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Abstract: Radar detection of small targets in sea clutter is a
particularly demanding task because of the nonstationary cha-
racteristic of sea clutter. The track-before-detect (TBD) filter is an
effective way to increase the signal-to-clutter ratio (SCR), thus im-
proving the detection performance of small targets in sea clutter.
To cope with the nonstationary characteristic of sea clutter, an
easily-implemented Bayesian TBD filter with adaptive detection
threshold is proposed and a new parameter estimation method
is devised which is integrated into the detection process. The
detection threshold is set according to the parameter estimation
result under the framework of information theory. For detection
of closely spaced targets, those within the same range cell as
the one under test are treated as contribution to sea clutter, and
a successive elimination method is adopted to detect them.
Simulation results prove the effectiveness of the proposed al-
gorithm in detecting small targets in nonstationary sea clutter,
especially closely spaced ones.
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1. Introduction

Radar detection of small targets in sea clutter is a press-
ing problem in both military and civilian domains. The
varying characteristics of sea clutter make the detection
of small targets extremely challenging [1]. Existing de-
tection methods include the knowledge-aided methods
[2], feature-based detectors [3], sparse separation me-
thods [4] and many others [5—8]. Recently, the track-be-
fore-detect (TBD) filter has become very popular and
widely used in radar target detection. There exist three
main kinds of TBD filters, namely histogram probablistic
multi-hypothesis tracker (H-PMHT), dynamic-program-
ming based TBD (DP-TBD), and recursive Bayesian
TBD. In [9], a computationally efficient DP-TBD al-
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gorithm was proposed to detect targets by GNSS-based
passive radar. In [10], a TBD algorithm that used particle
filters was applied to detect targets on the sea. In [11], a
Bernoulli TBD filter was adopted to detect small targets
in K-distributed sea clutter. In [12], comparisons of de-
tection performances between H-PMHT, Bernoulli filter
and multi-Bernoulli filter were provided, and the results
showed that none of these filters could be useful in K-dis-
tributed clutter. It is proved that the recursive Bayesian
TBD is preferable to be applied to all target types and
clutter distributions [13]. However, none of these cases
concerns the nonstationarity of sea clutter. In [14],
Bernoulli TBD filter was developed to detect both widely
separated and closely spaced targets on the sea.

In this paper, a new Bayesian TBD filter for small tar-
get detection in nonstationary sea clutter is proposed. The
main contributions are as follows. First, the proposed al-
gorithm can adapt to sea clutter changes by integrating
clutter parameter estimation into a detection process.
Nonstationary sea clutter can be regarded as piecewise
stationary series in the minimax optimality. Second, adap-
tive detection threshold is assigned by using the logistic
loss function to combat false alarms. Third, closely
spaced targets lying in the same cell of the measurement
map can be distinguished. The remaining part of this pa-
per is organized as follows. In Section 2, a detailed de-
scription of the new proposed algorithm is given. Simula-
tion results and conclusions are shown in Section 3 and
Section 4 respectively.

2. Proposed algorithm

Suppose there are multiple Swerling 0 targets in K-dis-
tributed sea clutter and only one sample per measure-
ment cell is available. For the sake of simplicity, one-di-
mension range measurement is considered in this study.
Range domain D is divided into L resolution cells, each
of which covers an area AA,. It is assumed that there is at
most one target in each range cell. Also, the intensity of
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all range cells at time k is denoted as z;, while the target
. T .
state is denoted as x, = [r r Ak] , where r, r, and A, rep-

resents range, range rate, and the amplitude of the target
signal respectively [15].

2.1 Bayesian TBD filter

The grid-based approach is adopted for the implementa-
tion of Bayesian TBD filter. Applying (3.11) to (3.14) of
[16], we get

L(zilx) p(x0)

[ Lzl p o dx,

p(xilze) = )

where L(z;|x,) denotes the likelihood function, p(x,) is
the prior density, p(x;|z;)is the prosterior density, and D
is the target state space.

Then the continuous location state space is transitioned
to discrete cell-based state space by integrating (1) over
the area of the /th resolution cell,

j L(zi|xi) p(x) dxy

AA;

pixilz) = [ pelzde = 2)

vy jL(Zk | ) p (x,)dx

where AA, is the length of the I/th resolution cell.

