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Abstract: The  emergent  task  is  a  kind  of  uncertain  event  that
satellite  systems  often  encounter  in  the  application  process.  In
this  paper,  the  multi-satellite  distributed  coordinating  and
scheduling problem considering emergent tasks is studied. Due
to  the  limitation  of  onboard  computational  resources  and  time,
common  online  onboard  rescheduling  methods  for  such  prob-
lems usually adopt simple greedy methods, sacrificing the solu-
tion quality to deliver timely solutions. To better solve the prob-
lem,  a  new  multi-satellite  onboard  scheduling  and  coordinating
framework based on multi-solution integration is proposed. This
method uses high computational power on the ground and gene-
rates  multiple  solutions,  changing  the  complex  onboard  res-
cheduling  problem  to  a  solution  selection  problem.  With  this
method, it is possible that little time is used to generate a solu-
tion that  is  as  good as the solutions on the ground.  We further
propose  several  multi-satellite  coordination  methods  based  on
the multi-agent Markov decision process (MMDP) and mixed-in-
teger programming (MIP). These methods enable the satellite to
make independent decisions and produce high-quality solutions.
Compared  with  the  traditional  centralized  scheduling  method,
the  proposed  distributed  method  reduces  the  cost  of  satellite
communication and increases the response speed for emergent
tasks. Extensive experiments show that the proposed multi-solu-
tion  integration  framework  and  the  distributed  coordinating
strategies are efficient and effective for onboard scheduling con-
sidering emergent tasks.

Keywords: agile  satellite  scheduling,  emergent  task,  onboard
rescheduling, distributed coordinating, multi-solution integration.
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1. Introduction
The operation of the Earth observation satellite is always
subject  to  various  uncertainties,  such  as  emergent  tasks,
changes  of  cloud  cover,  and  uncertain  breakdowns.  To
deal with the uncertainties,  methods usually include pro-

active (offline) methods [1] and reactive (online) methods
[2]. Proactive methods usually use the knowledge of un-
certainties,  such as  the known probability  distribution of
future  uncertainties,  to  maximize  the  expected  revenue.
Reactive  methods  are  event-driven  and  they  schedule
tasks online. In this paper, we focus on the latter methods.
We consider  a  satellite  scheduling problem with random
emergent  tasks  arriving  in  real-time  and  we  assume that
the  information  about  the  emergent  tasks  is  unknown  in
advance.

The satellite scheduling problem is an over-subscribed
problem, which means that  the capacity  cannot  meet  the
demand.  As a result,  only a subset  of  tasks can be sche-
duled.  For  such  over-subscribed  problems  with  random
task  arrivals,  some  researchers  use  two-stage  methods:
first accepting the tasks and then scheduling the accepted
ones.  Wu  et  al.  [3,4]  studied  task-accepting  policies,
which  considered  the  cost  to  remove scheduled  tasks  on
the  timeline,  the  revenue  of  the  new  task,  and  the  re-
sources needed for the new task. If the task is accepted, it
is  scheduled  in  the  closest  time  window.  Kim  et  al.  [5]
proposed  a  heuristic  algorithm  to  obtain  a  near-optimal
solution  of  the  formulated  mixed-integer  programming
(MIP)  based  on  the  time  windows  pruning  procedure.
Arredondo  et  al.  [6]  and  Snoek  [7]  used  reinforcement
learning  to  study  the  policies  of  acceptance.  Other  me-
thods  include  dynamic  programming  [8],  simulation-
based rules [9], and meta-heuristics [10].

Although  separating  the  accepting  and  scheduling
problems  could  lead  to  lower  complexity,  the  two  prob-
lems  are  coupled,  and  separating  them  could  affect  the
solution  quality.  In  methods  that  treated  the  two  prob-
lems as a whole, Rahman et al. [11] proposed a memetic
algorithm,  whose  online  running  time  is  around  tens  of
seconds; Su et al. [12] transformed the dynamic problem
to several static ones by using the rolling horizon method.
Similar methods were also adopted by Qiu et al. [13] and
Liao  et  al.  [14].  Xu  et  al.  [15]  proposed  a  dynamic  pro-
gramming  method  with  online  running  time  around  tens
of  seconds.  Wang  et  al.  [16]  proposed  a  simple  but  fast
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heuristic  method,  which  could  merge  the  emergent  task
into  the  scheduled  ones.  Similarly,  Chien  et  al.  [17]  and
Beaumet  et  al.  [18]  also  used  a  heuristic-based  greedy
method  to  reschedule  tasks  with  the  aim  of  providing
timely  solutions,  but  the  solution  quality  cannot  be  gua-
ranteed.  Wu et  al.  [19],  Li  et  al.  [20]  and  He  et  al.  [21]
used the ant colony optimization method. Chu et al. [22]
proposed  an  exact  branch  and  bound  method,  but  the
method  adopts  the  anytime  policy,  which  provides  the
best  current  solution  if  the  time  limit  of  calculation  is
reached.  Cui  et  al.  [23]  proposed  a  dynamic  scheduling
algorithm based on mission priority with a hybrid genetic
tabu  search  algorithm  to  obtain  the  initial  satellite
scheduling plan.

We can  find  that  many  online  scheduling  methods  do
not  consider  the  online  running  time  [3,24−26].  This
might be acceptable for some problems. However, for the
satellite  scheduling problem, available time windows for
tasks  are  usually  quite  short,  and  if  the  tasks  are  not
scheduled timely, their time windows might be wasted. In
addition,  the onboard computer  has  very weak computa-
tional power that  is  around 10% of  that  of a typical  per-
sonal  computer  on  the  ground  [22].  Complex  methods
such  as  memetic  algorithms  [11]  and  dynamic  program-
ming [15]  could take hundreds of  seconds or  even seve-
ral hours, which is certainly unacceptable. As a result, we
can  see  that,  for  the  online  scheduling  problem of  satel-
lites,  the  methods  are  usually  simple  and  greedy
[16−18,27] or anytime [22], which sacrifices the solution
quality  to  deliver  timely  solutions  and  increase  the  re-
sponsiveness of the satellite.

