'. After the execution of all
actions, the state shifts to s'*', and the reward value [r{]"_,
can be calculated according to (13). The transfer process
variables {s’,[aﬁ,rﬁ - ,s‘”} are stored in R as a piece of
empirical data. When learning, randomly sample a batch

M
of M pieces of empirical data {sfn,[aﬁn,i,rfnvi]:,sﬁ; 1} »
from the experience pool R, to calculate the target Q
value of each UAV, that is, for each of the M pieces of

data,
Oni = ri+ A05, (02" a (s02")). (18)

Then calculate the gradient estimate of Critic accord-
ing to (17), namely

2= S S (0 O st (s2)-

m=1 i=1
Vo0 (s)a0(s),))] - (19)
Finally, calculate the Actor’s gradient estimate accord-
ing to (16), that is,

AG =

l M n n
2

m=1 i=1 j=1

|Vojo(s,)- Vo, @, (shoao(s,))]. - (20)

Based on the obtained gradient estimates A¢ and A6,
the optimizer is used to update the online network para-
meters of Actor and Critic. After the online network op-
timization is completed, the target network parameters
are updated soft, that is,

{6’ —kE+(1-0)¢

(21
0 —kf+(1-x)0

where « € (0,1).

In summary, the pseudo-code of the multi-UAV co-
operative air combat maneuver decision algorithm is
shown in Algorithm 2.

Algorithm 2 Multi-UAV cooperative air combat ma-
neuver decision algorithm

Initialize the formation size of UAV and target with n
and m.

Initialize Actor online network and Critic online net-
work with random parameters 6 and &.

Initialize Actor target network and Critic target net-
work with @ « 6 and & « &.

Initialize replay buffer R.

Initialize a random process ¢ for action exploration.

for episode = 1, E do

Initialize the initial state of UAVs and targets.
Receive initial observation state s'.
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fortr=1,Tdo

Execute Algorithm 1 to calculate the target alloca-
tion matrix X.

For each UAV,, select and execute action a; =
a,(s')+e.

For each Target;, execute action b} based on selec-
ted policy.

Observe next state s
value [r]_, according to (13).

t*1 and calculate the return

Store transition {s’, [al,r]! s’*‘} in R.

i=1"

Sample a random minibatch of M transitions

n M
t t ! t+1
{sm,[am,rm’,.]i:l,sm }m:] from R.

Calculate the target Q value for each UAV in each
transition.

form=1,Mdo
Qm,i:rm.i + /lQi;, (s/t;rl Ay (si;l ))
end for

Compute Critic gradient estimation A¢ according to
(19).

Compute Actor gradient estimation A# according to
(20).

Update the online networks based on optimizer us-
ing A6 and A&.

Update the target networks according to (21).

end for

end for

3.4 Target policy

In the training process of the multi-UAV cooperative air
combat maneuver decision model, it is necessary to set
the maneuver policy of the target formation to make the
targets reflect the confrontation effect of the air combat
simulation, so as to prove the autonomous learning abi-
lity of the multi-UAV cooperative air combat maneuver
decision model and effectiveness of the learned air com-
bat policy.

Because the size of the state space and action space of
the multi-UAV cooperative air combat maneuver de-
cision model is linearly increased compared to the single
aircraft model, for this large-scale network model, if the
policy is directly learned from the confrontation process,
a large number of invalid samples will be generated, re-
sulting in low efficiency of reinforcement learning, or
even local optimization and learning failure. To solve this
problem, this paper adopts the “basic-confrontation”
training method proposed in [17].

3.4.1 Basic policy

During the basic training, the target formation maintains
its initial motion law, such as performing uniform linear
motion or circular motion, and does not change its mo-
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tion according to changes of combat situation. And the
training will be carried out at the beginning of the epi-
sode that the UAV formation is at advantage, balance,
and disadvantage initial situation, to make the UAV fa-
miliar with the situation environment of air combat.

As shown in Fig. 7, when UAV is chasing the target,
UAV is at an advantage. On the contrary, when UAV is
chased by the target, UAV is at a disadvantage. When
UAV and the target are heading towards each other, the
two sides are in a balance. When the two sides depart
from each other, it means that the two sides are going out
of engagement. This state is not conducive to the learn-
ing of the maneuver policy. Therefore, the initial situation
of departing is not adopted in the basic training process.

