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Abstract: Higher-order  statistics  based  approaches  and  signal
sparseness based approaches have emerged in recent decades
to resolve the underdetermined direction-of-arrival (DOA) estima-
tion  problem.  These  model-based  methods  face  great  chal-
lenges in practical applications due to high computational com-
plexity  and  dependence  on  ideal  assumptions.  This  paper
presents an effective DOA estimation approach based on a deep
residual  network  (DRN)  for  the  underdetermined  case.  We  first
extract an input feature from a new matrix calculated by stack-
ing  several  covariance  matrices  corresponding  to  different  time
delays. We then provide the input feature to the trained DRN to
construct  the  super  resolution  spectrum.  The  DRN  learns  the
mapping  relationship  between  the  input  feature  and  the  spatial
spectrum by training. The proposed approach is superior to exis-
ting model-based estimation methods in terms of calculation ef-
ficiency,  independence  of  source  sparseness  and  adaptive  ca-
pacity  to  non-ideal  conditions  (e.g.,  low  signal  to  noise  ratio,
short  bit  sequence).  Simulations  demonstrate  the  validity  and
strong performance of  the proposed algorithm on both overde-
termined and underdetermined cases.

Keywords: direction-of-arrival  (DOA)  estimation,  underdeter-
mined condition, deep residual network (DRN), time delay, cov-
ariance matrix.
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1. Introduction
In various fields, such as wireless communication, radar,
astronomical  observation,  and  exploration,  direction-of-
arrival (DOA) estimation is always a significant research
hotspot.  Existing  methods  include  beamforming  al-
gorithms  [1],  maximum  likelihood  algorithms  [2],  sub-
space  algorithms  [3,4],  and  sparse  reconstruction  al-
gorithms [5,6], which have been utilized for DOA estima-
tion, but they do not perform well under so-called under-

determined conditions (i.e., where there are fewer sensors
than  sources),  which  renders  them  inapplicable  in  some
cases  such  as  multiple  targets  communication  surveil-
lance.

2q (q > 1)

The  multiple  signal  classification  (MUSIC)-like  al-
gorithm based on fourth-order cumulant (FO-MUSIC) [7]
has  been  developed  for  meeting  the  demand  of  undeter-
mined  DOA  estimation.  Physical  arrays  can  generate
many  virtual  sensors  via  this  algorithm,  thereby  achiev-
ing  higher  degrees  of  freedom.  This  algorithm  has  also
been extended to an arbitrary even order  to fur-
ther  enhance  its  resolution  and  increase  the  number  of
sources  that  can  be  estimated  [8].  Other  effective  ap-
proaches [9−14] have also been proposed to deal with the
DOA  estimation  problem  on  underdetermined  cases.
However, these model-based methods rely on many quali-
fications,  such  as  a  sufficiently  long  bit  sequence  length
(BSL), high signal to noise ratio (SNR) or ideal distribu-
tion  properties  of  signals.  In  the  actual  DOA  estimation
process,  these  pre-suppositional  conditions  are  rather  re-
strictive  and  difficult  to  be  satisfied.  Meanwhile,  these
model-based  methods  are  very  computationally  complex
as well due to the higher-order cumulant calculation pro-
cedures and multiple iterations.

The  deep-learning  (DL)  based  approach  is  considered
one of the most effective technical solutions to DOA es-
timation.  These  methods  have  advantages  in  computa-
tional  complexity,  estimation  accuracy,  and  adaptability
to  non-ideal  cases  [15−25].  In  [18],  a  framework  of  a
multitask auto-encoder and a series of parallel multilayer
classifiers  were  developed  for  super-resolution  DOA es-
timation.  This  method  has  been  proven  adaptable  to  a
variety of array errors. Xiang et al. [21] proposed a phase
enhancement  approach  based  on  deep  neural  network
(DNN)  to  deal  with  DOA  estimation  problems  in  mul-
tipath  environments.  In  [23],  an  efficient  deep  convolu-
tion  network  (DCN)-based  method  was  established  to
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learn  the  sparse  linear  inverse  transformation from array
outputs  to  DOA  spectra.  Simulation  results  have  shown
that  DL-based  methods  consistently  outperform  model-
driven methods.

Motivated  by  the  advantages  of  DL-based  methods,
this paper presents a deep residual network (DRN)-based
method  to  solve  DOA  estimation  problems  in  underde-
termined cases.  An expanded second-order (SO) statistic
deduced  by  multiple  time-delay  covariance  matrices  of
the array output serves as the input of the DRN. This in-
put feature extraction procedure adopts the idea of stack-
ing  multiple  covariance  matrices  corresponding  to  diffe-
rent  time delays  [26−28].  The  DRN can learn  the  nonli-
near  mapping relationship  between the  input  feature  and
the  spatial  spectrum by training without  necessitating an
accurate  direction  estimation  model  [29].  When  the  off-
line training process is complete, online testing can be ef-
ficiently  implemented by hardware  in  parallel.  Thus,  the
proposed  method  has  significant  advantages  in  terms  of
computational  efficiency.  Moreover,  the  proposed  me-
thod  is  independent  on  the  precise  mathematical  model
because of the end-to-end learning process, thus showing
a better robustness in practical applications.

The remainder of this paper is organized as follows. In
Section  2,  we  formulate  the  underdetermined  DOA esti-
mation  problem.  In  Section  3,  the  proposed  DRN-based
DOA estimation algorithm is described. In Section 4, the
excellent  performance  of  the  DRN-based  method  is
shown  through  contrast  experiments.  Section  5  draws
conclusions. 

