
Real-time online rescheduling for multiple agile satellites with
emergent tasks

WEN Jun†, LIU Xiaolu†, and HE Lei†,*

College of Systems Engineering, National University of Defense Technology, Changsha 410073, China

Abstract: The emergent task is a kind of uncertain event that
satellite systems often encounter in the application process. In
this paper, the multi-satellite distributed coordinating and
scheduling problem considering emergent tasks is studied. Due
to the limitation of onboard computational resources and time,
common online onboard rescheduling methods for such prob-
lems usually adopt simple greedy methods, sacrificing the solu-
tion quality to deliver timely solutions. To better solve the prob-
lem, a new multi-satellite onboard scheduling and coordinating
framework based on multi-solution integration is proposed. This
method uses high computational power on the ground and gene-
rates multiple solutions, changing the complex onboard res-
cheduling problem to a solution selection problem. With this
method, it is possible that little time is used to generate a solu-
tion that is as good as the solutions on the ground. We further
propose several multi-satellite coordination methods based on
the multi-agent Markov decision process (MMDP) and mixed-in-
teger programming (MIP). These methods enable the satellite to
make independent decisions and produce high-quality solutions.
Compared with the traditional centralized scheduling method,
the proposed distributed method reduces the cost of satellite
communication and increases the response speed for emergent
tasks. Extensive experiments show that the proposed multi-solu-
tion integration framework and the distributed coordinating
strategies are efficient and effective for onboard scheduling con-
sidering emergent tasks.

Keywords: agile satellite scheduling, emergent task, onboard
rescheduling, distributed coordinating, multi-solution integration.

DOI: 10.23919/JSEE.2021.000120

1. Introduction
The operation of the Earth observation satellite is always
subject to various uncertainties, such as emergent tasks,
changes of cloud cover, and uncertain breakdowns. To
deal with the uncertainties, methods usually include pro-

active (offline) methods [1] and reactive (online) methods
[2]. Proactive methods usually use the knowledge of un-
certainties, such as the known probability distribution of
future uncertainties, to maximize the expected revenue.
Reactive methods are event-driven and they schedule
tasks online. In this paper, we focus on the latter methods.
We consider a satellite scheduling problem with random
emergent tasks arriving in real-time and we assume that
the information about the emergent tasks is unknown in
advance.

The satellite scheduling problem is an over-subscribed
problem, which means that the capacity cannot meet the
demand. As a result, only a subset of tasks can be sche-
duled. For such over-subscribed problems with random
task arrivals, some researchers use two-stage methods:
first accepting the tasks and then scheduling the accepted
ones. Wu et al. [3,4] studied task-accepting policies,
which considered the cost to remove scheduled tasks on
the timeline, the revenue of the new task, and the re-
sources needed for the new task. If the task is accepted, it
is scheduled in the closest time window. Kim et al. [5]
proposed a heuristic algorithm to obtain a near-optimal
solution of the formulated mixed-integer programming
(MIP) based on the time windows pruning procedure.
Arredondo et al. [6] and Snoek [7] used reinforcement
learning to study the policies of acceptance. Other me-
thods include dynamic programming [8], simulation-
based rules [9], and meta-heuristics [10].

Although separating the accepting and scheduling
problems could lead to lower complexity, the two prob-
lems are coupled, and separating them could affect the
solution quality. In methods that treated the two prob-
lems as a whole, Rahman et al. [11] proposed a memetic
algorithm, whose online running time is around tens of
seconds; Su et al. [12] transformed the dynamic problem
to several static ones by using the rolling horizon method.
Similar methods were also adopted by Qiu et al. [13] and
Liao et al. [14]. Xu et al. [15] proposed a dynamic pro-
gramming method with online running time around tens
of seconds. Wang et al. [16] proposed a simple but fast

Manuscript received October 22, 2020.
*Corresponding author.
†Co-first authors.
This work was supported by the National Natural Science Foundation

of China (72001212, 71701204, 71801218) and the China Hunan Post-
graduate Research Innovating Project (CX2018B020).

Journal of Systems Engineering and Electronics

Vol. 32, No. 6, December 2021, pp.1407 – 1420

heuristic method, which could merge the emergent task
into the scheduled ones. Similarly, Chien et al. [17] and
Beaumet et al. [18] also used a heuristic-based greedy
method to reschedule tasks with the aim of providing
timely solutions, but the solution quality cannot be gua-
ranteed. Wu et al. [19], Li et al. [20] and He et al. [21]
used the ant colony optimization method. Chu et al. [22]
proposed an exact branch and bound method, but the
method adopts the anytime policy, which provides the
best current solution if the time limit of calculation is
reached. Cui et al. [23] proposed a dynamic scheduling
algorithm based on mission priority with a hybrid genetic
tabu search algorithm to obtain the initial satellite
scheduling plan.

We can find that many online scheduling methods do
not consider the online running time [3,24−26]. This
might be acceptable for some problems. However, for the
satellite scheduling problem, available time windows for
tasks are usually quite short, and if the tasks are not
scheduled timely, their time windows might be wasted. In
addition, the onboard computer has very weak computa-
tional power that is around 10% of that of a typical per-
sonal computer on the ground [22]. Complex methods
such as memetic algorithms [11] and dynamic program-
ming [15] could take hundreds of seconds or even seve-
ral hours, which is certainly unacceptable. As a result, we
can see that, for the online scheduling problem of satel-
lites, the methods are usually simple and greedy
[16−18,27] or anytime [22], which sacrifices the solution
quality to deliver timely solutions and increase the re-
sponsiveness of the satellite.

Another difficulty of this problem is to coordinate mul-
tiple satellites with limited communication opportunities.
Current multi-satellite coordinating methods adopt a cen-
tralized manner [28−33], which uses one satellite or the
ground station to generate solutions for all the satellites.
Such methods are certainly not suitable for the problems
with random emergent tasks, because they need a long
time to calculate and transfer data with limited commu-
nication windows. Some researchers use the contract net
protocol [34] or similar ideas [35], but such methods re-
quire frequent negotiation among satellites, which results
in a high communication cost.

As can be seen from the above analysis, there are two
questions this paper aims to answer. First, is it possible to
generate near-optimal solutions with limited onboard
computational resources within limited computation
time? Second, is it possible to coordinate multiple distri-
buted satellites to generate complementary solutions
without much communication?

To answer the above questions, this paper proposes an
efficient real-time online rescheduling algorithm for mul-

tiple agile earth observation satellites with random emer-
gent tasks. The contribution of the paper are as follows:

(i) A multiple feasible solution integration framework
for emergent task scheduling is proposed for the first
time. The framework makes it possible for a satellite to
generate solutions on the ground in a short time.

(ii) Multi-satellite distributed cooperative rescheduling
methods based on the multi-agent Markov decision pro-
cess and the mixed-integer programming are proposed.
These methods enable the satellites in orbit to generate
complementary and non-conflicting solutions without
much communication.