Another difficulty of this problem is to coordinate mul-
tiple satellites with limited communication opportunities.
Current multi-satellite coordinating methods adopt a cen-
tralized  manner  [28−33],  which  uses  one  satellite  or  the
ground station  to  generate  solutions  for  all  the  satellites.
Such methods are certainly not suitable for the problems
with  random  emergent  tasks,  because  they  need  a  long
time  to  calculate  and  transfer  data  with  limited  commu-
nication windows. Some researchers use the contract  net
protocol [34] or similar ideas [35],  but such methods re-
quire frequent negotiation among satellites, which results
in a high communication cost.

As can be seen from the above analysis, there are two
questions this paper aims to answer. First, is it possible to
generate  near-optimal  solutions  with  limited  onboard
computational  resources  within  limited  computation
time? Second, is it possible to coordinate multiple distri-
buted  satellites  to  generate  complementary  solutions
without much communication?

To answer the above questions, this paper proposes an
efficient real-time online rescheduling algorithm for mul-

tiple agile earth observation satellites with random emer-
gent tasks. The contribution of the paper are as follows:

(i)  A  multiple  feasible  solution  integration  framework
for  emergent  task  scheduling  is  proposed  for  the  first
time.  The  framework  makes  it  possible  for  a  satellite  to
generate solutions on the ground in a short time.

(ii) Multi-satellite distributed cooperative rescheduling
methods  based  on  the  multi-agent  Markov  decision  pro-
cess  and  the  mixed-integer  programming  are  proposed.
These  methods  enable  the  satellites  in  orbit  to  generate
complementary  and  non-conflicting  solutions  without
much communication.

(iii)  In  the  experiment,  the  adaptability  of  different
multi-satellite  distributed  cooperative  strategies  to  sce-
narios  with  different  characteristics  is  analyzed.  These
conclusions are helpful to guide the selection of appropri-
ate  methods  for  different  types  of  problems  in  practical
engineering applications. 

2. Problem
In this paper, we consider a real-time online rescheduling
problem  for  multiple  agile  Earth  observation  satellites
with  random  emergent  tasks.  The  problem  consists  of
simultaneously selecting a subset of tasks to be observed
from multiple orbits of multiple satellites,  generating the
associated  schedule,  and  rescheduling  the  solution  when
random  emergent  tasks  arrive  online.  The  problem  for
scheduling  the  agile  Earth  observation  satellite  is  diffi-
cult because each task has several long time windows and
the  transition  time  between  any  two  adjacent  tasks  de-
pends  on  the  start  time  of  the  two  tasks.  The  static  ver-
sion of the problem is already an non-deterministic poly-
nominal  hard  (NP-hard)  problem.  In  the  considered  dy-
namic  version,  emergent  tasks  arrive  during  the  execu-
tion in real-time. The rescheduling must be done quickly,
which  adds  difficulties  to  the  problem.  The  goal  of  this
research  is  to  generate  a  rescheduling  solution  online
quickly  with  limited  onboard  computational  resources,
which is almost as good as the solution by an offline om-
niscient solver. 

2.1    Problem model

⟨T,S ,H⟩ T S
H = {1, · · · ,H}

H

The  problem  can  be  described  by  a  three-element  tuple
,  where  is  the  task  set,  is  the  satellite  set,

and  is  a  limited scheduling interval  (usu-
ally one day).  is the discrete scheduling step.

ti T
⟨gi,di,ai,Wi, xi j,ui,vi⟩ gi

ti di ∈ H

ai ∈ H∨ai = 0

The task set includes regular tasks and emergent tasks.
Each  task  in  contains  the  following  attributes:

.  is the benefit of performing task
;  is the processing time of the task, which is the

shortest  continuous  imaging  time  specified  by  the  user;
 is the random arrival time of the task, for
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ai = 0 ai ∈ H

Wi

ti Wi = {⟨si1,bi1,ei1⟩, · · · ,
⟨si|S |,bi|Wi |,ei|Wi |⟩} |Wi|

s ∈ S

b,e ∈ H xi j ui

xi j ∈ {0,1} ti

jth ui

ti vi

vi = ui+di

regular  tasks  and  for  emergent  tasks .  The
scheduling of emergent tasks can only be started after the
task arrives. At the same time, the calculation time should
be considered, that is,  if  the scheduling is not completed
before  the  end  of  the  visible  time  window  of  the  emer-
gent  task,  the  emergent  task  will  be  abandoned.  Emer-
gent  tasks  may include  three  sources:  new tasks  submit-
ted  by  users,  new  tasks  discovered  independently  by
satellites  (such  as  volcanic  activities  and  other  natural
disasters),  and  tasks  that  failed  due  to  uncertain  factors
(such as  cloud cover  and satellite  failures).  is  the  set
of visible time windows for task . 

 contains  visible  time  windows,  and
each window is specified by the satellite  to which it
belongs, b and e are the start time and the end time of the
visible time window and ,  and  are decision
variables and  represents whether task  is ob-
served in the  time window, and  represents the ob-
servation  start  time  of  task .  is  the  observation  end
time of the task, and .