2. Problem formulation
J

s (t) = [s1 (t) , s2 (t) , · · · , sJ (t)]T N

t

We  presume  that  independent  far-field  signals
 are incident on an  sensor

uniform  linear  array  (ULA)  simultaneously.  There  is  no
mutual  coupling  or  channel  inconsistency  interference
between the array sensors. Then, the array output at  can
be expressed as

x (t) =
J∑

j=1

a js j(t)+ v (t) =As (t)+ v (t) (1)

t = t1, t2 · · · , tB B
A = [a1, a2, · · · , aJ] a j =[
1,e−j2π 1

λ
d sinθ j , · · · ,e−j2π 1

λ
(N−1)d sinθ j

]T
θ j d λ

v(t)
(·)T

where ,  is  the  number  of  snapshots,
 is  the  array  manifold  matrix, 

 is  the  response  vector
corresponding to ,  is the size of the sensor interval, 
is  the  length  of  waves,  represents  the  zero-mean
Gaussian white noise and  is the transpose operator.

J > N
θ = [θ1, θ2, · · · , θJ]

J > N

In an underdetermined case, . The problem to be
solved is the estimation of the angle set 
from the  array  output  in  the  case .  Many effective
methods have been proposed to solve such problems, but

they  tend  to  have  excessive  computational  complexity
and stability problems under short bit sequences and low-
SNR conditions.  Thus,  we  seek  to  achieve  super-resolu-
tion  DOA  estimation  via  array  outputs  with  DL  techno-
logy. 

3. Proposed algorithm
In  this  section,  we  propose  an  original  DOA  estimation
method based on multiple time-delay covariance matrices
and the DRN. The proposed method can be broken up in-
to  two  main  steps:  (i)  input  feature  extraction;  (ii)  deep
network based DOA estimation. 

3.1    Input feature extraction based on multiple time-
delay covariance matrices

τmThe covariance matrix corresponding to time delay  is

Cm = E
{
x (t) xH (t+τm)

}
= AE

{
s (t) sH (t+τm)

}
AH =

Adiag
{
rs1 s∗1

(τm) ,rs2 s∗2
(τm) , · · · ,rsK s∗K

(τm)
}

AH = ADm AH

(2)

m = 1,2, · · · ,M (·)H

C1,C2, · · · ,CM C ∈ CN2×M

where ,  represents  the  Hermitian
transpose operator. The noise term rejected for simplicity
is  regarded  as  a  perturbation  of  (2).  The  matrices

 can  be  stacked  in  a  matrix  as
follows:

(C)(i−1)×N+ j,m = (Cm)i j,

i = 1,2, · · · ,N; j = 1,2, · · · ,N; m = 1,2, · · · ,M. (3)

D ∈ CM×J (D)m j = (Dm) j j m =
1,2, · · · ,M j = 1,2, · · · , J C

Define  a  matrix  by , 
, , then  can be constructed as

C = [a1 (θ1)⊗ a∗1 (θ1) , · · · , aJ (θJ)⊗ a∗J (θJ)]DT =

(A⊙ A∗) DT (4)

⊗ ⊙where  represents  the  Kronecker  product  and  repre-
sents the Khatri-Rao product.

θ C
RC

After  above  analysis,  the  problem  is  transformed  into
the  estimation  of  from .  To  solve  this  problem,  we
first compute the correlation matrix  as

RC = CCH = (A⊙ A∗) RD(A⊙ A∗)H
(5)

where RD=DTD*.
RC

RC

R̄C

 is  a  conjugate  symmetric  matrix  and  its  diagonal
elements  contain  unknown  noise  information,  so  select
the off-diagonal upper right elements of  to extract in-
put feature :

R̃C = [R1,2,R1,3, · · · ,R1,N ,R2,3, · · · ,
R2,N , · · · ,RN−1,N]T ∈ C(N2−1)N2/2×1

(6)
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R̄ =
 real(R̃C/norm(R̃C))

imag(R̃C/norm(R̃C))

 ∈ C2×(N2−1)N2/2 (7)

Rµ1 ,µ2 (µ1,µ2) RC real(·)
imag(·)

R̃C/norm(R̃C)

where  is  the  th  element  of ,  and
 are used to extract the real and imaginary parts of

complex  matrices,  respectively.  Normalized  structure
 is more helpful to activate neurons.

The  feature  extraction  process  is  summarized  in  Al-
gorithm 1.
Algorithm 1 Input feature extraction

xInput: 
m ∈ [1,M]1. for  iterations do 　(2)

Cm← E
{
x (n) xH (n+τm)

}
2. 
3. end for

C← Cm4.  　Stack the matrices according to (3)
RC← CCH5. 　(5)
R̃C← upper right elements of RC6. 　(6)
R̄← real (R̃C/norm (R̃C)), imag (R̃C/norm (R̃C))7. 

　　　　　　　　   Real-valued transform in (7)
R̄8. return  

3.2    Deep residual convolutional network based
DOA estimation

R̄
We  designed  a  DRN  to  learn  the  mapping  relationship
between  the  input  feature  and  the  super-resolution
spectrum.  By  adopting  the  residual  blocks  to  drive  sub-
sequent layers, a deeper network can be easily built. The
information mapping path of the residual block [30] helps
to optimize the network.