(iii) In the experiment, the adaptability of different
multi-satellite distributed cooperative strategies to sce-
narios with different characteristics is analyzed. These
conclusions are helpful to guide the selection of appropri-
ate methods for different types of problems in practical
engineering applications.

2. Problem
In this paper, we consider a real-time online rescheduling
problem for multiple agile Earth observation satellites
with random emergent tasks. The problem consists of
simultaneously selecting a subset of tasks to be observed
from multiple orbits of multiple satellites, generating the
associated schedule, and rescheduling the solution when
random emergent tasks arrive online. The problem for
scheduling the agile Earth observation satellite is diffi-
cult because each task has several long time windows and
the transition time between any two adjacent tasks de-
pends on the start time of the two tasks. The static ver-
sion of the problem is already an non-deterministic poly-
nominal hard (NP-hard) problem. In the considered dy-
namic version, emergent tasks arrive during the execu-
tion in real-time. The rescheduling must be done quickly,
which adds difficulties to the problem. The goal of this
research is to generate a rescheduling solution online
quickly with limited onboard computational resources,
which is almost as good as the solution by an offline om-
niscient solver.

2.1 Problem model

⟨T,S ,H⟩ T S
H = {1, · · · ,H}

H

The problem can be described by a three-element tuple
, where is the task set, is the satellite set,

and is a limited scheduling interval (usu-
ally one day). is the discrete scheduling step.

ti T
⟨gi,di,ai,Wi, xi j,ui,vi⟩ gi

ti di ∈ H

ai ∈ H∨ai = 0

The task set includes regular tasks and emergent tasks.
Each task in contains the following attributes:

. is the benefit of performing task
; is the processing time of the task, which is the

shortest continuous imaging time specified by the user;
 is the random arrival time of the task, for

1408 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

ai = 0 ai ∈ H

Wi

ti Wi = {⟨si1,bi1,ei1⟩, · · · ,
⟨si|S |,bi|Wi |,ei|Wi |⟩} |Wi|

s ∈ S

b,e ∈ H xi j ui

xi j ∈ {0,1} ti

jth ui

ti vi

vi = ui+di

regular tasks and for emergent tasks . The
scheduling of emergent tasks can only be started after the
task arrives. At the same time, the calculation time should
be considered, that is, if the scheduling is not completed
before the end of the visible time window of the emer-
gent task, the emergent task will be abandoned. Emer-
gent tasks may include three sources: new tasks submit-
ted by users, new tasks discovered independently by
satellites (such as volcanic activities and other natural
disasters), and tasks that failed due to uncertain factors
(such as cloud cover and satellite failures). is the set
of visible time windows for task .

 contains visible time windows, and
each window is specified by the satellite to which it
belongs, b and e are the start time and the end time of the
visible time window and , and are decision
variables and represents whether task is ob-
served in the time window, and represents the ob-
servation start time of task . is the observation end
time of the task, and .

{Sol1,Sol2, · · · ,SolS} s ∈
S Sols = {Sol1

s ,Sol2
s , · · · ,SolHs }

The solution to this problem can be expressed as
, and the solution of the satellite

 is expressed as , which
defines the solution at each decision step. The scheduling
sub-problem at each step can be regarded as a static
scheduling problem. The scheduling goal is to maximize
the total revenue of all selected tasks. The problem mo-
del is defined as follows:

max
|T |∑
i=1

|Wi |∑
j=1

gixi j

s.t.
|Wi |∑
j=1

xi j ⩽ 1, ∀ti ∈ T, (1)

bi j ⩽ ui ⩽ ei j, xi j = 1, (2)

vi+τii′ ⩽ ui′ , pii′ = 1, (3)

xi j ∈ {0,1}, ti ∈ T,wi j ∈Wi, (4)

pii′ ∈ {0,1}, ti, ti′ ∈ T, (5)

τii′ ⩾ 0, ti ∈ T. (6)

Constraint (1) is the uniqueness constraint, which
means that each task can be observed at most once.

Constraint (2) is the visible time window constraint,
which means that each task can only be observed in one
of the visible time windows.

Constraint (3) is the attitude transition constraint,
which means that the time interval between any two adja-

τii′

ti ti′

τii′ =
|θi− θi′ |

a
+ tstable θi θi′

ti ti′

a
tstable

pii′

ti ti′

cent observations must be sufficient for the satellite to
transit its observation attitude. represents the attitude
transition time from task to task ,

, where and are the satellite atti-
tude angle of the observation task and task respect-
ively, is the angular velocity of the satellite attitude
maneuver, is the minimum stabilizing time required
for satellite attitude maneuver, and is a binary vari-
able with 1 representing task and task are two adja-
cent tasks.

Constraints (4)−(6) represent the domain of each vari-
able.

2.2 Problem analysis

In current rescheduling algorithms, no information about
unscheduled tasks is considered. However, this is a kind
of important information that can be utilized. Here is an
example to illustrate this point. In Fig. 1, the satellite can
only choose from Tasks 5−8 or Tasks 1−4 to observe.
With the assumption that Tasks 5−8 have higher revenue,
the satellite will choose the optimal solution, which is ob-
serving Tasks 5−8. However, if an emergent Task 9 with
very high revenue is submitted during the execution, a
traditional task repair policy will not be able to insert
Task 9 into the current solution. In addition, if emergent
Task 9 arrives just before the satellite observes Task 5, a
rescheduling process on the ground will not be timely
enough. However, in this case, if the satellite retains the
solution of observing Tasks 1−4, which is slightly worse
than the optimal solution when submitting Task 9, the
revenue of the solution will exceed the current optimal
solution, and the satellite can quickly generate a new op-
timal solution without performing a series of scheduling
calculations (for example, to find and compare a variety
of revenues of sequencing Tasks 1−9).

1

2

3

4

9

5

6

7

8

Fig. 1 Example of satellite observation

The idea proposed in this paper is to transfer the com-

WEN Jun et al.: Real-time online rescheduling for multiple agile satellites with emergent tasks 1409

plex online rescheduling process to offline scheduling on
the ground. The core method is to use the powerful com-
puting power of the ground to generate multiple feasible
solutions, including feasible scheduling solutions of tasks
outside the scheduling scheme that cannot be contained
by a single optimal solution.

3. Method
We propose a new framework for the problem as shown
in Fig. 2, which includes an offline scheduling and train-
ing stage and an online rescheduling stage. The idea to
achieve an efficient online rescheduling method with limi-
ted onboard computational resources is to move the diffi-
culties of scheduling multiple agile satellites (i.e., select-
ing the tasks and sequencing them with the time-depend-
ency) to the ground. Instead of generating a single opti-
mal solution, the offline training stage generates multiple
high-quality solutions. When an emergent task arrives,
the satellite can select a solution to insert the emergent
task into it quickly without carrying out too much calcu-
lation.