{Sol1,Sol2, · · · ,SolS} s ∈
S Sols = {Sol1

s ,Sol2
s , · · · ,SolHs }

The  solution  to  this  problem  can  be  expressed  as
,  and the  solution of  the  satellite 

 is  expressed  as ,  which
defines the solution at each decision step. The scheduling
sub-problem  at  each  step  can  be  regarded  as  a  static
scheduling problem. The scheduling goal is to maximize
the  total  revenue  of  all  selected  tasks.  The  problem mo-
del is defined as follows:

max
|T |∑
i=1

|Wi |∑
j=1

gixi j

s.t.
|Wi |∑
j=1

xi j ⩽ 1, ∀ti ∈ T, (1)

bi j ⩽ ui ⩽ ei j, xi j = 1, (2)

vi+τii′ ⩽ ui′ , pii′ = 1, (3)

xi j ∈ {0,1}, ti ∈ T,wi j ∈Wi, (4)

pii′ ∈ {0,1}, ti, ti′ ∈ T, (5)

τii′ ⩾ 0, ti ∈ T. (6)

Constraint  (1)  is  the  uniqueness  constraint,  which
means that each task can be observed at most once.

Constraint  (2)  is  the  visible  time  window  constraint,
which means that each task can only be observed in one
of the visible time windows.

Constraint  (3)  is  the  attitude  transition  constraint,
which means that the time interval between any two adja-

τii′

ti ti′

τii′ =
|θi− θi′ |

a
+ tstable θi θi′

ti ti′

a
tstable

pii′

ti ti′

cent  observations  must  be  sufficient  for  the  satellite  to
transit  its  observation attitude.  represents  the  attitude
transition  time  from  task  to  task ,

, where  and  are the satellite atti-
tude angle of  the observation task  and task  respect-
ively,  is  the  angular  velocity  of  the  satellite  attitude
maneuver,  is the minimum stabilizing time required
for  satellite  attitude  maneuver,  and  is  a  binary  vari-
able with 1 representing task  and task  are two adja-
cent tasks.

Constraints (4)−(6) represent the domain of each vari-
able. 

2.2    Problem analysis

In current rescheduling algorithms, no information about
unscheduled tasks is  considered.  However,  this  is  a  kind
of  important  information that  can be  utilized.  Here  is  an
example to illustrate this point. In Fig. 1, the satellite can
only  choose  from  Tasks  5−8  or  Tasks  1−4  to  observe.
With the assumption that Tasks 5−8 have higher revenue,
the satellite will choose the optimal solution, which is ob-
serving Tasks 5−8. However, if an emergent Task 9 with
very  high  revenue  is  submitted  during  the  execution,  a
traditional  task  repair  policy  will  not  be  able  to  insert
Task 9 into the current solution. In addition, if  emergent
Task 9 arrives just before the satellite observes Task 5, a
rescheduling  process  on  the  ground  will  not  be  timely
enough.  However,  in  this  case,  if  the satellite  retains the
solution of observing Tasks 1−4, which is slightly worse
than  the  optimal  solution  when  submitting  Task  9,  the
revenue  of  the  solution  will  exceed  the  current  optimal
solution, and the satellite can quickly generate a new op-
timal  solution  without  performing  a  series  of  scheduling
calculations  (for  example,  to  find  and compare  a  variety
of revenues of sequencing Tasks 1−9).
  

1

2

3

4

9

5

6

7

8

Fig. 1    Example of satellite observation
 

The idea proposed in this paper is to transfer the com-
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plex online rescheduling process to offline scheduling on
the ground. The core method is to use the powerful com-
puting power of the ground to generate multiple feasible
solutions, including feasible scheduling solutions of tasks
outside  the  scheduling  scheme  that  cannot  be  contained
by a single optimal solution. 

3. Method
We propose a new framework for the problem as shown
in Fig. 2, which includes an offline scheduling and train-
ing  stage  and  an  online  rescheduling  stage.  The  idea  to
achieve an efficient online rescheduling method with limi-
ted onboard computational resources is to move the diffi-
culties of scheduling multiple agile satellites (i.e., select-
ing the tasks and sequencing them with the time-depend-
ency)  to  the  ground.  Instead  of  generating  a  single  opti-
mal solution, the offline training stage generates multiple
high-quality  solutions.  When  an  emergent  task  arrives,
the  satellite  can  select  a  solution  to  insert  the  emergent
task into it quickly without carrying out too much calcu-
lation.
 
 

Offline
scheduling

Multiple

feasible

solutions

Offline 

training

Offline

Execute

Evaluator to 
match 

uncertainty 
with state

Optimal
strategy

Select action

Rescheduling

Uncertainty

Online

Fig. 2    Rescheduling algorithm framework
 

In the offline stage, we use a meta-heuristic algorithm
called the adaptive large neighborhood search (ALNS) to
generate  multiple  high-quality  solutions.  When an emer-
gent  task arrives,  the satellite  only needs to compare the
multiple  solutions  and  choose  the  best  one.  Since  the
multiple  solutions  might  have  repetitive  observations
which  could  reduce  the  revenue,  we  use  a  multi-agent
Markov decision process (MMDP) model to train an op-
timal policy to decouple the multiple solutions. With the
trained  policy,  we  make  sure  that  the  solutions  selected
by the satellites in different sections have the highest re-
venue and the least repetitive observations.

In  the  online  stage,  we  adopt  an  efficient  insertion
policy that determines the feasibility of insertion accord-
ing  to  pre-computed  time  slacks  considering  time-de-
pendent  transition  times.  The  solution  into  which  the
emergent task can be inserted and which has the highest

revenue will be selected as the new solution replacing the
current  solution in  the  corresponding section.  If  the  new
solution has the same tasks that  are  also in the solutions
in other sections, these solutions will be changed to other
ones  according  to  the  offline  trained  policy.  Another
problem is that the optimal policy will become less accu-
rate when many emergent tasks are inserted because it is
trained based on offline generated solutions. To solve this
problem, we also propose to solve the same MMDP mo-
del onboard to decouple the multiple solutions with accu-
rate solution information. 