Q̂

As  shown  in Fig.  1,  we  first  use  a  1D  convolutional
layer to extract an input feature map for the first residual
block. We then insert two residual units, an identity short-
cut and a projection shortcut. In the final, we adopt a full-
connected  layer  to  obtain  spectral  output .  The  ReLU
function is employed to introduce non-linear factors to all
layers.

∆ς

We divide the space into a number of disjoint uniform
grids  according  to  a  certain  angular  interval .  Angles
in the same grid are regarded as the same category, while
angles in different grids are regarded as different catego-
ries.

Qg

G

Fig.  2 shows  the  training  and  estimation  processes  of
the proposed method. In the training stage,  if  there is  an
incident signal in a certain angle area, the output value of
the grid corresponding to this area is 1, otherwise the out-
put  value  is  0.  Based  on  the  above  strategy,  we  can  get
the  spectrum  label ,  so  as  to  gain  the  data-label  set
RQset with  samples:

RQset = {(R̄1,Q1), (R̄2,Q2), · · · , (R̄g,Qg), · · · , (R̄G,QG)}.
(8)
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Fig. 1    Structure of the designed DRN
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Fig. 2    Process of the proposed method
 

l2 Qg

Q̂g

We  can  obtain  the  needed  DRN  by  minimizing  the
squared -norm  distance  between  and  the  recovery
spectra  in the training procedure, i.e.,

κ̂ = argmin
κ

1
2

G∑
g=1

∥∥∥Q̂g−Qg

∥∥∥2 (9)

κ̂where  represents the weight set. We apply the Adam al-
gorithm  with  momentum  and  adaptive  learning  rate  to
speed up the convergence of DRN.

θ̂ j

In  the  estimation  stage,  when  a  signal  with  unknown
direction is incident on the ULA, the trained network will
output  the  corresponding  value  of  each  grid  to  form  a
spatial  spectrum.  Then,  we  can  use  amplitude  interpola-
tion  to  improve  the  estimation  accuracy.  The  angle 
with higher precision is constructed by the following pro-
cess:
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

ςe+1− θ j

θ j−ςe
=

Q̂g,e

Q̂g,e+1

, Q̂g,e−1 ⩽ Q̂g,e+1

ςe− θ j

θ j−ςe−1
=

Q̂g,e−1

Q̂g,e

, Q̂g,e−1 > Q̂g,e+1

, (10)

θ̂ j =



Q̂g,e

Q̂g,e+ Q̂g,e+1

ςe+
Q̂g,e+1

Q̂g,e+ Q̂g,e+1

ςe+1, Q̂g,e−1 ⩽ Q̂g,e+1

Q̂g,e

Q̂g,e+ Q̂g,e−1

ςe+
Q̂g,e−1

Q̂g,e+ Q̂g,e−1

ςe−1, Q̂g,e−1 > Q̂g,e+1

,

(11)

e ςe

Q̂g ςe−1 ςe+1

ςe Q̂g,e Q̂g,e−1 Q̂g,e+1

ςe ςe−1 ςe+1

where  represents the number of grids, angle  corres-
ponds  to  the  peak  of ,  and  are  the  adjacent
angles  of . , ,  and  represent  the  amp-
litudes of , , and  respectively.

The  proposed  algorithm  is  operated  in  the  following
steps.

C1,C2, · · · ,CM

Ĉm =

1
B−τk

B−τm∑
t=1

x (t) xH (t+τm)

Step 1　Calculate covariance matrices .
These  matrices  can  only  be  estimated  by 

 in practice.

Ĉ
(
Ĉ
)

(i−1)×N+ j,m
=(

Ĉm

)
i j

R̂C = ĈĈH

R̄

Step  2　 Construct  the  matrix  via 

 and use the upper triangular elements of 
to define the input feature  of the DNN.

R̄
Q

Q̂

Step 3　Send features extracted from the training data
to the designed DRN for training. The network learns the
mapping  relationship  between  and  the  super-resolu-
tion  spectrum .  Then  estimate  the  spectrum  via  the
trained  network.  In  the  end,  the  amplitude  interpolation
strategy  is  adopted  to  obtain  the  final  angle  with  higher
precision on the estimated spectrum .
 

3.3    Computational complexity

In  this  subsection,  we  compare  the  computational  com-
plexity  between FO-MUSIC and the  proposed algorithm
during the construction of the cumulant matrix and angle
estimation.

N2×N2

O
(
9N4B

)
RC

M
O
(
MN2B

)

The  covariance  matrix  in  the  FO-MUSIC is  construc-
ted by  FO cumulant, thus its computational com-
plexity can be approximately expressed as . The
covariance  matrix  in  the  proposed  method  is  con-
structed by  covariance matrices, thus its computational
complexity can be approximately expressed as .

In the estimation part, the computational complexity of
the MUSIC algorithm is mainly concentrated in the mat-
rix eigenvalue decomposition and the peak search opera-
tion.  Its  computational  complexity  can be  approximately
expressed as

CalMUSIC = O (4MNNθ)+O
(
4M2Nθ

)
+O
(
4M3
)

(12)

Nθwhere  is  the total  number of  the search angle related
to angle range and search interval, i.e., the number of ite-
rative  operations.  In  general,  this  parameter  is  set  to  a
large value for achieving precise estimation. For the DRN
in Fig. 1, the overall computational complexity is determ-
ined by the size of input feature,  the number and size of
convolution  kernels,  the  length  of  convolution  steps,  the
number of fully connected layer nodes and the number of
network layers. Thus the computational complexity of the
entire DRN in Fig. 1 can be expressed as

CalDRN =

LDRN∑
l=1

ChinKCChoutWout+Hout−1Hout (13)

LDRN

KC Chin

l
Chout

Wout

Hout−1

(out−1) Hout

where  represents  the  total  number  of  convolution
layers,  represents the size of convolution kernel, 
represents the number of input channels of the th layer,

 represents  the  number  of  output  channels,  i.e.,  the
number of convolution kernels,  represents the size of
a  single  channel  output,  represents  the  number  of
nodes  of  the th  fully  connected  layer,  and 
represents the number of output nodes. The estimation of
the proposed method adopts  the end-to-end DL strategy,
so there is no need to perform complex calculations, such
as  matrix  inversion,  eigenvalue  decomposition,  or  re-
peated iterative operations to complete  the angle estima-
tion.