Offline
scheduling

Multiple

feasible

solutions

Offline

training

Offline

Execute

Evaluator to
match

uncertainty
with state

Optimal
strategy

Select action

Rescheduling

Uncertainty

Online

Fig. 2 Rescheduling algorithm framework

In the offline stage, we use a meta-heuristic algorithm
called the adaptive large neighborhood search (ALNS) to
generate multiple high-quality solutions. When an emer-
gent task arrives, the satellite only needs to compare the
multiple solutions and choose the best one. Since the
multiple solutions might have repetitive observations
which could reduce the revenue, we use a multi-agent
Markov decision process (MMDP) model to train an op-
timal policy to decouple the multiple solutions. With the
trained policy, we make sure that the solutions selected
by the satellites in different sections have the highest re-
venue and the least repetitive observations.

In the online stage, we adopt an efficient insertion
policy that determines the feasibility of insertion accord-
ing to pre-computed time slacks considering time-de-
pendent transition times. The solution into which the
emergent task can be inserted and which has the highest

revenue will be selected as the new solution replacing the
current solution in the corresponding section. If the new
solution has the same tasks that are also in the solutions
in other sections, these solutions will be changed to other
ones according to the offline trained policy. Another
problem is that the optimal policy will become less accu-
rate when many emergent tasks are inserted because it is
trained based on offline generated solutions. To solve this
problem, we also propose to solve the same MMDP mo-
del onboard to decouple the multiple solutions with accu-
rate solution information.

3.1 Multiple feasible solutions generated

The basic method to generate multiple feasible solutions
adopts the adaptive large neighbourhood search with tabu
search, partial sequence dominance, fast insertion (ALNS/
TPF) method proposed in [36,37] and the adaptive task
assigning large neighbourhood search (A-ALNS) method
proposed in [38]. A-ALNS is mainly oriented to multi-
satellite scheduling and generates an initial solution to as-
sign tasks to different satellites. ALNS/TPF is mainly ap-
plied to the scheduling of tasks that have been assigned to
a single satellite, and multiple optimal and feasible solu-
tions can be saved through running multiple iterations.
The generation steps are as follows:
Step 1　Use the A-ALNS algorithm to generate a high-

quality initial solution.
Step 2　Assign the successfully-scheduled tasks to the

corresponding satellites.
Step 3　Assign the unsuccessfully-scheduled tasks to

all satellites.

n−1

Step 4　For the new task set on each satellite, the ALNS/
TPF algorithm is used to get several new feasible alter-
native solutions. During the solution process, fea-
sible solutions with the highest revenue are saved.

A process for generating multiple alternative solutions
is shown in Fig. 3, where Steps 2 and 3 are omitted.

Step 4: Calculate multiple alternative

feasible solutions for each satellite

Step 1: Calculate an initial solution

Fig. 3 Multiple alternate feasible solutions

In Step 1, the A-ALNS algorithm is used to generate a
high-quality initial solution. Note that this “initial solu-
tion” is defined differently from the “initial solution” in

1410 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

n−1

n

common heuristics, the initial solution here is the best
solution found by using the A-ALNS algorithm. Its pur-
pose is to assign tasks to different satellites and then use
the single-satellite algorithm to generate multiple feasi-
ble solutions on the task set of each satellite to achieve ef-
fective coverage of solution space. However, one prob-
lem to be considered is that there may be cases of ob-
serving the same task among multiple feasible solutions
of multiple satellites, and repeated observations will lead
to reduced benefits. In order to avoid that problem, this
method will only assign unscheduled tasks in the A-
ALNS to different satellites. Other tasks successfully
scheduled by A-ALNS will only be executed on their se-
lected satellites, and the executing satellites will not be
changed in the subsequent scheduling process. In Step 4
of Fig. 3, unscheduled tasks are assigned to different
satellites, and the task set on each satellite changes. At
this time, the ALNS/TPF method is used to obtain the
new task set, and feasible solutions with the highest
revenue are retained in the solution process. Finally, on
each satellite, a total of feasible solutions are generated.
In these feasible solutions, except for those unscheduled
tasks, there will be no repeated observations.

3.2 Multi-satellite distributed cooperation approach

Until now, several alternative feasible solutions have
been generated for each satellite. When the emergent task
arrives, the online evaluator will check whether the emer-
gent task can be inserted into each feasible solution. This
process adopts the quick insertion method introduced in
[36] to quickly determine whether each task can be inser-
ted. Each satellite then decides which feasible solution it
will choose to perform the emergent task. However, due
to the existence of multiple feasible solutions for un-
scheduled tasks, the feasible solutions selected by each
satellite may include certain tasks that have been ob-
served by other satellites. In order to coordinate the fea-
sible solutions of multiple satellite selection, three coopera-
tion mechanisms are proposed in this paper.

(i) Greedy selection mechanism
This is the simplest selection mechanism. Each satel-

lite only records its multiple feasible solutions. When the
emergent task arrives, each satellite invokes an evaluator
to evaluate the revenues when inserting the emergent task
into each feasible solution and chooses the one with the
highest revenue. This method can quickly select a feasible
solution, but it is difficult to avoid the situation that the
same task is observed by multiple satellites simultaneously.

(ii) Optimal cooperative policy mechanism based on
the multi-agent Markov decision process

If each satellite is assumed to be an agent, multiple
satellites can constitute a multi-agent system.

One way to solve the problem of repeated observa-
tions is to adopt multi-agent communication methods
such as a contract network [37] to coordinate the decision-
making of each satellite. However, this method which re-
quires real-time information communication has a high
application cost. Another method is that each agent re-
cords and tracks the current state of other satellites.
Through the optimal feasible solution selection policy
corresponding to each state combination of offline calcu-
lation, the feasible solution can be quickly selected with
less communication and avoid repetition. However, since
each satellite contains multiple feasible solutions, the
joint matrix size of its combined state will increase ra-
pidly with the increase of the number of agents and fea-
sible solutions, which makes it impossible to calculate an
effective selection policy. The specific application me-
thod is presented in Fig. 4. As shown in Fig. 4(a), each
agent needs to consider the joint state of all other agents.
In order to solve this problem, the constraint of multi-
agent is used to decouple the joint state among agents
[39], as shown in Fig. 4(b).

Agent

Agent Agent

Agent Agent

Agent

Agent

Agent Agent

Agent Agent

Agent

Constraint

(a) Joint state (b) Decoupling joint state

Fig. 4 Multi-agent decoupling

Pi(t,a)
In order to describe the constraints among solutions, an

intermediate variable is introduced, which is
defined as follows:

Pi(t,a) =
{

1 , task t is in solution a of agent i
0 , else . (7)

Other variables of the model are defined as follows:
Ai i

2×n
: The action space of agent . It can be represented

by a matrix.
Si i

i n(n+1)

n+1

: The state space of agent . The state space of agent
 can be represented by an matrix. The row num-

ber of the matrix represents the currently executed solu-
tion. In the matrix, the n column represents the best solu-
tion that the current emergent task can be inserted into,
and the column indicates that the emergent task can-
not be inserted into any solutions.