Since the exact position of a target in a resolution cell
is unknown, the probability of the target existence in a
certain cell is given by

Z(Z/I( 'H/Ic )I’z (xx |ze)

f(Zi ‘H/IC )pz' (X |ze)

Dz (xlzi) = (3)

where ¢ (zf{'H}() = fL(zk |x;)dx;, and [ denotes all the
AA;
cells in range domain.
Considering target motion, the transition probability
density function can be defined as 7 (x;|x;_; ). Then, tar-
get density can be calculated by
H’ Z f H;{ 1 dxk lfﬂ(xk|xk )dx, =

Zp =)0 "

where p(H!.) represents the probability of target exist-

ence in cell /, l_[ (l |l) denotes the transition probability
of a target from cell [ to cell /.

Sea clutter is modeled as K-distribution given by

2 1
p(zin) = ieXP[—ZL] )
n n
B vnv—l i
p(lv,b) = X0 exp(=bn), (6)
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where I'(-) denotes the gamma function, v represents the
shape parameter, i refers to the mean square of speckle
amplitude, and b is the scale.

Since the mean value of target amplitude A, is integ-
rated into the state vector, the likelihood functions can be
rewritten as follows:

o] a) = 25 A R S
S = TRy ) peal TP a1
%)
4\/—1/+l v
(&) =~ (252, ®)

where k,(-) denotes the modified Bessel function of the
second kind.
The final recursion update is as follows:

p(Hi A =

(Zlekl’ ) ( kl’Ak)
Je(z|HLy A) p(HL, Ac)dA+ €(2L | He, )p (HEL)

where p(Hio) can be obtained by directly setting A;

©

equal to zero in p(H’kl,Ak).
2.2 Clutter parameter estimation

Generally, clutter estimation methods include the maxim-
um likelihood (ML) [17], moments [12], expectation-
maximization (EM), higher-order and fractional moments
[18], and Bayesian approach [19]. All the methods above
are not suitable for scenes with multiple targets and non-
stationary clutter. Therefore, a new parameter estimation
method is put forward, which can achieve minimax op-
timal model. Its essence is to regard nonstationary sea
clutter as piecewise stationary series.

In the first stage, kernel density estimation (KDE) via
diffusion is applied, in which semilinear parabolic partial
differential equation (PDE) is chosen because it is suit-
able for smoothing heavy-tailed clutter [20,21]. The KDE
uses an adaptive kernel density estimation method based
on the smoothing properties of linear diffusion processes.
It views the estimation kernel as the transition density of
a diffusion process. On the assumption that the measure-
ment samples are stationary, we use all samples to get the
first estimated result. Then, we move one sample for-
ward and on the same assumption get another estimated
result. The recursive estimation is repeated until no
samples are left.

In the second stage, the obtained estimations go
through a mixture process as

fi=2 (10)

where y}" is the mixture weight of individual estimation,
N is the number of samples, and f;" is the estimation re-
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sult of the first stage [22]. Here the time index k& is omitted
for simplicity. The weights are also in normalized version,

s (11)

The mixture weights can be updated recursively as
N-m
—_— rom<0
. N-m+1 g
’yl = N 1 o A N . (12)
- =
; N-m+ 17’1 S
Finally, the parameters of clutter distribution are calcu-
lated from the estimated probability density function. Let
31,82,... 20 be samples from the piecewise stationary
sea clutter, which are generated by the estimated proba-
bility density function. The first and second sample mo-
ments are estimated as

1 Lysar

A Al

= — Zr, (13)
1 Ltar

iy =—> %2 (14)
lslal =1

where [, denotes the length of the stationary measure-
ments, which is not a changing parameter and depends on
the result of clutter parameter estimation.