3.1    Multiple feasible solutions generated

The basic  method to generate  multiple  feasible  solutions
adopts the adaptive large neighbourhood search with tabu
search, partial sequence dominance, fast insertion (ALNS/
TPF)  method  proposed  in  [36,37]  and  the  adaptive  task
assigning large neighbourhood search (A-ALNS) method
proposed  in  [38].  A-ALNS  is  mainly  oriented  to  multi-
satellite scheduling and generates an initial solution to as-
sign tasks to different satellites. ALNS/TPF is mainly ap-
plied to the scheduling of tasks that have been assigned to
a single satellite,  and multiple optimal and feasible solu-
tions  can  be  saved  through  running  multiple  iterations.
The generation steps are as follows:
Step 1　Use the A-ALNS algorithm to generate a high-

quality initial solution.
Step 2　Assign the successfully-scheduled tasks to the

corresponding satellites.
Step 3　Assign the  unsuccessfully-scheduled tasks  to

all satellites.

n−1

Step 4　For the new task set on each satellite, the ALNS/
TPF  algorithm  is  used  to  get  several  new  feasible  alter-
native  solutions.  During  the  solution  process,  fea-
sible solutions with the highest revenue are saved.

A process for generating multiple alternative solutions
is shown in Fig. 3, where Steps 2 and 3 are omitted.
  

Step 4: Calculate multiple alternative 

feasible solutions for each satellite

Step 1: Calculate an initial solution

Fig. 3    Multiple alternate feasible solutions
 

In Step 1, the A-ALNS algorithm is used to generate a
high-quality  initial  solution.  Note  that  this  “initial  solu-
tion” is defined differently from the “initial  solution” in
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n−1

n

common  heuristics,  the  initial  solution  here  is  the  best
solution found by using the  A-ALNS algorithm.  Its  pur-
pose is to assign tasks to different satellites and then use
the  single-satellite  algorithm  to  generate  multiple  feasi-
ble solutions on the task set of each satellite to achieve ef-
fective  coverage  of  solution  space.  However,  one  prob-
lem  to  be  considered  is  that  there  may  be  cases  of  ob-
serving  the  same  task  among  multiple  feasible  solutions
of multiple satellites, and repeated observations will lead
to  reduced  benefits.  In  order  to  avoid  that  problem,  this
method  will  only  assign  unscheduled  tasks  in  the  A-
ALNS  to  different  satellites.  Other  tasks  successfully
scheduled by A-ALNS will only be executed on their se-
lected  satellites,  and  the  executing  satellites  will  not  be
changed in the subsequent  scheduling process.  In Step 4
of Fig.  3,  unscheduled  tasks  are  assigned  to  different
satellites,  and  the  task  set  on  each  satellite  changes.  At
this  time,  the  ALNS/TPF  method  is  used  to  obtain  the
new task set, and  feasible solutions with the highest
revenue  are  retained  in  the  solution  process.  Finally,  on
each satellite, a total of  feasible solutions are generated.
In  these  feasible  solutions,  except  for  those  unscheduled
tasks, there will be no repeated observations. 

3.2    Multi-satellite distributed cooperation approach

Until  now,  several  alternative  feasible  solutions  have
been generated for each satellite. When the emergent task
arrives, the online evaluator will check whether the emer-
gent task can be inserted into each feasible solution. This
process  adopts  the  quick  insertion  method  introduced  in
[36] to quickly determine whether each task can be inser-
ted. Each satellite then decides which feasible solution it
will  choose to perform the emergent  task.  However,  due
to  the  existence  of  multiple  feasible  solutions  for  un-
scheduled  tasks,  the  feasible  solutions  selected  by  each
satellite  may  include  certain  tasks  that  have  been  ob-
served by other  satellites.  In order  to coordinate the fea-
sible solutions of multiple satellite selection, three coopera-
tion mechanisms are proposed in this paper.

(i) Greedy selection mechanism
This  is  the  simplest  selection  mechanism.  Each  satel-

lite only records its multiple feasible solutions. When the
emergent task arrives, each satellite invokes an evaluator
to evaluate the revenues when inserting the emergent task
into  each  feasible  solution  and  chooses  the  one  with  the
highest revenue. This method can quickly select a feasible
solution,  but  it  is  difficult  to  avoid  the  situation  that  the
same task is observed by multiple satellites simultaneously.

(ii)  Optimal  cooperative  policy  mechanism  based  on
the multi-agent Markov decision process

If  each  satellite  is  assumed  to  be  an  agent,  multiple
satellites can constitute a multi-agent system.

One  way  to  solve  the  problem  of  repeated  observa-
tions  is  to  adopt  multi-agent  communication  methods
such as a contract network [37] to coordinate the decision-
making of each satellite. However, this method which re-
quires  real-time  information  communication  has  a  high
application  cost.  Another  method  is  that  each  agent  re-
cords  and  tracks  the  current  state  of  other  satellites.
Through  the  optimal  feasible  solution  selection  policy
corresponding to each state combination of offline calcu-
lation,  the  feasible  solution  can be  quickly  selected  with
less communication and avoid repetition. However, since
each  satellite  contains  multiple  feasible  solutions,  the
joint  matrix  size  of  its  combined  state  will  increase  ra-
pidly with the increase of the number of agents and fea-
sible solutions, which makes it impossible to calculate an
effective  selection  policy.  The  specific  application  me-
thod  is  presented  in Fig.  4.  As  shown  in Fig.  4(a),  each
agent needs to consider the joint state of all other agents.
In  order  to  solve  this  problem,  the  constraint  of  multi-
agent  is  used  to  decouple  the  joint  state  among  agents
[39], as shown in Fig. 4(b).
  