Advantage Disadvantage Balance
UAV Target

Fig.7 Advantage, balance, and disadvantage situation of UAV
3.4.2 Confrontation policy

In confrontation training, target formation is required to
have corresponding maneuver policy, which generates
maneuvers for each target aircraft to fight against UAV
formation. The combat policy of target formation in-
cludes target assignment and maneuver decision. We
design the target assignment algorithm and the maneuver
decision algorithm of target formation based on the idea
of the greedy algorithm.

(1) Target assignment

Assuming that the target formation does not have a
unified command, each aircraft in the formation preferen-
tially selects the opponent aircraft closest to it as the at-
tacking target during the combat process.

(i) Maneuver decision

In the confrontation simulation, the target and UAV
formations are both homogeneous formations, and the
performance of the aircraft is the same. The target air-
craft uses the same motion model as UAV. From (i) and
(i), it can be known that the control variables of the air-
craft are [n,,n.,u], and a group of control variables rep-
resents a maneuver. According to common air combat
maneuver methods, NASA scholars have designed seven
typical maneuvers [24], and any complex tactical ma-
neuver can be composed of these basic maneuvers. In this
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paper, the maneuver library established in [17] is set as
the target aircraft’s action space. As shown in Fig. 8, the
aircraft can maneuver forward, left, right, up, and down
in five directions, each direction with constant speed, ac-
celeration, and deceleration control. The maneuver lib-
rary contains 15 actions.

A
// K

<«—— : Acceleration, «—— : Maintain; <—— : Deceleration.

Fig. 8 Maneuver library of target

Based on the established maneuver library, the maneu-
ver policy of the target in this paper adopts a maneuver
decision method based on statistical principles [9].

The maneuver decision method based on statistical
principles adopts four parameters of azimuth «, distance
D, speed v, and altitude % to characterize the current air
combat situation and define the membership functions 7,,
np, 1, and n, of each parameter separately. The member-
ship functions not only enhance the robustness of situ-
ation description but also normalize the output to the in-
terval [0,1]. When the membership functions are gradu-
ally approaching 1, the aircraft is at an advantage. On the
contrary, when the membership function is approaching
0, the aircraft is at a disadvantage. Based on the member-
ship functions, the process of selecting the optimal ma-
neuver in the maneuver library is as follows.

First, based on the current air combat situation, the
control values of each action in the maneuver library are
sent to the motion model in turn, and maneuver trials are
conducted one by one.

Second, through the previous step, all possible posi-
tions of the aircraft at the next moment are obtained, and
the situation of each position can be solved to obtain a set
of membership functions corresponding to all maneuvers.

Finally, calculate the mean and standard deviations of
the four membership values corresponding to each ma-
neuver. Then each maneuver corresponds to a binary
group consisting of the mean and standard deviations, and
select the largest expected element from all the binary
groups, and take the corresponding maneuver as the
forthcoming action. If the maximum number of means is

greater than 1, the maneuver corresponding to the ele-
ment with the smallest standard deviation among these
elements is taken as the output of the upcoming action.

4. Simulation and analysis
4.1 Platform setting

4.1.1 Hardware

In this paper, the air combat environment model is estab-
lished by using Python language, and the network model
is built based on the Tensorflow module. The multi-UAV
cooperative air combat maneuver decision model runs on
one computer. The computer has an Intel(R) Core(TM) i7-
8700k CPU and 16GB RAM. On this basis, a NVIDIA
GeForce GTX 1080 TI graphics card is also installed for
Tensorflow acceleration.

4.1.2 Parameter setting

The air combat background of multi-UAV cooperative air
combat is set as short-range air combat, and the parame-
ters of the air combat environment model are set as fol-
lows. The farthest interception distance of the missile is
D=3 km, the angle of view is ¢, =n/4, the minimum
safety distance between the two aircraft is Dy =200 m,
the advantage value when intercepting the target is Re=5,
and the penalty value is P=10. In the aircraft motion
model, set the maximum speed v,,,,=400 m/s, the mini-
mum speed v,;;=90 m/s. For the control space, set
n,€[-1,2], n,€[0,8], we[-mnmx]. According to the
control space, the maneuver library of the target is shown
in Table 1.