Then, the shape parameter is given by

1 Tcﬁ’lz -
=—|ln|— || . 15
=il ) 9
The scale parameter is given by
p="2 (16)
1%

The principle of clutter parameter estimation is illus-
trated in Fig. 1.
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Fig. 1

Principle of clutter parameter estimation
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2.3 Closely spaced targets detection

When there are more than one target in a single measure-
ment cell, the targets in the same measurement cell can be
treated as a cluster. After parameter estimation, the sum
contribution of all targets in the same measurement cell
can be obtained. If two targets in the cell are assumed in
the test, of which one is considered as clutter, the target
parameters can be revised [14] as follows:

- I'(v) )
Vi = \/Z+r(1.5)r(u+0.5) ‘

The likelihood functions (7) and (8) can be rewritten as

<Zk| k1o )=
val P ! z’z
T@ ) peal | Theal

(17)

—b n}dn» (18)

CANE W4 ka(2V67). (19

')

If the detection condition is satisfied, a detection is de-
clared. Then, the contribution of the detected target is de-
leted from the cell measurement. This process is repeated
until the detection condition is not satisfied. This study
focuses on detection instead of tracking, so it is not ne-
cessary to discriminate targets in the same measurement
cell. Fig. 2 is the illustration of the principle.

Use (17) to get
revised parameter

v

Calculate (18) and (19)

Delete from the
measurement

Satisfy detection
condition ?

Fig. 2 Principle of closely spaced targets detection

2.4 Proposed algorithm

Adaptive detection threshold which is related to the es-
timated clutter density is adopted. For every stationary
piece of the clutter measurements, one-sample Kolmo-
gorov-Smirnov test (KS test) is applied to compare the
distance between measurements and the series obtained
by clutter estimated density. Define a logistic function as
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t=1g(1+exp(D'z})) (20)

where D' refers to the result of KS test of cell /. Then,
the detection threshold is proportional to L given as
L
T=> 7+l Q1)
n=1
where

Lstat

L= Z L. (22)
n=1
a is a predefined scale, which is determined by

1 +exp(—R) )

4R (23)

a= %min (exp(—R),
where R is the diameter of the sample set [22].

After applying detection threshold 7', we calculate the
final detection threshold used in the proposed algorithm
Tt Which represents the percentage of samples larger
than T'.

The final detection criterion is defined as

p(H]ld’Ak |Z§¢) > Tﬁna] = HI
. (24)
p(Hllcl’Ak |Zi) < Tﬁnal = HO

The processing steps of the proposed algorithm are lis-
ted in Algorithm 1.

Algorithm 1 Processing steps of the proposed
Bayesian TBD algorithm

Step 1  Assign prior distributions for p(Hf{l,Ak) and
p (H io)'

Step 2 Obtain the measurements of each cell.

Step 3 Use clutter parameter estimation to get para-
meters b and v.

Step4 Use (17) to obtain parameter b'.

Step 5 Compute the likelihood functions by (18) and
(19).

Step 6 Compute the joint probability distribution
function (PDF) by (9).

Step 7 If a target is detected, delete it from the cell
under test.

Step 8 Repeat Steps 3—7 until the detection condi-
tion is not satisfied.

Step 9 Calculate (4) to advance to the next time step.

Step 10  Go back to Step 2.

3. Simulation results

Experimental data are taken from a program called “a
data-sharing program for sea-detecting radar” conducted
by Naval Aviation University [23]. The experimental
parameters are given in Table 1. The raw clutter map is
shown in Fig. 3.

Table1 Experimental parameters
Parameter Value
Ty frequency X-band
Range resolution/m 6
Pulse repetition/kHz 3
Range distance/m 3577.5-4572.5 (about 166 gates)
Duration/s 2

2.0

9600 3800 4000 4200 4400 4600
Range/m

Fig. 3 Measured clutter amplitude

Since the range sampling interval is nearly equal to the
range resolution, the measured clutter map is used in-
stead of further decimation. Several synthetic Swerling 0
targets are embedded into the clutter measurements.

Simulation analysis mainly includes three parts. In the
first part, different clutter parameter estimation methods
are integrated in the TBD algorithm with predefined de-
tection threshold of 0.7 in order to prove the superiority
of the proposed clutter parameter estimation method. In
the second part, the proposed parameter estimation me-
thod is integrated in the TBD algorithm with adaptive de-
tection thresholds in order to verify the efficiency of
closely spaced target detection. In the third part, different
detection methods are testified in detecting small targets
in nonstationary sea clutter in order to show the useful-
ness of the proposed detection algorithm.