Agent

Agent Agent

Agent Agent

Agent

Agent

Agent Agent

Agent Agent

Agent

Constraint

(a) Joint state (b) Decoupling joint state

Fig. 4    Multi-agent decoupling
 

Pi(t,a)
In order to describe the constraints among solutions, an

intermediate  variable  is  introduced,  which  is
defined as follows:

Pi(t,a) =
{

1 , task t is in solution a of agent i
0 , else . (7)

Other variables of the model are defined as follows:
Ai i

2×n
:  The action space of  agent .  It  can be represented

by a  matrix.
Si i

i n(n+1)

n+1

: The state space of agent . The state space of agent
 can be represented by an  matrix. The row num-

ber  of  the  matrix  represents  the  currently  executed  solu-
tion. In the matrix, the n column represents the best solu-
tion  that  the  current  emergent  task  can  be  inserted  into,
and the  column indicates that the emergent task can-
not be inserted into any solutions.

Ti(s,a, s′) i
i s

s′ a

: The state transition matrix of agent , which
represents the probability that agent  transit from state 
to  when performing action .

Ri(s,a) i
a i

:  The  revenue  matrix  of  agent ,  which  repre-
sents the revenue of executing action  when agent  is in
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sstate .  The revenue is equal to the revenue of the feasi-
ble solution. However, in order to encourage the agent to
choose the optimal solution given by the evaluator, when
the agent chooses the solution given by the evaluator, the
agent’s revenue increases by 10 units.

xi
h,s,a ∈ [0,1]

i a
s

:  Decision  variable,  which  represents  the
probability  that  agent  will  perform  action  when  the
state is  at the hth decision step.

H h ∈ H:  Scheduling  horizon. .  Every  time  an  emer-
gent task arrives, a decision is made.

M : The maximum number of observations for a single
task.  The  method  uses  this  value  to  limit  the  number  of
repeated observations.

This  MMDP  is  constructed  as  a  linear  programming
(LP) model [40,41] which is defined as follows:

max
n∑

i=1

H∑
h=1

∑
s∈Si

∑
a∈Ai

xi
h,s,a ·Ri(s,a) (8)

s.t.∑
a∈Ai

xi
h+1,s′ ,a =

∑
s∈Si

∑
a∈Ai

xi
h,s,a ·Ti(s,a, s′), ∀i,h, s′ ∈ Si, (9)

∑
a∈Ai

xi
1,s,a = T1,i(s), ∀i, s ∈ Si, (10)

n∑
i=1

∑
s∈Si

∑
a∈Ai ,a%2=0

xi
h,s,a ⩽ M, ∀h ∈ H, (11)

n∑
i=1

∑
s∈Si

∑
a∈Ai

xi
h,s,aPi(t,a) ⩽ M, ∀h ∈ H, t ∈ T, (12)

n∑
i=1

∑
s∈Si ,s%(n+1)

∑
a∈Ai ,a%2=0

xi
h,s,a = 0, ∀h ∈ H, (13)

0 ⩽ xi
h,s,a ⩽ 1, ∀i,h, s,a. (14)

T1,i(s)

The  objective  function  (8)  maximizes  the  sum  of  the
profits of all actions. Constraints (9) and (10) are the con-
straints  that  maintain  the  state  transition  probability,
where  represents the initial state probability. Con-
straints (11) and (12) limit the number of repeated obser-
vations.  Constraint  (11)  restricts  the  number  of  observa-
tions  for  emergent  tasks,  and  constraint  (12)  limits  the
number  of  observations  for  each  ordinary  task.  Con-
straint (13) means that when the emergent task cannot be
inserted,  the  agent  will  not  choose  to  observe  the  emer-
gent  task.  Constraint  (14)  represents  the  domain  of  the
decision variable.

The  MMDP model  requires  that  each  agent  can  make
independent decisions without retaining the feasible solu-

Ĥ < H
hcom

scom

tion  information  of  other  agents  and  relying  on  frequent
information interaction. However, with the increase of the
number  of  decision-making  steps,  the  accuracy  of  each
agent’s decision-making  reasoning  for  other  agents  will
decrease. Therefore, if a periodic communication mecha-
nism is introduced, accurate state information can be ob-
tained  among agents,  and  the  accuracy  of  decision-mak-
ing can be improved. During communication, the ground
station  collects  information  from  the  satellite  and  calcu-
lates  the  new  optimal  policy  of  the  satellite  before  the
next  communication phase.  Let  be the communi-
cation cycle,  be the moment of communication, and

 be the accurate state information during the commu-
nication,  then  the  above  objective  function  can  be  re-
placed by

max
n∑

i=1

min(hcom+Ĥ,H)∑
h=hcom

∑
s∈Si

∑
a∈Ai

xi
h,s,a ·Ri(s,a).

Constraints (8) are changed to match the current state:∑
a∈Ai

xi
hcom ,scom ,a = 1，∀i. (15)

(iii) Optimal selection mechanism based on MIP
The biggest drawback of the method introduced in the

previous section is that each agent is required to make in-
dependent  decisions  without  knowing  the  decisions  of
other  agents,  which  will  lead  to  an  inevitable  decline  in
revenue over time. If each agent can record the solutions
of  other  agents  and update  the  information with  a  deter-
ministic  method,  then  multiple  agents  can  maintain  a
higher revenue without communication. Next, we will in-
troduce an optimal selection mechanism based on MIP.

The MIP model contains the following variables:
Ai i n

n
: Agent i’s action space. Agent  contains  optional

actions,  respectively  corresponding  to  alternative  fea-
sible solutions.

Pi(t,a)
t a

:  The  intermediate  variable,  as  defined  in  (7),
representing whether task  is executed when action  is
being performed (that is, choosing a feasible solution).

Ri(a) i
a

a

: The revenue matrix of agent , which represents
the revenue of agent i’s execution of action , namely the
revenue  of  feasible  solution .  The  state  is  not  included
here,  because  the  MIP  is  called  on  at  each  step,  corres-
ponding to the current state.

xia ∈ {0,1}
i a

:  Decision  variables,  representing  whether
agent  selects action .