Table 1 Maneuver library of target
Number Maneuver Control value
Ry ng Jz
1 Forward maintain 0 1 0
2 Forward accelerate 2 1 0
3 Forward decelerate -1 0 0
4 Left turn maintain 0 8 —arc cos (1/8)
5 Left turn accelerate 2 8 —arc cos (1/8)
6 Left turn decelerate -1 8 —arc cos (1/8)
7 Right turn maintain 0 8 arc cos (1/8)
8 Right turn accelerate 2 8 arc cos (1/8)
9 Right turn decelerate -1 8 arc cos (1/8)
10 Upward maintain 8 0
11 Upward accelerate 2 8 0
12 Upward decelerate -1 8 0
13 Downward maintain 0 8 n
14 Downward accelerate 2 8 P
15 Downward decelerate -1 8 s
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The Actor network of the maneuver decision model is
divided into three parts: the input layer, the hidden layer,
and the output layer, where the input layer inputs the air
combat state. The hidden layer is divided into two layers.
The first layer is composed of 400 long short-term
memory (LSTM) units in the forward direction and the
reverse direction. This layer is expanded according to the
number of UAVs according to the bidirectional recurrent
neural network structure to form a communication layer.
The second layer consists of 100 units, which is the tanh
activation function, and the parameters are randomly ini-
tialized with uniform distribution [-3x107,3x107].
The output layer outputs three control values, and the
parameters are randomly initialized with uniform distri-
bution [—2>< 10,2 10'5]. Through linear adjustment,
three output ranges are adjusted from [0,1] to [1,2], [0,8],
and [—-m, 7], respectively.

The Critic network is also divided into three parts: the
input layer, the hidden layer, and the output layer. The in-
put layer inputs the air combat state and the action value.
The hidden layer is divided into two layers. The first layer
is composed of 500 LSTM units in the forward direction
and the reverse direction. This layer is expanded accord-
ing to the number of UAVs according to the bidirectional
recurrent neural network structure to form a communica-
tion layer. The second layer consists of 150 units, which
is the tanh activation function, and the parameters are
randomly initialized with uniform distribution
[—SX 107%,3x 10’4]. The output layer outputs Q value,
and the parameters are randomly initialized with uniform
distribution [—2 x107*,2 % 10’4]. Both the Actor and Cir-
tic models use the Adam optimizer, the learning rate of
the Actor network is set to 0.001, and the learning rate of
the Critic network is set to 0.000 1. The discount factor
A =0.95, and the soft update factor of the target network
k= 0.005. The Ornstein-Uhlenbeck (OU) process is selec-
ted as the random process of action value exploration.
The size of the experience replay space R is set to 109,
and the size of the batch is set to 512.
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4.2 Model training and testing

The large-scale recurrent neural network has many para-
meters and requires a long training period. In order to
verify the effectiveness of the self-learning ability of the
established model and the effectiveness of the learned
policies, 2v1 and 2v2 air combat simulation training are
carried out. In each scenario, basic training and confront-
ation training are carried out successively. Through simu-
lation comparison, the advantages of the self-learned
policy over the target policy are verified.

4.2.1 Simulations for 2v1 scene

(1) Basic training

In the basic training of two UAVs fighting against one
target scenario, the target adopts uniform linear motion,
and the training is carried out in sequence when the ini-
tial UAV situation is at an advantage, a balance, and a
disadvantage. Through these three training items, the
UAVs can be familiar with the air combat environment.
There are 10° episodes per basic training, and an evalu-
ation episode will be performed every 3000 episodes. In
the evaluation episode, the random process & is not per-
formed to add noise to the action value, and the online
Actor network directly outputs the action value of each
UAV. After performing evaluation episode, record the
episode reward values to evaluate the previously learned
maneuver policy.

In each training process, in order to make the UAVs
fully familiar with the air combat environment, and im-
prove the diversity of the samples, so that to prevent the
network from overfitting, and making the learning policy
can be more generalized, the initial states of UAVs and
target in the training episode are randomly generated in a
large range. While in order to ensure the uniformity of the
evaluation of the maneuver policy, the constant initial
situation is used in the evaluation episode. For example,
for the first training, that is, when UAV is in an advant-
age initial position, the initial state of training episode
and evaluating episode is shown in Table 2.

Table 2 Advantage initial state setting for 2v1 basic training

Initial state x/m y/m z/m v/(m/s) v/(°) Wi(®)
UAV1 [-200, 200] [=300, 300] 3000 200 0 [-60, 60]
Training episode UAV2 [2500, 3500] [=500, 500] 3500 200 0 [-60, 60]
Target [2500, 3500] [2500, 3500] [2800, 3800] [150, 300] 0 [-60, 60]
UAV1 0 0 3000 200 0 40
Evaluation episode UAV2 3000 0 3500 200 0 40
Target 3000 3000 3000 220 0 45

Fig. 9 shows the simulated maneuver trajectory of air
combat based on the learned policy after the basic train-
ing of Item 1. It can be seen from the figure that UAV1

and UAV2 start chasing the target from the rear of both
sides of the target, continuously adjust the course and
speed, gradually reduce the distance from the target, so
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that two UAVs maintain the tail-chasing situation to the
target, making the target crosswise surrounded from both
sides, and the target always in two UAVSs’ interception area.
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2 P 000
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—: UAVI1; —:UAV2; —: Target.