Part 1 In order to study the influence of the parame-
ter estimation method on the detection performance, the
ML estimation is compared with the new clutter parame-
ter estimation method. It is supposed that there exist three
Swerling 0 targets whose velocity, location, emergency
time, and signal-to-clutter ratio (SCR) parameters are
shown in Table 2.

Table 2 Target parameters

Target Velocity/(m's ') Location/m Emergence time/s SCR/dB
Target 1 100 3677.5 0.5 2
Target 2 100 4077.5 1 2
Target 3 100 4277.5 1.5 2
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The results are shown in Fig. 4 and Fig. 5. The perfor- 20
mance of the detection method based on the new clutter 1.8
parameter estimation method is better than that of the de- 1.6
tection method based on the ML estimation. This is be- 1.4
cause the new clutter parameter estimation method could o 12
handle shortage of samples and the influence of outliers. E(l):
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1.6 EerRnsse : # ' 0.2
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Fig. 4 Results of the proposed method
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Fig. 5 Results of Bayesian TBD using ML estimation 0.5 02

Part 2 The detection performance of the proposed al- 0.1
gorithm is studied for multiple closely spaced targets. The 0 0

600 3800 4000 4200 4400 4600
target parameters are shown in Table 3. The results of the 3600 3800 4000 4200 4400 4600

Range/m
’ ) ] : Range/m
proposed algorithm are shown in Fig. 6(a)-Fig. 6(d). (¢) Results when only one target is left

(e :
3600 3800 4000 4200 4400 4 600
Range/m

(b) Results after elimination of the first target

Time/s
—
=)

Time/s

Table 3 Closely spaced target parameters 20 8451(5)

Target Velocity/(m~sf‘) Location/m Emergence time/s SCR/dB 0240

Target 1 100 36775 0.5 2 = 0.35

Target 2 100 3671.5 0.5 2 + 1030

Target 3 100 3677.5 0.5 2 ELO 025

0.20

0.15

The total contribution of all three targets is presented in 0.5 0.10

Fig. 6(a). The contribution of the two targets after the 0.05
elimination of the first one is displayed in Fig. 6(b). Fi- 0 0

3600 3800 4000 4200 4400 4600
Range/m

(d) Results when no target is left

nally, the contribution of one target after the elimination
of the other two is shown in Fig. 6(c). All three targets
can be detected by the proposed algorithm.

Fig. 6 Proposed algorithm performance for closely spaced targets
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From Fig. 6(d), it is clear that when no target is left,
there is no false alarm. This proves that the proposed al-
gorithm can reduce the false alarms.

Part 3 We compare different detection methods, in-
cluding the proposed algorithm, the proposed algorithm
with fixed detection threshold of 0.7 and TBD with clut-
ter parameter estimation based on the changepoint al-
gorithm at different SCR values, namely, at SCR of 4 dB,
2 dB, —2 dB, —4 dB, and —6 dB. It should be noted that
the clutter parameter estimation method based on the
changepoint algorithm also regards the nonstationary
measurements to be piecewise stationary series. The tar-
get parameters are the same as those in Part 1 except for
SCR values. The results are shown in Fig. 7.

1.0

0.9

0.8
0.7
0.6

0.5

(b) False alarm rate

—&— : The proposed algorithm;
—a— : The proposed algorithm with fixed threshold;
—a— : TBD with changepoint estimation.

Fig. 7 Performance comparison between different detection
methods at different SCRs

The results confirm that both the proposed algorithm
and TBD with clutter parameter estimation method based
on the change point algorithm have better detection per-
formance than the proposed algorithm with fixed detec-
tion threshold. Also, the proposed algorithm displays bet-
ter performance in reducing false alarms than the other
two algorithms. This is mainly because the proposed al-
gorithm can adaptively adjust the detection threshold ac-

cording to the difference between received measure-
ments and sea clutter.

4. Conclusions

This study proposes a new Bayesian TBD filter to detect
small closely-spaced targets in nonstationary sea clutter.
It can be easily implemented with an adaptive threshold
and uses a new parameter estimation method to track the
changes of sea clutter. We evaluate our proposed method
on real-world data sets. Simulation results show that the
proposed algorithm can improve detection probability
and reduce false alarm to a certain extent. Future work
will apply sensor networks to deal with the detection of
small targets in nonstationary sea clutter.
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