Based on the analyses above, we can conclude that the
proposed  algorithm  is  computationally  cheaper  than  the
FO-MUSIC  algorithm,  and  this  advantage  grows  more
prominent as the BSL increases. Moreover, for achieving
accuracy  cumulant  estimations,  the  growth  of  BSL  and
computational  load  will  be  stronger  with  the  increase  of
the  order.  We  will  quantitatively  analyze  the  computa-
tional complexity of each method by comparing the aver-
age running time in Subsection 4.2. 

3.4    Estimable signals number

The number of sources that the proposed method can es-
timate depends on both the feature extraction process and
the limitation of the DL-based algorithm itself.

As for the SO-based methods, Congedo et al. [26] and
Zhu et al. [28] have inferred that the maximum number of
estimable  signals  can  be  calculated  according  to  the  ex-
pression

2J (J−1) ⩽ N2(N −1)2 (14)

J ⩽min
(
N2,M

)
J

C J
where .  If  meets  the condition in (14),

 will be full rank (the rank is equal to ).
DNN are  very sensitive  to  datasets.  As the  number  of
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sources  increases,  the  training  set  becomes  huger  and
huger  for  complete  training.  The  samples  corresponding
to multitudinous angular combinations are adverse to the
“classification” learning  of  the  DRN  (In  fact,  the  DL-
based DOA estimation strategy can be regarded as a de-
formation  of  the  classification  idea.)  and  thereby  could
lead  to  difficulty  in  convergence.  At  the  same  time,  the
increase  of  sample  volume  puts  higher  requirements  on
the  performance  of  existing  equipment.  Therefore,  in
practical  application,  the  number  of  sources  that  can  be
estimated through a single network is less than the theore-
tical maximum in (14). 

4. Simulation
We conduct a series of simulations to demonstrate the su-
perior performance of the proposed method compared to
the  SO  underdetermined  MUSIC  (SOU-MUSIC)  al-
gorithm  [28],  the  FO-MUSIC  algorithm  and  DRN  me-
thods based input features in [18] and [23] under overde-
termined and underdetermined conditions. 

4.1    Experimental setup and DRN training

We generate the training dataset by simulation. The num-
ber of sources is assumed to be known beforehand. Tradi-
tional  methods  such  as  the  Akaike  information  criterion
(AIC)  [31]  or  the  minimum  description  length  (MDL)
[32]  can  be  used  in  practice  to  estimate  the  number  of
sources. Source-number estimation is not the focus of this
work, so that process is not discussed here.

M

We assume that two binary phase shif keying (BPSK)
modulated signals, with the radio frequencies 1 000.1 MHz
and 1 000.4 MHz, impinge on the three-sensor ULA. The
bit rates are all 200 kbps. To minimize the sampling rate
and  computational  cost,  the  radio  frequency  signals  are
transformed into intermediate frequency signals with fre-
quencies  of  500  kHz  and  750  kHz,  respectively,  and  a
sampling rate of 4 MHz. The signals simulated are all far-
field,  narrow-band plane waves.  is  equal  to  10 in  the
following simulation experiments.

[−60◦,60◦]
1◦

Q ∆φ

{2◦,4◦, · · · ,40◦}
1◦

[−60◦,60◦−∆φ]
1◦ [−60◦+∆φ,60◦]

[−10 dB,0 dB]

The  space  of  interest, ,  is  divided  into  121
spectrum grid units with the interval of , thus the length
of  is  121.  The  value  of  the  angular  separation  is
fetched  from  the  set .  We  take  out  the
angle  of  the  first  signal,  with  the  interval  of ,  within

,  while  we  take  out  the  angle  of  the
second,  with  the  interval  of ,  within .
The BSL is set to 128. The SNRs of both signals are ran-
domly  generated  from .  After  added  with
different  Gaussian  white  noises,  ten  groups  of  different
covariance vectors  are  collected for  each set  of  samples.
In total, we collect 20 000 samples for network training.

The  training  process  of  DRN  is  performed  offline.  A

20%total of  samples of the training set are set aside ran-
domly to construct the validation set. The initial learning
rate of Adam is 0.01. The number of epoch is set to 300,
and  the  size  of  mini-batch  is  set  to  256.  We  shuffle  the
training sample set after each epoch.