Fig. 9 2vl1 maneuver trajectory after basic training of advantage
initial state

Fig. 10 shows the simulated maneuver trajectory of air
combat based on the learned policy after the training of
Item 2. As can be seen from the figure, at the initial mo-
ment, both sides are in balance, UAV1 and UAV?2 fly to-
ward the target, and then UAV1 and UAV1 adjust their
height while continuously approaching the target. After
meeting with the target, UAVs turn to both sides of the
target and begin to chase the target. Due to the limitation
of the turning radius, UAV1 and UAV2 turn to the other
side of the target’s movement direction, and then conti-
nue to adjust the course and speed, gradually narrowing
the distance to the target and achieving a tail-chasing situ-
ation that encircles the target from both left and right, this
process realizes the cross attack tactics [19], that is, the
target is always within the monitoring and attack range of
two UAVs.
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—: UAVI; —:UAV2; —: Target.

Fig. 10  2vl maneuver trajectory after basic training of balance
initial state

Fig. 11 shows the simulated maneuver trajectory of air
combat based on the learned strategy after the training of
Item 3. It can be seen from the figure that UAV1 and
UAV?2 are at a disadvantage situation relative to the tar-
get at the initial moment. In order to get rid of the disad-
vantageous situation of being chased by the target, UAV1
and UAV?2 quickly change the flight direction, so that the
target cannot form an interception condition, that is, the
situation is changed to a balanced situation, and then the
course, altitude, and speed are constantly adjusted, and
the tail-chasing situation is finally achieved. The whole
process described above achieves the conversion of dis-
advantage-balance-advantage, which proves that the es-
tablished model can enable UAVs to learn the coopera-
tive air combat maneuver policy to obtain advantages
through maneuvering under any situation.
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—: UAVI; —: UAV2; —: Target.

Fig. 11
age initial state

2v1l maneuver trajectory after basic training of disadvant-

(i1) Confrontation training

After completing the above basic training, UAVs with
the basic policy continue to conduct confrontation train-
ing with the target with the maneuver policy introduced
in Subsection 3.4.2. In order to ensure the diversity of air
combat states and the generalization of the maneuver
policy, the initial states of UAVs and target are randomly
generated within a certain range during training episodes.
The training effect will be explained by taking the ba-
lance initial state as an example. Table 3 shows the initial
state of training in the case of the balance initial state.

Fig. 12 shows the maneuver trajectory of both sides in
an episode after confrontation training of the balance ini-
tial state. The two sides start heading from the initial po-
sition. The target selects the nearest UAV1 as its attack
target and flies towards it. UAV?2 flies in formation on the
right side of UAV1 and adjusts the course to reduce the



1434

distance to the target. UAV2 gradually realizes the tail-
chasing to the target while turning to the left. On the con-
trary, the target intends to turn right into the tail of
UAV]1, but during the right turn, it is at a disadvantage
because of the tail-chasing by UAV2. And UAV1 also
adjusts the course to achieve the goal of chasing the tar-
get. In this case, the greedy algorithm executed by the tar-
get selects the optimal action to climb and accelerate to
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get rid of the attack, and UAV1 and UAV?2 follow closely
behind, keeping the advantage. Although in the end, the
distance between UAVs and the target is widened, and
the response of UAVs to the target’s acceleration beha-
vior is not good, from the overall situation, the learned
policy can enable the two UAVs formation to obtain ad-
vantage during the battle against the target with the ma-
neuver policy.

Table 3 Balance initial state setting for 2v1 confrontation training

Initial state x/m y/m z/m v/(m/s) v/(°) w/(°)
UAVI1 [~200, 200] [~300, 300] 3000 200 0 [-60, 60]
Training episode UAV2 [1500, 2500] [-500, 500] 3500 200 0 [-60, 60]
Target [1000, 2 000] [2500, 3500] [2800, 3800] [150, 300] 0 [120, 240]
UAVI 0 0 3000 200 0 0
Evaluation episode UAV2 2 000 0 3500 200 0 0
Target 1000 3000 3000 220 0 200

4000
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=4 000 < /
Y M . 2000
Wy 0 ; 1000
2 000
—: UAVI; —:UAV2; —: Target.