Ti(s,a, s′) i
i s

s′ a

: The state transition matrix of agent , which
represents the probability that agent transit from state
to when performing action .

Ri(s,a) i
a i

: The revenue matrix of agent , which repre-
sents the revenue of executing action when agent is in

WEN Jun et al.: Real-time online rescheduling for multiple agile satellites with emergent tasks 1411

sstate . The revenue is equal to the revenue of the feasi-
ble solution. However, in order to encourage the agent to
choose the optimal solution given by the evaluator, when
the agent chooses the solution given by the evaluator, the
agent’s revenue increases by 10 units.

xi
h,s,a ∈ [0,1]

i a
s

: Decision variable, which represents the
probability that agent will perform action when the
state is at the hth decision step.

H h ∈ H: Scheduling horizon. . Every time an emer-
gent task arrives, a decision is made.

M : The maximum number of observations for a single
task. The method uses this value to limit the number of
repeated observations.

This MMDP is constructed as a linear programming
(LP) model [40,41] which is defined as follows:

max
n∑

i=1

H∑
h=1

∑
s∈Si

∑
a∈Ai

xi
h,s,a ·Ri(s,a) (8)

s.t.∑
a∈Ai

xi
h+1,s′ ,a =

∑
s∈Si

∑
a∈Ai

xi
h,s,a ·Ti(s,a, s′), ∀i,h, s′ ∈ Si, (9)

∑
a∈Ai

xi
1,s,a = T1,i(s), ∀i, s ∈ Si, (10)

n∑
i=1

∑
s∈Si

∑
a∈Ai ,a%2=0

xi
h,s,a ⩽ M, ∀h ∈ H, (11)

n∑
i=1

∑
s∈Si

∑
a∈Ai

xi
h,s,aPi(t,a) ⩽ M, ∀h ∈ H, t ∈ T, (12)

n∑
i=1

∑
s∈Si ,s%(n+1)

∑
a∈Ai ,a%2=0

xi
h,s,a = 0, ∀h ∈ H, (13)

0 ⩽ xi
h,s,a ⩽ 1, ∀i,h, s,a. (14)

T1,i(s)

The objective function (8) maximizes the sum of the
profits of all actions. Constraints (9) and (10) are the con-
straints that maintain the state transition probability,
where represents the initial state probability. Con-
straints (11) and (12) limit the number of repeated obser-
vations. Constraint (11) restricts the number of observa-
tions for emergent tasks, and constraint (12) limits the
number of observations for each ordinary task. Con-
straint (13) means that when the emergent task cannot be
inserted, the agent will not choose to observe the emer-
gent task. Constraint (14) represents the domain of the
decision variable.

The MMDP model requires that each agent can make
independent decisions without retaining the feasible solu-

Ĥ < H
hcom

scom

tion information of other agents and relying on frequent
information interaction. However, with the increase of the
number of decision-making steps, the accuracy of each
agent’s decision-making reasoning for other agents will
decrease. Therefore, if a periodic communication mecha-
nism is introduced, accurate state information can be ob-
tained among agents, and the accuracy of decision-mak-
ing can be improved. During communication, the ground
station collects information from the satellite and calcu-
lates the new optimal policy of the satellite before the
next communication phase. Let be the communi-
cation cycle, be the moment of communication, and

 be the accurate state information during the commu-
nication, then the above objective function can be re-
placed by

max
n∑

i=1

min(hcom+Ĥ,H)∑
h=hcom

∑
s∈Si

∑
a∈Ai

xi
h,s,a ·Ri(s,a).

Constraints (8) are changed to match the current state:∑
a∈Ai

xi
hcom ,scom ,a = 1，∀i. (15)

(iii) Optimal selection mechanism based on MIP
The biggest drawback of the method introduced in the

previous section is that each agent is required to make in-
dependent decisions without knowing the decisions of
other agents, which will lead to an inevitable decline in
revenue over time. If each agent can record the solutions
of other agents and update the information with a deter-
ministic method, then multiple agents can maintain a
higher revenue without communication. Next, we will in-
troduce an optimal selection mechanism based on MIP.

The MIP model contains the following variables:
Ai i n

n
: Agent i’s action space. Agent contains optional

actions, respectively corresponding to alternative fea-
sible solutions.

Pi(t,a)
t a

: The intermediate variable, as defined in (7),
representing whether task is executed when action is
being performed (that is, choosing a feasible solution).

Ri(a) i
a

a

: The revenue matrix of agent , which represents
the revenue of agent i’s execution of action , namely the
revenue of feasible solution . The state is not included
here, because the MIP is called on at each step, corres-
ponding to the current state.

xia ∈ {0,1}
i a

: Decision variables, representing whether
agent selects action .

The model is defined as

max
∑

a

∑
i

xiaRi(a)−
∑

t

max(0,
∑

a

∑
i

xiaPi(t,a)−1)gt

(16)

1412 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

s.t. ∑
a

xia = 1, ∀i, (17)

xia ∈ {0,1}, ∀i,a. (18)
gt

t
In the objective function (16), represents the reve-

nue of task . The goal of the first half of the objective
function is to maximize the sum of the benefits of all the
selected solutions; the latter half means that the benefits
of all repeated observation tasks are subtracted. Con-
straint (17) means that each agent can only choose one
feasible solution when making a decision. Constraint (18)
shows the domain of the decision variable.

In order to ensure the decision synchronization of each
agent, each agent must record other agents’ information
on the feasible solutions, which will consume part of the
storage resources. At the same time, different from the
method introduced in Section 2, this method requires the
MIP model to be re-invoked for solving each decision,
while the MMDP in Section 2 is only solved once for
each satellite communication, so its efficiency will be
higher. Despite this, the efficiency of this MIP-based op-
timal selection mechanism is still higher than the tradi-
tional online rescheduling method, because the tradition-
al method solves the rescheduling problem online, and
the number of constraints and variables to be considered
is much higher than the MIP problem proposed here.

4. Results
The algorithm is written in the C# language and runs on a
computer with Intel Core i5-3 470 3.20 GHz CPU, 8 GB
memory, and 64-bit Windows 7 system. The LP and MIP
models are solved by IBM ILOG CPLEX 12.8 [42].