R̄
R̄r R̄sp

M = 4,N = 2 R̄r

We compare the proposed  with other input features
 [18]  and  [23]  in  terms  of  the  boost  to  network

training.  Considering  the  size  of  the  first  layer  of  the
DRN, we set  when the input feature is .
The  training  and  validation  mean  square  errors  (MSEs)
varying with epochs are shown in Fig. 3.
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Fig. 3    Training MSEs and validation MSEs of networks with dif-
ferent input features (two sources)
 

R̄

The  biggest  difference  between  the  proposed  method
and other DL-based DOA estimation methods is the fea-
ture  extraction  procedure.  As  shown  in Fig.  3,  the  pro-
posed  brings  the  fastest  convergence  speed  and  the
lowest MSE to the entire training process. This indicates
that the input feature of the proposed method retains more
angle  information  that  is  conducive  to  network  training
by comparison. There is a certain aperture expansion that
occurs as well. The extraction process results in the same
extended  steering  matrix  as  the  method  in  [23],  but  the
proposed  transformation  process  introduces  more  infor-
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mation useful for DRN learning.
The proposed feature extraction method can also assist

the network in realizing DOA estimation under underde-
termined conditions,  which is  not possible with data-dri-
ven  methods  based  on  ULAs.  We  will  give  verification
experiments in Subsection 4.4.
 

4.2    Computational complexity analysis

In  this  subsection,  we  assess  the  computational  comple-
xity  of  networks  with  different  input  features  and  com-
pare them with SOU-MUSIC and FO-MUSIC.

The input  dimension,  the trainable parameters  number
and the averaged training time need for these three DRN-
based methods are recorded in Table 1.

 
 

Table 1    Complexity and averaged training time

Parameter R̄-DRN R̄r -DRN R̄sp -DRN
Input dimension 2×36 1×12 2×121

Total parameters 14 291 5 354 45 146

Training time 10 min 25 s 3 min 15 s 25 min 10 s

 

R̄r R̄Compared  with -DRN,  the  proposed -DRN  has
longer training time because of more training parameters,
whereas it  has  a  better  training effect  than the other  two
algorithms according to Fig. 3.

SNR −9.25◦ 7.75◦

The mean test time of methods for 400 trials under dif-
ferent BSLs is shown in Fig. 4. The computation time va-
ries more obviously as a function of BSL than other para-
meters.  The  incident  directions  of  the  two  signals  with

=5 dB are  and , respectively. As shown
in Fig.  4,  a  larger  BSL  increases  the  computational
load  of  a  single  test.  The  proposed  DRN-based  method
does not  require complex calculations or  a  large number
of  iterative  operations  for  angle  estimation,  so  it  is  qui-
cker  and  less  computationally  burdensome  than  FO-
MUSIC and SOU-MUSIC. The SOU-MUSIC appears to
be  computationally  more  inexpensive  than  FO-MUSIC,
especially  when  the  bit  sequences  are  long,  because  the
computing  procedure  based  on  the  SO statistics  requires
less calculation amount than that based on the FO cumu-
lant.  In  scenarios  with  BSL  under  64,  the  proposed  me-
thod takes time comparable to the other DRN-based me-
thods. When the BSL becomes larger,  the computational
complexity  of  the  proposed  method  gets  slightly  higher
than that of the other DRN-based methods because of iter-
ation computations of spatial covariance matrices, but the
training  performance  of  the  proposed  method  is  much
better according to Fig. 3.
 

2   4   8   16  32  64  128 256 512 1 024

BSL

0

0.05

0.10

0.15

t/
s

: Rr+DRN; : Rsp+DRN; : Proposed;

: SOU-MUSIC; : FO-MUSIC.

Fig. 4    Computation time vs BSL (SNR = 5 dB)
  

4.3    Robustness

In this subsection, we compare the robustness of the pro-
posed method with that of SOU-MUSIC and FO-MUSIC
under  different  angle  separation,  BSL,  and  SNR  condi-
tions.

RMSE =√√
1

HJ

H∑
h=1

∥∥∥θ̂h−θh
∥∥∥2 H

θ̂h θh

h
J

0.1◦

We use the average root mean square error (RMSE) of
the DOA estimation as a performance indicator: 

,  where  represents  the  Monte-

Carlo  trial  number,  and  represent  the  estimation
angle and the true angle in the th Monte-Carlo trial  re-
spectively,  and  represents  the  number  of  signals.  We
conduct Monte-Carlo experiments consisting of 400 runs
in  the  subsequent  simulations.  To  intuitively  display  the
RMSE  curves,  we  set  the  search  interval  of  all  model-
driven methods to .

−5.25◦+ϕ +

ϕ+∆φ ϕ(−0.5◦,0.5◦)
[2◦,3◦, · · · ,10◦]

Fig. 5 shows the RMSE as a function of the angle sepa-
ration when the BSL is  128 and SNR is  5  dB.  Two sig-
nals impinge onto the ULA from  and −5.25° 

, with , respectively. The set of angu-
lar distances in this case is .
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Angle separation

102
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10−1
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/(
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: Proposed; : SOU-MUSIC; : FO-MUSIC.

Fig. 5    RMSE vs angle separation (BSL=128, SNR=5 dB)
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0.4◦
As can be seen in Fig.  5,  the  RMSEs of  the  proposed

method are all within  while the RMSEs of the other
two  methods  are  larger,  indicating  that  the  super-resolu-
tion capability of the proposed method is the best among
them.

−9.25◦ 7.75◦

Fig. 6 shows the RMSE as a function of BSL when the
SNR  is  5dB.  The  directions  of  two  signals  are  set  to

 and ,  respectively.  As  shown  in Fig.  6,  the
proposed  algorithm  is  more  accurate  than  FO-MUSIC
and SOU-MUSIC when the BSL is small.
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: Proposed; : SOU-MUSIC; : FO-MUSIC.