Fig. 12
balance initial state

2vl maneuver trajectory after confrontation training of

4.2.2 Simulations for 2v2 scene

(1) Basic training

In the basic training of two UAVs fighting against the
two targets scenario, the targets adopt uniform linear mo-
tion, and the training is carried out in sequence when the
initial UAV situation is at an advantage, a balance, and a
disadvantage. Through these three training items, the
UAVs can be familiar with the air combat environment.
Due to the expansion of the air combat environment, the
state space increases, so compared to the 2v1 scene, each
training item increases to 3x 10° episodes.

The following will take the balance initial state as an
example to illustrate the training process and the training
effect. The initial state of training episodes and evalu-
ation episodes are shown in Table 4.

Table 4 Balance initial state setting for 2v2 basic training

Initial State x/m y/m z/m v/(m/s) y/(°) Wi(®)
UAVI [-200, 200] [-300, 300] 3000 200 0 [10, 70]
UAV2 [2800, 3200] [-300, 300] 3200 200 0 [10, 70]
Training episode

Target! [2500, 3500] [2500, 3500] [2900, 3100] [180, 220] 0 [-165, —105]
Target2 [5500, 6500] [2500, 3500] [2900, 3100] [180, 220] 0 [-165,—-105]
UAV1 0 0 3000 200 0 40

. . UAV2 3000 0 3200 200 0 40

Evaluation episode

Targetl 3000 3000 3000 200 0 —-135
Target2 6000 3000 3000 200 0 —-135

Fig. 13 is the air combat simulation maneuver traject-
ory based on the learned policy after finishing the basic
training in the balance initial state. It can be seen from the

figure that, at the initial moment, UAV1 and UAV2 fly
toward Targetl and Target2, respectively. According to
the target assignment algorithm, UAV1 and UAV2 select
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Targetl and Target2 as attack targets for maneuvering,
respectively, and adjust the course and altitude when ap-
proaching their respective targets to avoid possible colli-
sions in the intersection. During meeting with the target,
UAV1 turns to the right and UAV2 turns to the left, real-
izing a cross cover. Instead of continuing to turn around
to pursue their initial assigned targets, the two UAVs ex-
change their respective attack targets after turning, which
reflects the tactical cooperation. It proves that after rein-
forcement learning, UAVs can learn the air combat ma-
neuver policy to realize the tactical cooperation, and gain
advantages in air combat, rather than decomposing the
multi-aircraft air combat into multiple 1v1 confrontations.

(i1) Confrontation training

After completing the above basic training, UAVs with
the basic policy continue to conduct confrontation train-
ing with targets with the maneuver policy introduced in
Subsection 3.4.2. In order to ensure the diversity of air
combat states and the generalization of the maneuver
policy, the initial states of UAVs and targets are ran-
domly generated within a certain range during training
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episodes. The training effect will be explained by taking
the balance initial state as an example. Table 5 shows the
initial state of training in the case of the balance initial
state. In order to improve the training speed, compared
with the basic training, the value range of the initial posi-
tion in the confrontation training is narrowed.

s
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2 000
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Y/m ~2000 =2 000
—: UAVI; —: UAV2; —: Targetl; —: Target2.
Fig. 13
initial state

2v2 maneuver trajectory after basic training of balance

Table S Balance initial state setting for 2v2 confrontation training

Initial state x/m y/m z/m v/(m/s) y/(°) w/(°)
UAV1 [-200, 200] [-200, 200] 3000 200 0 [20, 60]
UAV2 [2800, 3200] [-200, 200] 3200 200 0 [20, 60]
Training episode

Target1 [2500, 3500] [2800, 3200] [2900, 3100] [180, 220] 0 [-155,-115]
Target2 [5500, 6500] [2800, 3200] [2900, 3100] [180, 220] 0 [-125,-115]
UAV1 0 0 3000 200 0 40

. . UAV2 3000 0 3200 200 0 40

Evaluation episode

Target1 3000 3000 3000 200 0 —-135
Target2 6000 3000 3000 200 0 -135

Fig. 14 shows the maneuver trajectory of both sides in
the evaluation episode after the confrontation training of
the balance initial state. The two sides start heading from
the initial position. Targetl and Target2 choose the
closest UAV2 as their attack target and fly towards it.
UAVI flies in a formation on the left side of UAV2 and
adjusts the course to reduce the distance to the target. In
the process of UAV2 meeting Targetl and turning left,
UAV1 adjusts the course to the right, gradually faces the
tail of Targetl, and covers UAV2 from the side and the
rear. At the same time, UAV1 changes the attack target
from Target2 to Targetl, and gradually achieves the ad-
vantage to Targetl. On the other hand, UAV2 adjusts the
course and speed after meeting Targetl to prevent Tar-
get2 from entering the tail, and finally realize the tail-
chasing situation to Target2. Throughout the process,
UAVs have achieved tactical cooperation such as cover-

ing and alternating attack targets.