4.1 Design and generation of examples

ax e ic
ω

m

In order to verify the effectiveness of the proposed al-
gorithm, we generate multiple benchmark instances. The
method of generating instances is to randomly generate
point targets on the whole world, which contains 12 in-
stances in total. The number of tasks varies from 100 to
400, with the increment step being 100, and each con-
tains one to three satellites. In order to make the instance
contain emergent tasks, we randomly select 20% of the
tasks from each instance as emergent tasks. When the
number of tasks is greater than 200, only 40 tasks are se-
lected as emergent tasks. The scheduling horizon of the
instance is from 00:00:00 to 24:00:00, April 20, 2017.
During this horizon, each satellite contains about 15−16
orbits. The six orbital parameters of the satellite are the
semimajor axis , eccentricity , inclination , perigee
angle , right ascension of ascending node (RAAN) and
true perigee angle . The initial orbit parameters of all
three satellites used are shown in Table 1 .

Table 1 Satellite orbit parameters

Satellite ax e ic ω/(°) RAAN m

Satellite 1 7 200 000 0.000 627 96.576 0 175.72 0.075

Satellite 2 7 200 000 0.000 627 96.576 0 145.72 30.075

Satellite 3 7 200 000 0.000 627 96.576 0 115.72 60.075

The parameters of ALNS/TPF and A-ALNS algorithms
are the same as those introduced in the corresponding pa-
pers, and the other parameters introduced in this paper are
fixed as follows:

n = 5Number of alternative feasible solutions: .

H = 40
Schedule horizon based on the MMDP method:

. The rescheduling is performed once every emer-
gent task arrives. Thus the length of the scheduling hori-
zon should be greater than the number of emergent tasks.

M = 2
Observation limit of each decision for a task based on

the MMDP method: .
In the experiment, five methods were compared. First,

full rescheduling (FR) algorithm. Every time a new task
arrives, A-ALNS is called on to regenerate a new
scheduling solution. Second, online repair based on a

single feasible solution algorithm (single-solution repair,
SSR). Third, rescheduling methods based on the greedy
selection (GS) policy. Fourth, the optimal cooperative
policy mechanism based on the MMDP (MMDP-based
optimal policy, MMDPOP). Fifth, the optimal selection
mechanism based on MIP (MIP-based selection, MIPS).
It should be pointed out that the purpose of the experi-
ment in this section is to verify the effectiveness of the
proposed multiple feasible solutions mechanisms and at
the same time to compare the performance of multiple
multi-satellite coordination mechanisms. Therefore, the
onboard rescheduling method uses a simple insertion
policy: that is, the insertion policy is adopted to only
quickly check the feasibility of task insertion. If the inser-
tion cannot be performed, the task is abandoned and the

WEN Jun et al.: Real-time online rescheduling for multiple agile satellites with emergent tasks 1413

task that has been successfully scheduled is not conside-
red for cancellation.

4.2 Analysis of experimental results

In the following experiment, each instance is run 10
times, and the results in the figures and tables are the ave-
rage of revenue and running time of 10 runs.

Fig. 5 shows the rescheduling of different algorithms
when the number of satellites is one. When the number of
satellites is one, the MIPS and GS algorithms are the
same, therefore the revenue of the algorithm is almost the
same. Because the MMDPOP sometimes chooses not to
observe emergent tasks conservatively, the revenues are
slightly lower than those of the other two algorithms. As
the SSR algorithm only contains a single feasible solu-
tion, when the number of tasks increases, the probability
that the emergent task can be inserted is lower. As there
is no other feasible solution in the SSR algorithm, its reve-
nue gap with other algorithms gradually increases, which
also proves the effectiveness of the alternative feasible
solution in the algorithm framework proposed in this pa-
per. The FR algorithm has a greater degree of freedom
because it fully reschedules the instance when the emer-

gent task arrives, and should theoretically have the
highest revenues if given sufficient computing time.
However, it can be observed that the FR algorithm only
shows advantages for 100 and 200 tasks. Since FR is
based on A-ALNS, which only generates a single feasi-
ble solution and could not provide global optimal solu-
tions when the solution space is too large, for large-scale
instances with 300 and 400 tasks, the gap to global opti-
mum of FR becomes larger and the synthetic value of ge-
nerating multiple feasible solutions and combining them
exceeds a single solution. This explains why FR some-
times performs worse than other methods as shown in
Fig. 5(c) and Fig. 5(d). It should be pointed out that the
calculation time of using FR is less than the offline calcu-
lation time of other algorithms because other algorithms
need to calculate multiple feasible solutions and search
for more solution space. At the same time, the FR al-
gorithm belongs to a centralized rescheduling method and
is an ideal method requiring that all tasks on all satellites
are rescheduled every time an emergent task arrives. This
exerts great challenges on the satellites’ management,
control, and communication system and is not applicable
under the current technical conditions.

−2 0 2 4 6 8 10 12 14 16 18 20
300

320

340

360

380

R
ev

en
u
e/

u
n
it

Number of emergent tasks

(a) 100 tasks (b) 200 tasks

(c) 300 tasks (d) 400 tasks

: FR; : MMDPOP; : GS; : MIPS; : SSR.

0 5 10 15 20 25 30 35 40

520

540

560

580

R
ev

en
u
e/

u
n
it

Number of emergent tasks

0 5 10 15 20 25 30 35 40
710

720

730

740

750

760

R
ev

en
u
e/

u
n
it

Number of emergent tasks

0 5 10 15 20 25 30 35 40
650

655

660

665

670

675

680

685

690

R
ev

en
u
e/

u
n
it

Number of emergent tasks

Fig. 5 Comparison of rescheduling results where there is one satellite

1414 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

When the number of satellites is 2 (as shown in Fig. 6),
due to the increase in the number of tasks that can be ob-
served, a single satellite can have a larger space for in-
serting emergent tasks, so the performance of the SSR al-
gorithm is better than that when there is only a single
satellite, and it is also more obvious when the number of
satellites is three (as shown in Fig. 7), which even ex-
ceeds the MMDPOP algorithm on a smaller scale. The
advantages of the MIPS algorithm over other algorithms,
especially relative to GS, are more obvious when the
number of satellites is large. It can be seen that in Fig. 6 (d)
and Fig. 7 (d), the performance of the MIPS algorithm far
exceeds the GS algorithm and even exceeds the FR al-
gorithm. It shows the effectiveness of the proposed op-
timal selection mechanism based on MIP. However, the

disadvantage of the MIPS algorithm is that when emer-
gent tasks arrive, the task insertion and the MIP solving
operation need to be performed on each satellite, and the
online calculation time is longer. Although MMDPOP
does not need to resolve the optimal policy, its revenue is
not significantly better than the GS algorithm, and it only
shows a certain advantage when the number of tasks and
the number of satellites are large. Because the GS al-
gorithm is a greedy selection of feasible solutions when
the number of tasks and the number of satellites in-
creases, the rate of repeated observations among feasible
solutions increases. At the same time, the optimal policy
trained using the MMDPOP algorithm can prevent re-
peated observations to a certain extent, so the perform-
ance is better.