Fig. 6    RMSE vs BSL (SNR = 5 dB)
 

Synthesizing the results in Fig. 4 and Fig. 6, when the
BSL is less than about 128, the proposed method has ad-
vantages  in  estimation  accuracy  and  time  consumption,
compared  with  the  other  two  methods.  As  the  BSL  in-
creases, the proposed method offers a slightly lower pre-
cision  than  the  FO-MUSIC  method,  but  still  consumes
much  fewer  computational  resources.  Its  efficiency
makes the proposed method especially well-suited to real-
time DOA estimation applications.

−5.75◦

11.25◦

1◦

Fig. 7 shows the RMSE as a function of the SNR when
the BSL is 256 and signal directions are fixed to 
and .  Increasing  the  SNR  usually  enhances  DOA
estimation performance, which is also the case here. The
estimation precision of the proposed method over the oth-
er two methods is significant when the SNR is low. When
the SNRs of the incident signals are higher than 8 dB, the
proposed method performs slightly worse than other two
methods, but with much lower computation consumption.
In scenarios with high SNRs, the coarser spatial grids (i.e.
an interval of ) limit the estimation accuracy of the pro-
posed method. Further, the SNR of the test set cannot be
kept consistent with that of the training set once it reaches
a certain level, so there is a certain deviation between the
test set and the training set. These constraints drive down
the estimation performance of the proposed method to the

point  where  the  curve  changes  with  SNR  are  no  longer
obvious.
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: Proposed; : SOU-MUSIC; : FO-MUSIC.

Fig. 7    RMSE vs SNR (BSL= 256)
  

4.4    DOA  estimation  performance  under  underde-
termined conditions

In this subsection,  we compare the DOA estimation per-
formance of the proposed method with that of SOU-MU-
SIC [28]  and  FO-MUSIC under  underdetermined  condi-
tions.

We first observe the contribution of the SO statistic of
the proposed method with that of the FO statistic on DOA
estimation.  Zhu et  al.  [28]  has  infirmed that  this  kind of
the  SO statistic-based  algorithm requires  fewer  bits  than
the FO statistic-based algorithm for accurate angle estima-
tion  under  underdetermined  conditions.  We  further  re-
duce the BSL 1−2 orders of magnitudes and use the tradi-
tional MUSIC method to obtain the pseudo-spectrum. As
shown in Fig. 8, the peaks of the SO-based pseudo-spec-
trum  we  gather  become  more  sleek,  but  directions  can
still  be roughly distinguished.  This  is  enough to indicate
that the SO-statistic of the proposed method can parse out
more  useful  information,  which  is  more  helpful  to  DRN
training.
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{2◦,4◦, · · · ,10◦}

We next test the proposed DOA estimation method un-
der underdetermined conditions. We retrain the networks
in  the  case  of  four  sources  and  set  the  angular  distances
between  two  adjacent  signals  to .  SNR is
set consistently to 5 dB. The covariance matrices are ob-
tained  from  bit  sequences  with  a  length  of  128.  Fifteen
groups  of  different  covariance  vectors  are  collected  for
each set of samples.

The training and validation MSEs varying with epochs
are shown in Fig. 9.
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Fig.  9      Training  and  validation  MSEs  of  networks  with  different
input features (four sources)

R̄

R̄

R̄ Q

The  DRN  with  constructed  via  the  SO  statistic
shows  the  strongest  performance.  Under  underde-
termined  conditions,  makes  the  difference  between
samples more obvious, thereby reducing the difficulty of
DRN training, which is conducive to the network’s learn-
ing of the non-linear mapping relation between  and .

−11.5◦ −2.5◦ 4.5◦ 9.5◦

R̄r R̄sp

As shown in Fig.  10,  four  signals  are  assumed to  im-
pinge onto the array from , , ,  and ,
respectively. We normalize the spatial spectrums of SOU-
MUSIC and FO-MUSIC. In the case of closer angular in-
tervals,  the  proposed  method  successfully  estimates  all
angles  while  two  model-based  methods  fail  to  do  so.
Thus, the proposed method achieves a higher angular re-
solution  in  underdetermined  cases.  As  for  the  other  two
DRN-based methods, their estimation results are unsatis-
factory.  Interestingly,  their  spectral  peaks  are  concen-
trated  near  the  true  value.  This  is  due  to  the  data-based
characteristics  of  the  neural  network.  The  two  DRN-
based methods  learn  mapping relationships  based on the
training  sets,  but  those  relationships  are  not  sufficiently
accurate enough due to a lack of information provided by

 and  under underdetermined conditions.
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Fig.  10      Spectra  comparison  under  underdetermined  conditions
(four sources)
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Fig.  8      Pseudo-spectrum  for  SOU-MUSIC  and  FO-MUSIC  (four
sources, three sensors)
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In  summary,  results  show  that  the  SO  statistic  in  the
proposed  method  reveals  more  angle  information  within
limited BSL. Thus, the input features extracted based on
the proposed method are more conducive to the network
training  of  underdetermined  DOA  estimation  than  the
other methods we test in this study. 

5. Conclusions
This paper proposes a DL-based DOA estimation method
for underdetermined cases that is designed to exploit dif-
ferences in covariance matrices.  The proposed algorithm
uses  an  input  feature  extraction  method  based  on  mul-
tiple time-delay covariance matrices. A deep convolution-
al network with residual blocks then learns the non-linear
mapping  from  the  input  feature  to  the  spatial  spectrum.
Finally, amplitude interpolation is used to refine the DOA
estimation.  Simulations  show  that  the  proposed  al-
gorithm  has  competitive  or  even  better  DOA  estimation
performance and computational efficacy under both over-
determined and underdetermined conditions compared to
other state-of-the-art methods.