8000
6 000
g
™ 4000

2 000
—2 000

0 .
2000

. 4000
4000

. 2000
Y 6000 ' N
8 000 0 '
—: UAVI; —: UAV2; —: Targetl; —: Target2.

Fig. 14

balance initial state

2v2 maneuver trajectory after confrontation training of
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Based on the above simulations, it is proved that the
policy obtained by the self-learning of the decision mo-
del can enable the multi-UAV formation to obtain ad-
vantages during the combat against targets with the ma-
neuver policy under the condition of equal or superior
strength, to achieve coordinative air combat and win the
victory.

4.2.3 Target assignment performance

In order to study the training effect of the target assign-
ment algorithm proposed in this paper on the maneuver

Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

decision model, the target assignment performance test
simulation is carried out.

The reinforcement learning model using the target as-
signment algorithm proposed in this paper is marked as
the maneuver decision Model 1, while the reinforcement
learning model which uses the target assignment al-
gorithm of the confrontation policy is marked as the ma-
neuver decision Model 2. Model 1 and Model 2 are
trained 3x 10° episodes with the confrontation policy re-
spectively under the balance initial state. The training
episode initial state settings are shown in Table 6.

Table 6 Balance initial state setting for target assignment performance testing

Initial state x/m y/m z/m v/(m/s) v/(°) Wi(®)
UAV1 [-200, 200] [-200, 200] 3000 200 0 [20, 60]
UAV2 [2 800, 3200] [-200, 200] 3200 200 0 [20, 60]
Training episode
Targetl [2500, 3500] [2800, 3200] [2900, 3 100] [180, 220] 0 [~155,-115]
Target2 [5500, 6500] [2800, 3200] [2900, 3100] [180, 220] 0 [-125, -115]
UAVI [-100, 100] [-100, 100] 3000 200 0 [35, 45]
o UAV2 [2900, 3 100] [~100, 100] 3200 200 0 [35, 45]
Evaluation episode
Targetl [2500, 3500] [2800, 3200] [2900, 3100] [180, 220] 0 [-155, -115]
Target2 [5500, 6500] [2800, 3200] [2900, 3100] [180, 220] 0 [-125,-115]
After completing the reinforcement learning training, 0.8
Model 1 and Model 2 are evaluated with the confronta- 0.6
tion policy for 500 times respectively. The initial state of 0.4
the confrontation test is randomly selected within a cer- 02 -
tain area, as evaluation episode setting shown in 0
. Win Draw Lose
Table 6. The results of the confrontation test are ex-
| : Model 1; | : Model 2.

pressed in terms of winning percentage, and the winning
conditions are shown in Table 7.

Table 7 Conditions of air combat result

Result Condition

Win All targets are shot down

Draw Number of remaining targets and drones are equal
Lose All UAVs are shot down

The test results of Model 1 and Model 2 after training
are shown in Fig. 15. It can be seen from Fig. 15 that the
winning percentage of Model 1 is much higher than that
of Model 2 under the conditions that the network struc-
ture, training process, and target policy are the same. This
fully demonstrates that the target assignment algorithm
proposed in this paper can effectively guide the individu-
al reinforcement learning process to form a formation co-
ordination policy, and give full play to the situational ad-
vantage in coordinated air combat.

Fig. 15 Result of the confrontation test

5. Conclusions

In this paper, a multi-UAV cooperative air combat ma-
neuver decision model based on reinforcement learning
and recurrent neural network is built. First of all, based
on the single-UAV air combat environment model, an en-
vironment model of multi-UAV air combat is established,
and the state space, action space, and situation evaluation
model for individual maneuver decision in multi-aircraft
cooperative air combat are designed. At the same time,
according to the characteristics of multi-target attacking,
a multi-aircraft cooperative air combat target assignment
method is designed based on the Hungarian algorithm,
and based on the air combat situation evaluation value,
the reward calculation method of individual UAV is de-
signed. Then, based on the single-UAV Actor-Critic air
combat maneuver decision-reinforcement learning model,
a bidirectional recurrent neural network is used as the
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communication network between UAV individuals, and
the individual UAVs are connected to form a collabora-
tive decision-making network of the formation. The multi-
UAYV cooperative air combat maneuver decision model
realizes the unity of UAV individual behavior learning
and the combat objectives of the formation.