−2 0 2 4 6 8 10 12 14 16 18 20 22
400

420

440

460

480

500

520

R
ev

en
u
e/

u
n
it

Number of emergent tasks

0 5 10 15 20 25 30 35 40
780

800

820

840

860

880

900

920

940

960

R
ev

en
u
e/

u
n
it

Number of emergent tasks

(a) 100 tasks (b) 200 tasks

0 5 10 15 20 25 30 35 40
1 120

1 140

1 160

1 180

1 200

1 220

1 240

1 260

R
ev

en
u
e/

u
n
it

Number of emergent tasks

0 5 10 15 20 25 30 35 40
1 320

1 380

1 360

1 340

1 400

1 420

1 440

1 460

1 480

1 500

R
ev

en
u
e/

u
n
it

Number of emergent tasks

(c) 300 tasks (d) 400 tasks

: FR; : MMDPOP; : GS; : MIPS; : SSR.

Fig. 6 Comparison of rescheduling results where there are two satellites

The average objective values of all the compared me-
thods are shown in Table 2.

The average time for each algorithm to perform an on-
line rescheduling process on different instances is shown
in Table 3. Among them, the FR algorithm consumes the
longest time because the solution is completely resche-
duled; the MMDPOP, GS, and SSR algorithms only in-

sert tasks and select the solution according to the trained
policy in the online phase, so the calculation time is very
short; the MIPS consumes relatively longer time because
it needs to solve the MIP model online. According to the
data in [22,43], onboard computers are usually 10 to 1 000
times slower than typical computers on the ground. Even
if the time is multiplied by 1 000, the longest reschedul-

WEN Jun et al.: Real-time online rescheduling for multiple agile satellites with emergent tasks 1415

ing time of the MIPS algorithm is 46 s, which is still
within the acceptable range. However, the FR algorithm
takes up to 10 744.4 s (nearly 3 h). Obviously, although
the FR algorithm has the best solution quality, it requires

real-time communication between the satellite and the
ground, and the calculation time is too long. It is not suit-
able for solving this problem.

−2 0 2 4 6 8 10 12 14 16 18 20 22
400

420

440

460

480

500

520

R
ev

en
u
e/

u
n
it

Number of emergent tasks

(a) 100 tasks

0 5 10 15 20 25 30 35 40

840

880

920

960

1 000

1 040

1 080

R
ev

en
u
e/

u
n
it

Number of emergent tasks

(b) 200 tasks

0 5 10 15 20 25 30 35 40

1 350

1 380

1 410

1 440

1 470

1 500

1 530

R
ev

en
u
e/

u
n
it

Number of emergent tasks

(c) 300 tasks

0 5 10 15 20 25 30 35 40

1 710

1 680

1 740

1 770

1 800

1 830

1 860

1 890

R
ev

en
u
e/

u
n
it

Number of emergent tasks

(d) 400 tasks

: FR; : MMDPOP; : GS; : MIPS; : SSR.

Fig. 7 Comparison of rescheduling results where there are three satellites

Table 2 Comparison of average objective values of different algorithms

Satellite Number of tasks FR MMDPOP GS MIPS SSR

1 100 330.01 325.33 325.87 325.87 325.15

1 200 556.12 535.77 539.46 539.32 530.05

1 300 671.67 669.51 672.26 674.24 658.34

1 400 731.87 738.24 738.47 743.85 724.70

2 100 451.75 442.75 447.61 448.21 447.42

2 200 870.55 849.99 860.48 859.14 848.56

2 300 1 190.67 1 186.92 1 185.50 1 209.66 1 153.84

2 400 1 385.66 1 415.30 1 410.54 1 443.27 1 369.31

3 100 458.75 454.49 458.00 457.98 458.43

3 200 945.23 928.32 933.77 935.87 934.42

3 300 1 446.54 1 427.96 1 435.84 1 439.00 1 419.59

3 400 1 770.61 1 785.36 1 775.09 1 809.00 1 749.47

Average − 900.78 896.66 898.57 907.12 884.94

1416 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

Fig. 8 shows the effect of different numbers of alterna-
tive feasible solutions on the revenue of solutions. Fig. 8
shows the revenue and calculation time of the MIPS al-
gorithm for the instance with two satellites and 200 tasks.
As can be seen from Fig. 8(a), with the increase of the
number of feasible solutions, the revenue of the solution
also increases, but the online calculation time also be-
comes longer as shown in Fig. 8(b). Since the online re-

pair algorithm used in this paper only considers the inser-
tion of tasks and does not consider the deletion of sche-
duled tasks, when the number of reserved alternative
feasible solutions increases, the feasible solution with
lower revenue but larger insertion space is also retained,
and more tasks can be inserted in the online rescheduling
process.

0 5 10 15 20 25 30 35 40
800

820

840

860

880

900

920

R
ev

en
u
e/

u
n
it

Number of emergent tasks

(a) Revenue of solution

: 5 solutions; : 20 solutions;
: 40 solutions; : 60 solutions.

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

O
n
li

n
e

ca
lc

u
la

ti
o
n
 t

im
e/

s

Number of feasible solutions

 (b) Online solution time

Fig. 8 Influence of different numbers of alternative feasible solutions on solution quality

In Section 3, we introduce the MMDPOP method that

can improve the accuracy of the training optimal policy
through communications. Fig. 9 shows the influence of

different communication times on the solution quality. It
can be seen that with the increase in communication
times, the solution quality gradually improves.

Table 3 Comparison of average calculation time of online rescheduling of different algorithms s

Satellite Number of tasks FR MMDPOP GS MIPS SSR

1 100 1.669 8 <0.000 1 <0.000 1 0.008 2 <0.000 1

1 200 4.086 4 <0.000 1 <0.000 1 0.013 4 <0.000 1

1 300 7.008 9 <0.000 1 <0.000 1 0.017 4 <0.000 1

1 400 9.934 2 <0.000 1 <0.000 1 0.023 8 <0.000 1

2 100 1.495 8 <0.000 1 <0.000 1 0.008 7 <0.000 1

2 200 3.962 3 0.000 1 0.000 1 0.017 1 <0.000 1

2 300 7.206 8 0.000 1 0.000 1 0.028 0 0.000 1

2 400 10.744 4 0.000 1 0.000 1 0.037 9 0.000 1

3 100 1.454 7 0.000 1 0.000 1 0.008 6 <0.000 1

3 200 3.588 9 0.000 1 0.000 1 0.018 3 0.000 1

3 300 6.624 7 0.000 1 0.000 1 0.029 5 0.000 1

3 400 10.120 3 0.000 2 0.000 2 0.046 0 0.000 1

Average − 5.650 7 0.000 1 0.000 1 0.023 9 0.000 1

WEN Jun et al.: Real-time online rescheduling for multiple agile satellites with emergent tasks 1417

0 5 10 15 20 25 30 35 40
800

820

840

860

880

900

R
ev

en
u
e/

u
n
it

Number of emergent tasks

: 0 time; : 10 times;

: 20 times; : 40 times.