The model is defined as

max
∑

a

∑
i

xiaRi(a)−
∑

t

max(0,
∑

a

∑
i

xiaPi(t,a)−1)gt

(16)
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s.t. ∑
a

xia = 1, ∀i, (17)

xia ∈ {0,1}, ∀i,a. (18)
gt

t
In  the  objective  function  (16),  represents  the  reve-

nue  of  task .  The  goal  of  the  first  half  of  the  objective
function is to maximize the sum of the benefits of all the
selected  solutions;  the  latter  half  means  that  the  benefits
of  all  repeated  observation  tasks  are  subtracted.  Con-
straint  (17)  means  that  each  agent  can  only  choose  one
feasible solution when making a decision. Constraint (18)
shows the domain of the decision variable.

In order to ensure the decision synchronization of each
agent,  each  agent  must  record  other  agents’ information
on the feasible solutions, which will consume part of the
storage  resources.  At  the  same  time,  different  from  the
method introduced in Section 2, this method requires the
MIP  model  to  be  re-invoked  for  solving  each  decision,
while  the  MMDP  in  Section  2  is  only  solved  once  for
each  satellite  communication,  so  its  efficiency  will  be
higher. Despite this, the efficiency of this MIP-based op-
timal  selection  mechanism  is  still  higher  than  the  tradi-
tional online rescheduling method, because the tradition-
al  method  solves  the  rescheduling  problem  online,  and
the number of constraints and variables to be considered
is much higher than the MIP problem proposed here. 

4. Results
The algorithm is written in the C# language and runs on a
computer with Intel Core i5-3 470 3.20 GHz CPU, 8 GB
memory, and 64-bit Windows 7 system. The LP and MIP
models are solved by IBM ILOG CPLEX 12.8 [42]. 

4.1    Design and generation of examples

ax e ic
ω

m

In  order  to  verify  the  effectiveness  of  the  proposed  al-
gorithm, we generate multiple benchmark instances.  The
method  of  generating  instances  is  to  randomly  generate
point  targets  on  the  whole  world,  which  contains  12  in-
stances  in  total.  The number  of  tasks  varies  from 100 to
400,  with  the  increment  step  being  100,  and  each  con-
tains one to three satellites. In order to make the instance
contain  emergent  tasks,  we  randomly  select  20% of  the
tasks  from  each  instance  as  emergent  tasks.  When  the
number of tasks is greater than 200, only 40 tasks are se-
lected  as  emergent  tasks.  The  scheduling  horizon  of  the
instance  is  from  00:00:00  to  24:00:00,  April  20,  2017.
During  this  horizon,  each  satellite  contains  about  15−16
orbits.  The  six  orbital  parameters  of  the  satellite  are  the
semimajor axis ,  eccentricity ,  inclination ,  perigee
angle , right ascension of ascending node (RAAN) and
true  perigee  angle .  The  initial  orbit  parameters  of  all
three satellites used are shown in Table 1 .
 

 
 

Table 1    Satellite orbit parameters

Satellite ax e ic ω/(°) RAAN m

Satellite 1 7 200 000 0.000 627 96.576 0 175.72 0.075

Satellite 2 7 200 000 0.000 627 96.576 0 145.72 30.075

Satellite 3 7 200 000 0.000 627 96.576 0 115.72 60.075

 

The parameters of ALNS/TPF and A-ALNS algorithms
are the same as those introduced in the corresponding pa-
pers, and the other parameters introduced in this paper are
fixed as follows:

n = 5Number of alternative feasible solutions: .

H = 40
Schedule  horizon  based  on  the  MMDP  method:

. The rescheduling is performed once every emer-
gent task arrives. Thus the length of the scheduling hori-
zon should be greater than the number of emergent tasks.

M = 2
Observation limit of each decision for a task based on

the MMDP method: .
In the experiment, five methods were compared. First,

full  rescheduling (FR)  algorithm.  Every  time a  new task
arrives,  A-ALNS  is  called  on  to  regenerate  a  new
scheduling  solution.  Second,  online  repair  based  on  a

single  feasible  solution  algorithm (single-solution  repair,
SSR).  Third,  rescheduling  methods  based  on  the  greedy
selection  (GS)  policy.  Fourth,  the  optimal  cooperative
policy  mechanism  based  on  the  MMDP  (MMDP-based
optimal  policy,  MMDPOP).  Fifth,  the  optimal  selection
mechanism based  on  MIP  (MIP-based  selection,  MIPS).
It  should  be  pointed  out  that  the  purpose  of  the  experi-
ment  in  this  section  is  to  verify  the  effectiveness  of  the
proposed  multiple  feasible  solutions  mechanisms  and  at
the  same  time  to  compare  the  performance  of  multiple
multi-satellite  coordination  mechanisms.  Therefore,  the
onboard  rescheduling  method  uses  a  simple  insertion
policy:  that  is,  the  insertion  policy  is  adopted  to  only
quickly check the feasibility of task insertion. If the inser-
tion cannot  be  performed,  the  task is  abandoned and the
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task that has been successfully scheduled is not conside-
red for cancellation. 

4.2    Analysis of experimental results

In  the  following  experiment,  each  instance  is  run  10
times, and the results in the figures and tables are the ave-
rage of revenue and running time of 10 runs.