Nevertheless,  only if  the practice number of signals is
equivalent  to  the  number  in  training,  will  the  proposed
approach  show  the  best  estimation  results.  We  also  find
that simply expanding the size of sample sets to estimate
more  sources  may  result  in  a  heavy  computational  bur-
den  and  impede  the  effective  convergence  of  the  single
network.  In  practice,  it  would  be  necessary  to  split  inci-
dent  signals  after  estimating  the  number  of  sources  to
adapt to the trained network with a fixed source number.
Therefore,  apart  from enhancing  the  calculated  perform-
ance  of  equipment,  we  plan  to  explore  a  signal  division
tactics for parallel network training in the future.

References
 VEEN B V, BUCKLEY K M. Beamforming: a versatile ap-
proach to spatial filtering. IEEE ASSP Magazine, 2002, 5(2):
4–24.

[1]

 LIU Z M, HUANG Z T, ZHOU Y Y. An efficient maximum
likelihood  method  for  direction-of-arrival  estimation  via
sparse Bayesian learning. IEEE Trans. on Wireless Commu-
nications, 2012, 11(10): 1–11.

[2]

 SCHMIDT R, SCHMIDT R O. Multiple emitter location and
signal  parameter  estimation. IEEE  Trans.  on  Antennas  and
Propagation, 1986, 34(3): 276–280.

[3]

 ROY R,  PAULRAJ A,  KAILATH T.  ESPRIT—a subspace
rotation  approach  to  estimation  of  parameters  of  cisoids  in
noise. IEEE  Trans.  on  Acoustics,  Speech  and  Signal  Pro-
cessing, 1986, 34(5): 1340–1342.

[4]

 YIN J H, CHEN T Q. Direction-of-arrival estimation using a
sparse  representation  of  array  covariance  vectors. IEEE
Trans. on Signal Processing, 2011, 59(9): 4489–4493.

[5]

 LIU Z M,  HUANG Z T,  ZHOU Y Y.  Sparsity-inducing di-
rection  finding  for  narrowband  and  wideband  signals  based
on array covariance vectors.  IEEE Trans.  on Wireless  Com-
munications, 2013, 12(8): 3896–3907.

[6]

 PORAT B, FRIEDLANDER B. Direction finding algorithms
based  on  high-order  statistics. IEEE  Trans.  on  Signal  Pro-
cessing, 1991, 39(9): 2016–2024.

[7]

 CHEVALIER  P,  FERREOL  A,  ALBERA  L.  High-resolu-
tion  direction  finding  from  higher  order  statistics:  the  2q-
MUSIC algorithm. IEEE Trans.  on Signal Processing, 2006,
54(8): 2986–2997.

[8]

 LIU  T  H,  MENDEL  J  M.  A  subspace-based  direction  find-
ing  algorithm  using  fractional  lower  order  statistics. IEEE
Trans. on Signal Processing, 2001, 49(8): 1605–1613.

[9]

 RICKARD  S,  DIETRICH  F.  DOA  estimation  of  many
W-disjoint  orthogonal  sources  from  two  mixtures  using
DUET. Proc. of the IEEE 10th Workshop on Statistical Sig-
nal and Array Processing, 2000: 311−314.

[10]

 TADAION A A, DERAKHTIAN M, GAZOR S. A fast mul-
tiple-source  detection  and  localization  array  signal  pro-
cessing  algorithm  using  the  spatial  filtering  and  ML  ap-
proach. IEEE  Trans.  on  Signal  Processing,  2007,  55(5):
1815–1827.

[11]

 ZHENG Z, LI G J, TENG Y L. 2D DOA estimator for mul-
tiple  coherently  distributed  sources  using  modified  propaga-
tor.  Circuits  Systems  &  Signal  Processing,  2012,  31(1):
255–270.

[12]

 HAN P, WANG D M, CUI W J, et  al.  Underdetermined di-
rection of  arrival  estimation of  non-circular  signals  via  mat-
rix completion in nested array. IEEE Access, 2019, 7: 183717–
183728.

[13]

 YADAV S K, GEORGE N V. Underdetermined direction-of-
arrival  estimation  using  sparse  circular  arrays  on  a  rotating
platform. IEEE  Signal  Processing  Letters,  2021,  28:
862–866.

[14]

 HE  W,  MOTLICEK  P,  ODOBEZ  J  M.  Deep  neural  net-
works  for  multiple  speaker  detection  and  localization.  Proc.
of the IEEE International Conference on Robotics and Auto-
mation, 2018: 74−79.

[15]

 HUANG H J, YANG J, HUANG H, et al. Deep learning for
super-resolution  channel  estimation  and  DOA  estimation
based  massive  MIMO  system. IEEE  Trans.  on  Vehicular
Technology, 2018, 67(9): 8549–8560.

[16]

 MA N,  MAY T,  BROWN G J.  Exploiting  deep  neural  net-
works  and  head  movements  for  robust  binaural  localization
of  multiple  sources  in  Reverberant  environments.  IEEE
Trans.  on  Audio  Speech  and  Language  Processing,  2017,
7(19): 123–132.