Fig. 9 Influence of different communication times on the
quality of solution

5. Conclusions
The problem of multi-satellite distributed autonomous co-
operative rescheduling considering emergent tasks is
studied. Due to the limitations of onboard computational
resources and time, the current common online reschedul-
ing methods usually use simple greedy algorithms to
solve this type of problem and sacrifice a certain solution
quality for the timely response. In order to better solve
this problem, a re-scheduling framework based on multi-
solution integration is proposed, which can use the
powerful computing power on the ground to generate
multiple feasible solutions and convert the complex on-
board re-scheduling problem into a feasible solution se-
lection problem. This makes it possible to use a short
time on the satellite to obtain a solution that is not worse
than that obtained on the ground; a multi-satellite distri-
buted cooperative policy based on the MMDP and MIP is
proposed. These methods enable satellites to make inde-
pendent decisions while in orbit and generate solutions
with complementary advantages without conflict. Com-
pared with the traditional centralized coordination me-
thod, the distributed coordination method reduces the cost
of inter-satellite communication and improves the re-
sponse speed of autonomous satellites to emergent tasks.

Through multiple sets of simulation instances, the ef-
fectiveness of the multi-solution integration framework
and distributed cooperative policy proposed in this paper
is proved for solving the on-board rescheduling problem.
At the same time, experiments show that the opti-
mal cooperative policy mechanism based on MMDP has
a shorter calculation time and a poorer solution quality,
but its solution quality can be improved through regular
communication and training of more accurate optimal co-
operative policies; while the optimal selection mecha-
nism based on MIP requires longer online calculation

time but with better solution quality. In some large-scale
calculation examples, the solution quality even exceeds
the complete rescheduling method.

This paper proposes a new integration method of mul-
tiple selections of feasible solutions to improve the effi-
ciency of online rescheduling. However, when multiple
alternative feasible solutions are generated, simple mul-
tiple iterations are used to retain the best several different
feasible solutions. The difference between these feasible
solutions may be small, and the coverage of the solution
space is poor. A more ideal way is to use a certain me-
thod to control the difference among the solutions while
using the least number of solutions to achieve more even
and effective coverage of the solution space. Using
swarm intelligence methods and controlling the diversity
of populations may be an effective method. In addition,
although the current multiple feasible solutions contain
the same tasks, they are independent of each other. When
inserting emergent tasks online, it needs to be calculated
once on each feasible solution. In future research, a cer-
tain graph-based structure will be considered to manage
multiple feasible solutions, so that a large number of fea-
sible solutions can be rescheduled at the same time, fur-
ther improving the efficiency of the online solution. Since
the onboard computational resources are still very li-
mited, if our efforts could further decrease the require-
ments on the computational power of the rescheduling
process, more power could be used by other systems on
the satellites and lots of costs of the aerospace chips
could be saved.

References
 AYTUG H, LAWLEY M A, MCKAY K, et al. Executing
production schedules in the face of uncertainties: a review
and some future directions. European Journal of Operational
Research, 2005, 161(1): 86–110.

[1]

 VIEIRA G E, HERRMANN J W, LIN E. Rescheduling manu-
facturing systems: a framework of strategies, policies, and
methods. Journal of Scheduling, 2003, 6(1): 39–62.

[2]

 WU M C, CHEN S Y. A cost model for justifying the accep-
tance of rush orders. International Journal of Production Re-
search, 1996, 34(7): 1963–1974.

[3]

 WU M C, CHEN S Y. A multiple criteria decision-making
model for justifying the acceptance of rush orders. Produc-
tion Planning & Control, 1997, 8(8): 753–761.

[4]

 KIM J, AHN J. Task and attitude control scheduling of mul-
tiple agile satellites considering task-dependent transition
time. Proc. of the AIAA Scitech 2020 Forum, 2020. DOI:
10.2514/1.I010775.

[5]

 ARREDONDO F, MARTINEZ E. Learning and adaptation
of a policy for dynamic order acceptance in make-to-order
manufacturing. Computers & Industrial Engineering, 2010,
58(1): 70–83.

[6]

 SNOEK M. Neuro-genetic order acceptance in a job shop set-
ting. Proc. of the 7th International Conference on Neural In-
formation Processing, 2000: 815–819.

[7]

1418 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

 YANG W, FUNG R Y K. Stochastic optimization model for
order acceptance with multiple demand classes and uncertain
demand/supply. Engineering Optimization, 2014, 46(6):
824–841.

[8]

 NANDI A, ROGERS P. Using simulation to make order ac-
ceptance/rejection decisions. Simulation, 2004, 80(3):
131–142.

[9]

 GHOMI S M T F, IRANPOOR M. Earliness-tardiness-lost
sales dynamic job-shop scheduling. Production Engineering,
2010, 4(2/3): 221–230.

[10]

 RAHMAN H F, SARKER R, ESSAM D. A real-time order
acceptance and scheduling approach for permutation flow
shop problems. European Journal of Operational Research,
2015, 247(2): 488–503.

[11]

 SU L H, CHOU F D. Heuristic for scheduling in a two-ma-
chine bicriteria dynamic flowshop with setup and processing
times separated. Production Planning & Control, 2000, 11(8):
806–819.

[12]

 QIU D S, HE C, LIU J, et al. A dynamic scheduling method
of earth-observing satellites by employing rolling horizon
strategy. The Scientific World Journal, 2013. DOI:
10.1155/2013/304047.

[13]

 LIAO D Y, YANG Y T. Imaging order scheduling of an
earth observation satellite. IEEE Trans. on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 2007,
37(5): 794–802.

[14]

 XU L, WANG Q, HUANG S M. Dynamic order acceptance
and scheduling problem with sequence-dependent setup time.
International Journal of Production Research, 2015, 53(19):
5797–5808.

[15]

 WANG J J, ZHU X M, YANG L T, et al. Towards dynamic
real-time scheduling for multiple earth observation satellites.
Journal of Computer and System Sciences, 2015, 81(1):
110–124.

[16]

 CHIEN S, TROESCH M. Heuristic onboard pointing re-
scheduling for an earth observing spacecraft. Proc. of the
25th International Conference on Automated Planning and
Scheduling, 2015: 1−13.

[17]

 BEAUMET G, VERFAILLIE G, CHARMEAU M C. Feasi-
bility of autonomous decision making on board an agile earth-
observing satellite. Computational Intelligence, 2011, 27(1):
123–139.

[18]

 WU G H, MA M H, ZHU J H, et al. Multi-satellite observa-
tion integrated scheduling method oriented to emergency
tasks and common tasks. Journal of Systems Engineering and
Electronics, 2012, 23(5): 723–733.

[19]

 LI Y Q, WANG R X, XU M Q. Rescheduling of observing
spacecraft using fuzzy neural network and ant colony al-
gorithm. Chinese Journal of Aeronautics, 2014, 27(3):
678–687.