Fig.  5 shows  the  rescheduling  of  different  algorithms
when the number of satellites is one. When the number of
satellites  is  one,  the  MIPS  and  GS  algorithms  are  the
same, therefore the revenue of the algorithm is almost the
same. Because  the MMDPOP sometimes chooses not to
observe  emergent  tasks  conservatively,  the  revenues  are
slightly lower than those of the other two algorithms. As
the  SSR  algorithm  only  contains  a  single  feasible  solu-
tion, when the number of tasks increases, the probability
that the emergent task can be inserted is lower.  As there
is no other feasible solution in the SSR algorithm, its reve-
nue gap with other algorithms gradually increases, which
also  proves  the  effectiveness  of  the  alternative  feasible
solution in the algorithm framework proposed in this pa-
per.  The  FR  algorithm  has  a  greater  degree  of  freedom
because it  fully reschedules the instance when the emer-

gent  task  arrives,  and  should  theoretically  have  the
highest  revenues  if  given  sufficient  computing  time.
However,  it  can  be  observed  that  the  FR algorithm only
shows  advantages  for  100  and  200  tasks.  Since  FR  is
based  on  A-ALNS,  which  only  generates  a  single  feasi-
ble  solution  and  could  not  provide  global  optimal  solu-
tions when the solution space is too large, for large-scale
instances with 300 and 400 tasks, the gap to global opti-
mum of FR becomes larger and the synthetic value of ge-
nerating  multiple  feasible  solutions  and  combining  them
exceeds  a  single  solution.  This  explains  why  FR  some-
times  performs  worse  than  other  methods  as  shown  in
Fig.  5(c)  and Fig.  5(d).  It  should  be  pointed out  that  the
calculation time of using FR is less than the offline calcu-
lation  time  of  other  algorithms  because  other  algorithms
need  to  calculate  multiple  feasible  solutions  and  search
for  more  solution  space.  At  the  same  time,  the  FR  al-
gorithm belongs to a centralized rescheduling method and
is an ideal method requiring that all tasks on all satellites
are rescheduled every time an emergent task arrives. This
exerts  great  challenges  on  the  satellites’ management,
control, and communication system and is not applicable
under the current technical conditions.
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Fig. 5    Comparison of rescheduling results where there is one satellite
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When the number of satellites is 2 (as shown in Fig. 6),
due to the increase in the number of tasks that can be ob-
served,  a  single  satellite  can  have  a  larger  space  for  in-
serting emergent tasks, so the performance of the SSR al-
gorithm  is  better  than  that  when  there  is  only  a  single
satellite, and it is also more obvious when the number of
satellites  is  three  (as  shown  in Fig.  7),  which  even  ex-
ceeds  the  MMDPOP  algorithm  on  a  smaller  scale.  The
advantages of the MIPS algorithm over other algorithms,
especially  relative  to  GS,  are  more  obvious  when  the
number of satellites is large. It can be seen that in Fig. 6 (d)
and Fig. 7 (d), the performance of the MIPS algorithm far
exceeds  the  GS  algorithm  and  even  exceeds  the  FR  al-
gorithm.  It  shows  the  effectiveness  of  the  proposed  op-
timal  selection  mechanism  based  on  MIP.  However,  the

disadvantage  of  the  MIPS  algorithm  is  that  when  emer-
gent  tasks  arrive,  the  task  insertion  and the  MIP solving
operation need to be performed on each satellite, and the
online  calculation  time  is  longer.  Although  MMDPOP
does not need to resolve the optimal policy, its revenue is
not significantly better than the GS algorithm, and it only
shows a certain advantage when the number of tasks and
the  number  of  satellites  are  large.  Because  the  GS  al-
gorithm is  a  greedy  selection  of  feasible  solutions  when
the  number  of  tasks  and  the  number  of  satellites  in-
creases, the rate of repeated observations among feasible
solutions increases. At the same time, the optimal policy
trained  using  the  MMDPOP  algorithm  can  prevent  re-
peated  observations  to  a  certain  extent,  so  the  perform-
ance is better.
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Fig. 6    Comparison of rescheduling results where there are two satellites
 

The average objective  values  of  all  the  compared me-
thods are shown in Table 2.

The average time for each algorithm to perform an on-
line rescheduling process on different instances is shown
in Table 3. Among them, the FR algorithm consumes the
longest  time  because  the  solution  is  completely  resche-
duled;  the  MMDPOP,  GS,  and  SSR  algorithms  only  in-

sert tasks and select the solution according to the trained
policy in the online phase, so the calculation time is very
short; the MIPS consumes relatively longer time because
it needs to solve the MIP model online. According to the
data in [22,43], onboard computers are usually 10 to 1 000
times slower than typical computers on the ground. Even
if the time is multiplied by 1 000, the longest reschedul-
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ing  time  of  the  MIPS  algorithm  is  46  s,  which  is  still
within  the  acceptable  range.  However,  the  FR algorithm
takes up to 10 744.4 s  (nearly 3 h).  Obviously,  although
the FR algorithm has the best solution quality, it requires

real-time  communication  between  the  satellite  and  the
ground, and the calculation time is too long. It is not suit-
able for solving this problem.
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Fig. 7    Comparison of rescheduling results where there are three satellites
 

 
 

Table 2    Comparison of average objective values of different algorithms

Satellite Number of tasks FR MMDPOP GS MIPS SSR

1 100 330.01 325.33 325.87 325.87 325.15

1 200 556.12 535.77 539.46 539.32 530.05

1 300 671.67 669.51 672.26 674.24 658.34

1 400 731.87 738.24 738.47 743.85 724.70

2 100 451.75 442.75 447.61 448.21 447.42

2 200 870.55 849.99 860.48 859.14 848.56

2 300 1 190.67 1 186.92 1 185.50 1 209.66 1 153.84

2 400 1 385.66 1 415.30 1 410.54 1 443.27 1 369.31

3 100 458.75 454.49 458.00 457.98 458.43

3 200 945.23 928.32 933.77 935.87 934.42

3 300 1 446.54 1 427.96 1 435.84 1 439.00 1 419.59

3 400 1 770.61 1 785.36 1 775.09 1 809.00 1 749.47

Average − 900.78 896.66 898.57 907.12 884.94
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Fig. 8 shows the effect of different numbers of alterna-
tive feasible solutions on the revenue of solutions. Fig. 8
shows  the  revenue  and  calculation  time  of  the  MIPS  al-
gorithm for the instance with two satellites and 200 tasks.
As  can  be  seen  from Fig.  8(a),  with  the  increase  of  the
number of feasible solutions,  the revenue of the solution
also  increases,  but  the  online  calculation  time  also  be-
comes longer as shown in Fig. 8(b).  Since the online re-

pair algorithm used in this paper only considers the inser-
tion of  tasks  and does  not  consider  the  deletion of  sche-
duled  tasks,  when  the  number  of  reserved  alternative
feasible  solutions  increases,  the  feasible  solution  with
lower revenue but larger insertion space is  also retained,
and more tasks can be inserted in the online rescheduling
process.
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Fig. 8     Influence of different numbers of alternative feasible solutions on solution quality