However, due to the constraints of training time and
equipment resources, this paper does not carry out some
more detailed simulation analysis. For example, there is
no simulation verification in a larger-scale force scenario.
In addition, in this paper, a 3-DOF aircraft motion model
is used to establish the air combat environment model. In
subsequent research, a 6-DOF motion model can be used
to improve model accuracy. At the same time, a detailed
sensor model can be added and the attack zone model can
be refined to build an air combat environment with in-
completely observable target information. Carry out air
combat decision-making research in the context of being
closer to real air combat.

References

[1] ZHOU K, WEI R, XU Z, et al. An air combat decision learn-
ing system based on a brain-like cognitive mechanism. Cog-
nitive Computation, 2020, 12(1): 128-139.

[2] YANG Q M, ZHANG J D, SHI G Q. Modeling of UAV path
planning based on IMM under POMDP framework. Journal
of Systems Engineering and Electronics, 2019, 30(3):
545-554.

[3] MCGREW J S, HOW J P, WILLIAMS B, et al. Air-combat
strategy using approximate dynamic programming. Journal of
Guidance, Control, and Dynamics, 2010, 33(5): 1641-1654.

[4] ZHOU K, WEIR X, XU Z F, et al. A brain like air combat
learning system inspired by human learning mechanism.
Proc. of IEEE/CSAA Guidance, Navigation and Control
Conference, 2018: 286-293.

[5] XU G, WEI S, ZHANG H. Application of situation function
in air combat differential games. Proc. of the 36th Chinese
Control Conference, 2017: 5865-5870.

[6] PARK H, LEE B Y, TAHK M J, et al. Differential game
based air combat maneuver generation using scoring func-
tion matrix. International Journal of Aeronautical & Space
Sciences, 2015, 17(2): 204-213.

[71 SMITH R E, DIKE B A, MEHRA R K, et al. Classifier sys-
tems in combat: two-sided learning of maneuvers for ad-
vanced fighter aircraft. Computer Methods in Applied Mecha-
nics & Engineering, 2000, 186(2): 421-437.

[8] HANG C Q, DONG K S, HUANG H Q, et al. Autonomous
air combat maneuver decision using Bayesian inference and
moving horizon optimization. Journal of Systems Engineer-
ing and Electronics, 2018, 29(1): 86-97.

[97 GUO H F, HOU M Y, ZHANG Q J, et al. UCAV robust

maneuver decision based on statistics principle. Acta Arma-

mentarii, 2017, 38(1): 160-167. (in Chinese)

FU L, XIE H. An UAV air-combat decision expert system

based on receding horizon control. Journal of Beijing Uni-

versity of Aeronautics and Astronautics, 2015, 41(11):

1994-1999. (in Chinese)

ROGER W S, ALAN E B. Neural network models of air

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

1437

combat maneuvering. Las Cruces, U.S.: New Mexico State
University, 1992.

DING L J, YANG Q M. Research on air combat maneuver
decision of UAVs based on reinforcement learning. Avionics
Technology, 2018, 49(2): 29-35. (in Chinese)

LIU P, MA Y. A deep reinforcement learning based intelli-
gent decision method for UCAV air combat. Proc. of Asian
Simulation Conference, 2017: 274-286.

ZUOJ L, YANG R N, ZHANG Y, et al. Intelligent decision-
making in air combat maneuvering based on heuristic rein-
forcement learning. Acta Aeronautica et Astronautica Sinica,
2017, 38(10): 217-230. (in Chinese)

ZHANG X B, LIU G Q, YANG C J, et al. Research on air
confrontation maneuver decision-making method based on
reinforcement learning. Electronics, 2018, 7(11): 279.

YANG Q M, ZHU Y, ZHANG J D, et al. UAV air combat
autonomous maneuver decision based on DDPG algorithm.
Proc. of the IEEE 15th International Conference on Control
and Automation, 2019: 37—42.

YANG Q M, ZHANG J D, SHI G Q, et al. Maneuver de-
cision of UAV in short-range air combat based on deep rein-
forcement learning. IEEE Access, 2020, 8: 363-378.

WAN K F, GAO X G. Robust motion control for UAV in dy-
namic uncertain environments using deep reinforcement
learning. Remote Sensing, 2020, 12: 640.

ROBERT L S. Fighter combat —tactics and maneuvering.
Maryland: Naval Institute Press, 1985.