[20]

 HE L, LIU X L, CHEN Y W, et al. Hierarchical scheduling
for real-time agile satellite task scheduling in a dynamic en-
vironment. Advances in Space Research, 2019, 63(2):
897–912.

[21]

 CHU X G, CHEN Y N, TAN Y J. An anytime branch and
bound algorithm for agile earth observation satellite onboard
scheduling. Advances in Space Research, 2017, 60(9):
2077–2090.

[22]

 CUI J T, ZHANG X. Application of a multi-satellite dyna-
mic mission scheduling model based on mission priority in
emergency response. Sensors, 2019, 19: 14–30.

[23]

 WANG D J, YIN Y Q, CHENG T C E. Parallel-machine res-[24]

cheduling with job unavailability and rejection. Omega,
2018, 81: 246–260.
 BAYKASOGLU A, KARASLAN F S. Solving comprehen-
sive dynamic job shop scheduling problem by using a grasp-
based approach. International Journal of Production Re-
search, 2017, 55(11): 3308–3325.

[25]

 DA SILVA N C O, SCARPIN C T, PECORA JR J E, et al.
Online single machine scheduling with setup times depend-
ing on the jobs sequence. Computers & Industrial Engineer-
ing, 2019, 129: 251–258.

[26]

 WANG J J, ZHU X G, ZHU J H, et al. A realtime schedul-
ing algorithm for multiple earth observation satellites. Proc.
of the 9th IEEE International Conference on Embedded Soft-
ware and Systems, 2012, 673–680.

[27]

 GAO K, WU G H, ZHU J H. Multi-satellite observation
scheduling based on a hybrid ant colony optimization. Ad-
vanced Materials Research, 2013, 765: 532–536.

[28]

 SHI Y L, JIANG X J, ZHANG Y F, et al. Static routing
design of solar synchronous orbit micro-nano satellite con-
stellation. Electronic Design Engineering, 2018, 25(17):
25–29. (in Chinese)

[29]

 WU G H, WANG H L, PEDRYCZ W, et al. Satellite obser-
vation scheduling with a novel adaptive simulated annealing
algorithm and a dynamic task clustering strategy. Computers
& Industrial Engineering, 2017, 113: 576–588.

[30]

 YAO F, LI J T, CHEN Y N, et al. Task allocation strategies
for cooperative task planning of multi-autonomous satellite
constellation. Advances in Space Research, 2019, 63(2):
1073–1084.

[31]

 KLEINSCHRODT A, NOGUEIRA T, REED N, et al. Mis-
sion planning for the TIM nanosatellite remote sensing con-
stellation. Proc. of the 69th International Astronautical Con-
gress, 2018. DOI: 10.1007/978-94-011-5088-0_37.

[32]

 XU R, CHEN H P, LIANG X L, et al. Priority-based con-
structive algorithms for scheduling agile earth observation
satellites with total priority maximization. Expert Systems
with Applications, 2016, 51: 195–206.

[33]

 FENG P, CHEN H, PENG S, et al. A method of distributed
multi-satellite mission scheduling based on improved con-
tract net protocol. Proc. of the 11th International Conference
on Natural Computation, 2015, 1062–1068.

[34]

 SKOBELEV P O, SIMONOVA E V, ZHILYAEV A A, et al.
Application of multi-agent technology in the scheduling sys-
tem of swarm of earth remote sensing satellites. Procedia
Computer Science, 2017, 103: 396–402.

[35]

 HE L, DE WEERDT M, YORKE-SMITH N. Tabu-based
large neighbourhood search for time/sequence-dependent
scheduling problems with time windows. Proc. of the 29th
International Conference on Automated Planning and
Scheduling, 2019: 186−194.

[36]

 HE L, DE WEERDT M, YORKE-SMITH N. Time/sequence-
dependent scheduling: the design and evaluation of a general
purpose tabu-based adaptive large neighbourhood search al-
gorithm. Journal of Intelligent Manufacturing, 2020, 31:
1051–1078.

[37]

 HE L, LIU X L, LAPORTE G, et al. An improved adaptive
large neighborhood search algorithm for multiple agile satel-
lites scheduling. Computers and Operations Research, 2018,
100(1): 12–25.

[38]

 HSIEH F S. Analysis of contract net in multi-agent systems.
Automatica, 2006, 42(5): 733–740.

[39]

 DE NIJS F, SPAAN M, DE WEERDT M. Preallocation and[40]

WEN Jun et al.: Real-time online rescheduling for multiple agile satellites with emergent tasks 1419

planning under stochastic resource constraints. Proc. of the
32nd AAAI Conference on Artificial Intelligence, 2018,
4662–4669.
 PAUKSHTIS E A. Constrained Markov decision processes.
Boca Raton: CRC Press, 1999.

[41]

 IBM. IBM CPLEX Optimizer, 2018. https://www.ibm.com/
analytics/cplex-optimizer.

[42]

 LI G L, XING L N, CHEN Y W. A hybrid online scheduling
mechanism with revision and progressive techniques for
autonomous earth observation satellite. Acta Astronautica,
2017, 140(1): 308–321.

[43]

 Biographies
WEN Jun was born in 1997. She received her
B.S. degree in information and computing sci-
ence from the School of Mathematics and Statis-
tics, Changsha University of Science and Techno-
logy (CSUST), China, in 2019. She is currently a
master student in management science and engi-
neering at the College of Systems Engineering,
National University of Defense Technology

(NUDT), China. Her research interests are artificial intelligence, deep
reinforcement learning, and metaheuristics, mainly focusing on distribu-
tion management and satellite scheduling problems such as collabora-
tive mission planning methods of multi-satellite mobile target tracking.
E-mail: jun_wen@aliyun.com

LIU Xiaolu was born in 1985. She received her
B.E. degree in system engineering from National
University of Defense Technology (NUDT),
China, in 2006, and Ph.D. degree in management
science and engineering from NUDT in 2011.
From October 2015 to October 2016, she was a
visiting scholar in École des Hautes Études com-
merciales de Montréal (HEC), Montreal, Canada.

She is currently an associate professor at the College of Systems Engine-
ering, NUDT. Her research insterests are artificial intelligence and me-
taheuristics, focusing on distribution management and satellite schedul-
ing problems.
E-mail: lxl_sunny@nudt.edu.cn

HE Lei was born in 1991. He received his B.E.
degree in management engineering from National
University of Defense Technology (NUDT),
China, in 2014, and Ph.D. degree in management
science and engineering from NUDT in 2019.
From October 2017 to October 2019, he was a
visiting Ph.D. student in Delft University of Tech-
nology, the Netherlands. He is currently a lec-

turer at the College of Systems Engineering, NUDT. His research in-
terests include artificial intelligence and machine learning. His current
research focuses on the optimization of scheduling and planning of
Earth observation satellites missions by designing exact and metaheu-
ristic algorithms.
E-mail: helei@nudt.edu.cn

1420 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021