[17]

 LIU Z M, ZHANG C W, YU P S. Direction-of-arrival estima-
tion based on deep neural networks with robustness to array
imperfections. IEEE  Trans.  on  Antennas  and  Propagation,
2018, 66(12): 7315–7327.

[18]

 ABEYWICKRAMA  S,  JAYASINGHE  L,  FU  H.  RF-based
direction finding of UAVs using DNN. Proc. of the IEEE In-
ternational  Conference  on  Communication  Systems,  2018:
903−912.

[19]

 XIANG  H  H,  CHEN  B  X,  YANG  M  L.  Altitude  measure-
ment  based  on  characteristics  reversal  by  deep  neural  net-
work for VHF radar. IET Radar, Sonar & Navigation, 2019,
13(1): 98–103.

[20]

 XIANG H H, CHEN B X, YANG T. Improved de-multipath
neural  network  models  with  self-paced  feature-to-feature
learning for DOA estimation in multipath environment. IEEE
Trans. on Vehicular Technology, 2020, 69(5): 5068–5078.

[21]

 XIANG H H, CHEN B X, YANG M L, et al. A novel phase
enhancement  method  for  low-angle  estimation  based  on  su-
pervised DNN learning. IEEE Access, 2019, 7(4): 329–336.

[22]

 WU  L  L,  LIU  Z  M,  HUANG  Z  T.  Deep  convolution  net-
work  for  direction  of  arrival  estimation  with  sparse  prior.

[23]

1362 Journal of Systems Engineering and Electronics Vol. 32, No. 6, December 2021



IEEE Signal Processing Letters, 2019, 26(11): 1688–1692.
 GUO Y, ZHANG Z, HUANG Y Z. DOA estimation method
based  on  cascaded  neural  network  for  two  closely  spaced
sources.  IEEE  Signal  Processing  Letters,  2020,  27(1):
570–574.

[24]

 CHEN  Y,  WANG  C,  XIONG  K  L.  Synchronized  perturba-
tion  elimination  and  DOA  estimation  via  signal  selection
mechanism and  parallel  deep  capsule  networks  in  multipath
environment.  Chinese  Journal  of  Aeronautics,  2021.  DOI:
10.1016/J.CJA.2021.01.016.

[25]

 CONGEDO  M,  GOUY-PAILLER  C,  JUTTEN  C.  On  the
blind  source  separation  of  human  electroencephalogram  by
approximate  joint  diagonalization  of  second  order  statistics.
Clinical Neurophysiology, 2008, 119 (12): 2677–2686.

[26]

 LATHAUWER  L  D,  CASTAING  J.  Blind  identification  of
underdetermined mixtures by simultaneous matrix diagonali-
zation. IEEE  Trans.  on  Signal  Processing,  2008,  56(3):
1096–1105.

[27]

 ZHU L W, WANG Y, WANG X, et al. Underdetermined di-
rection-of-arrival  estimation  from  second  order  statistics.
Proc. of the 7th International Congress on Image and Signal
Processing, 2014: 989−993.

[28]

 CHEN Y,  XIONG K L,  HUANG Z T.  Robust  direction-of-
arrival estimation via sparse representation and deep residual
convolutional network for co-prime arrays. Proc. of the IEEE
3rd  International  Conference  on  Electronic  Information  and
Communication Technology, 2020: 514−519.

[29]

 HE K M, ZHANG X Y, REN S Q, et al. Deep residual learn-
ing for  image recognition.  Proc.  of  the  IEEE Conference on
Computer Vision and Pattern Recognition, 2016: 770−778.

[30]

 SEGHOUANE  A  K.  Asymptotic  bootstrap  corrections  of
AIC  for  linear  regression  models. Signal  Processing,  2010,
90(1): 217–224.

[31]

 STOICA P, SELEN Y. Model-order selection: a review of in-
formation criterion rules. IEEE Signal Processing Magazine,
2004, 21(4): 36–47.

[32]

 Biographies
CHEN  Ying was  born  in  1995.  She  is  a  Ph.D.
student  in  the  State  Key  Laboratory  of  Complex
Electromagnetic  Environment  Effects  on  Elec-
tronics  and  Information  System,  National  Uni-
versity  of  Defense  Technology.  Her  research  in-
terests are array signal processing and deep learn-
ing.
E-mail: chenying_nudt@163.com

WANG Xiang was born in 1985. He received his
B.S.  and  Ph.D.  degrees  in  information  and  com-
munication  engineering  in  2007  and  2013,  re-
spectively,  from  the  College  of  Electronic  Sci-
ence and Engineering, National University of De-
fense Technology, Changsha, Hunan, China. Cur-
rently,  he  is  a  lecturer  in  the  National  University
of Defense Technology, Changsha, Hunan, China

His research interests  include blind signal  separation and non-coopera-
tive signal processing in radar and communication applications.
E-mail: christopherwx@163.com

HUANG Zhitao was  born  in  1976.  He  received
his  B.S.  and  Ph.D.  degrees  in  information  and
communication engineering in 1998 and 2003, re-
spectively,  from  the  College  of  Electronic  Sci-
ence and Engineering, National University of De-
fense  Technology,  Changsha,  Hunan,  China.  He
is now a professor with the College of Electronic
Science  and  Engineering,  National  University  of

Defense  Technology,  Changsha,  Hunan,  China.  His  research  interests
include  radar  and  communication  signal  processing,  and  array  signal
processing.
E-mail: tald_paper@163.com

CHEN Ying et al.: Underdetermined DOA estimation via multiple time-delay covariance matrices and deep residual network 1363