XIZF, XU A, KOU Y X, et al. Decision process of multi-
aircraft cooperative air combat maneuver. Systems Engineer-
ing and Electronics, 2020, 42(2): 381-389. (in Chinese)

LIJ X, TONG M A, JIN D K. Bargaining differential game
theory and application to multiple-airplane combat analysis.
Systems Engineering-Theory & Practice, 1997, 6(6): 68—72.
(in Chinese)

WANG Y N, JIANG Y X. An intelligent differential game
on air combat decision. Flight Dynamics, 2003, 21(1): 66-70.
(in Chinese)

ZUO J L, ZHANG Y, YANG R N, et al. Reconstruction and
evaluation of medium-rang cooperation air combat decision-
making process with two phase clustering. Systems Engi-
neering and Electronics, 2020, 42(1): 108—117. (in Chinese)
XIE R Z, L1J Y, LUO D L. Research on maneuvering de-
cisions for multi-UAVs Air combat. Proc. of the 11th IEEE
International Conference on Control & Automation, 2014:
767-772.

LUO D L, SHEN C L, WANG B, et al. Air combat decision-
making for cooperative multiple target attack using heuristic
adaptive genetic algorithm. Proc. of the International Confer-
ence on Machine Learning and Cybernetics, 2005: 473—478.
SUM C, LAI S C, LIN S C, et al. A new approach to multi-
aircraft air combat assignments. Swarm and Evolutionary
Computation, 2012, 6: 39—46.

WANG Y, ZHANG W, LI Y. An efficient clonal selection
algorithm to solve dynamic weapon-target assignment game
model in UAV cooperative aerial combat. Proc. of the 35th
Chinese Control Conference, 2016: 9578-9581.

TAL S, STEVE R, DAVE G. Assigning micro UAVs to task
tours in an urban terrain. [EEE Trans. on Control Systems
Technology, 2007, 15(4): 601-612.

. PENG P, WEN Y, YANG Y, et al. Multiagent bidirection-
ally-coordinated nets: emergence of human-level coordina-
tion in learning to play star craft combat games. arXiv pre-
print arXiv: 1703.10069v4, 2017.



1438

Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

[30] SILVER D, LEVER G, HEESS N, et. al. Deterministic
policy gradient algorithms. Proc. of the 31st International
Conference on Machine Learning, 2014: 605-619.

[31] SUTTON R, MCALLESTER D, SINGH S, et al. Policy
gradient methods for reinforcement learning with function
approximation. Proc. of the 13th Annual Neural Information
Processing Systems Conference, 1999: 1057-1063.

Biographies

ZHANG Jiandong was born in 1974. He is an
associate professor at the Department of System
and Control Engineering in Northwestern Poly-
technical University, China. He received both his
M.S. and Ph.D. degrees in system engineering
from the same university. His research interests
include modeling simulation and effectiveness
evaluation of complex systems, development and

design of integrated avionics system, and system measurement & test

technologies.

E-mail: jdzhang@nwpu.edu.cn

YANG Qiming was born in 1988. He received
his master degree from Northwestern Polytechni-
cal University (NPU), Xi’an, China in 2013. He
was awarded with a Ph.D. degree in electronic
science and technology in 2020. He is an assist-
ant researcher of the NPU. His main research in-
terests are artificial intelligence and its applica-
tion on control and decision of UAV.

E-mail: yanggm@nwpu.edu.cn

SHI Guoqing was born in 1974. He is an asso-
ciate professor at the Department of System and
Control Engineering in Northwestern Polytech-
nical University, China. He received his M.S. and
Ph.D. degrees in system engineering from the
same university. His research interests include in-
tegrated avionics system measurement & test
technologies, development and design of embe-

dded real-time systems, modeling simulation and effectiveness evalu-
ation of complex systems, etc.
E-mail: shiguoging@nwpu.edu.cn

LU Yi was born in 1975. He graduated from
Nanjing University of Aeronautics and Astronau-
tics in 1998, majoring in aircraft guidance control
and simulation. He is currently the deputy chief
designer of Shenyang Aircraft Design Institute,
and mainly engaged in fighter avionics system
design work.

E-mail: yiluemail@126.com

WU Yong was born in 1964. He is a professor at
the Department of System and Control Engineer-
ing in Northwestern Polytechnical University,
China. He received his M.S. degree in system fire
control from the same university in 1988. His re-
search interests include integrated avionics sys-
tem measurement & test technologies, develop-
ment and design of embedded real-time systems,

modeling simulation and effectiveness evaluation of complex systems,

etc.

E-mail: yongwu@nwpu.edu.cn