 
In Section 3, we introduce the MMDPOP method that

can  improve  the  accuracy  of  the  training  optimal  policy
through  communications. Fig.  9 shows  the  influence  of

different communication times on the solution quality. It
can  be  seen  that  with  the  increase  in  communication
times, the solution quality gradually improves.
 

 

Table 3    Comparison of average calculation time of online rescheduling of different algorithms s

Satellite Number of tasks FR MMDPOP GS MIPS SSR

1 100 1.669 8 <0.000 1 <0.000 1 0.008 2 <0.000 1

1 200 4.086 4 <0.000 1 <0.000 1 0.013 4 <0.000 1

1 300 7.008 9 <0.000 1 <0.000 1 0.017 4 <0.000 1

1 400 9.934 2 <0.000 1 <0.000 1 0.023 8 <0.000 1

2 100 1.495 8 <0.000 1 <0.000 1 0.008 7 <0.000 1

2 200 3.962 3 0.000 1 0.000 1 0.017 1 <0.000 1

2 300 7.206 8 0.000 1 0.000 1 0.028 0 0.000 1

2 400 10.744 4 0.000 1 0.000 1 0.037 9 0.000 1

3 100 1.454 7 0.000 1 0.000 1 0.008 6 <0.000 1

3 200 3.588 9 0.000 1 0.000 1 0.018 3 0.000 1

3 300 6.624 7 0.000 1 0.000 1 0.029 5 0.000 1

3 400 10.120 3 0.000 2 0.000 2 0.046 0 0.000 1

Average − 5.650 7 0.000 1 0.000 1 0.023 9 0.000 1
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5. Conclusions
The problem of multi-satellite distributed autonomous co-
operative  rescheduling  considering  emergent  tasks  is
studied. Due to the limitations of onboard computational
resources and time, the current common online reschedul-
ing  methods  usually  use  simple  greedy  algorithms  to
solve this type of problem and sacrifice a certain solution
quality  for  the  timely  response.  In  order  to  better  solve
this problem, a re-scheduling framework based on multi-
solution  integration  is  proposed,  which  can  use  the
powerful  computing  power  on  the  ground  to  generate
multiple  feasible  solutions  and  convert  the  complex  on-
board  re-scheduling  problem  into  a  feasible  solution  se-
lection  problem.  This  makes  it  possible  to  use  a  short
time on the satellite to obtain a solution that is not worse
than  that  obtained  on  the  ground;  a  multi-satellite  distri-
buted cooperative policy based on the MMDP and MIP is
proposed.  These methods enable  satellites  to  make inde-
pendent  decisions  while  in  orbit  and  generate  solutions
with  complementary  advantages  without  conflict.  Com-
pared  with  the  traditional  centralized  coordination  me-
thod, the distributed coordination method reduces the cost
of  inter-satellite  communication  and  improves  the  re-
sponse speed of autonomous satellites to emergent tasks.

Through  multiple  sets  of  simulation  instances,  the  ef-
fectiveness  of  the  multi-solution  integration  framework
and distributed cooperative policy proposed in this paper
is proved for solving the on-board rescheduling problem.
At  the  same  time,  experiments  show  that  the  opti-
mal cooperative policy mechanism based on MMDP has
a  shorter  calculation  time  and  a  poorer  solution  quality,
but  its  solution  quality  can  be  improved  through  regular
communication and training of more accurate optimal co-
operative  policies;  while  the  optimal  selection  mecha-
nism  based  on  MIP  requires  longer  online  calculation

time but with better solution quality. In some large-scale
calculation  examples,  the  solution  quality  even  exceeds
the complete rescheduling method.

This paper proposes a new integration method of mul-
tiple  selections  of  feasible  solutions  to  improve  the  effi-
ciency  of  online  rescheduling.  However,  when  multiple
alternative  feasible  solutions  are  generated,  simple  mul-
tiple iterations are used to retain the best several different
feasible  solutions.  The  difference  between  these  feasible
solutions may be small,  and the coverage of the solution
space  is  poor.  A  more  ideal  way  is  to  use  a  certain  me-
thod to  control  the  difference among the solutions  while
using the least number of solutions to achieve more even
and  effective  coverage  of  the  solution  space.  Using
swarm intelligence methods and controlling the diversity
of  populations  may  be  an  effective  method.  In  addition,
although  the  current  multiple  feasible  solutions  contain
the same tasks, they are independent of each other. When
inserting emergent tasks online, it  needs to be calculated
once on each feasible  solution.  In  future  research,  a  cer-
tain  graph-based  structure  will  be  considered  to  manage
multiple feasible solutions, so that a large number of fea-
sible  solutions can be rescheduled at  the same time,  fur-
ther improving the efficiency of the online solution. Since
the  onboard  computational  resources  are  still  very  li-
mited,  if  our  efforts  could  further  decrease  the  require-
ments  on  the  computational  power  of  the  rescheduling
process,  more  power  could  be  used  by  other  systems on
the  satellites  and  lots  of  costs  of  the  aerospace  chips
could be saved.
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