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Abstract: It is difficult for the double suppression division al-
gorithm of bee colony to solve the spatio-temporal coupling or
have higher dimensional attributes and undertake sudden tasks.
Using the idea of clustering, after clustering tasks according to
spatio-temporal attributes, the clustered groups are linked into
task sub-chains according to similarity. Then, based on the cor-
relation between clusters, the child chains are connected to form
a task chain. Therefore, the limitation is solved that the task
chain in the bee colony algorithm can only be connected ac-
cording to one dimension. When a sudden task occurs, a me-
thod of inserting a small number of tasks into the original task
chain and a task chain reconstruction method are designed ac-
cording to the relative relationship between the number of sud-
den tasks and the number of remaining tasks. Through the
above improvements, the algorithm can be used to process
tasks with spatio-temporal coupling and burst tasks. In order to
reflect the efficiency and applicability of the algorithm, a task al-
location model for the unmanned aerial vehicle (UAV) group is
constructed, and a one-to-one correspondence between the im-
proved bee colony double suppression division algorithm and
each attribute in the UAV group is proposed. Task assignment
has been constructed. The study uses the self-adjusting charac-
teristics of the bee colony to achieve task allocation. Simulation
verification and algorithm comparison show that the algorithm
has stronger planning advantages and algorithm performance.
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1. Introduction

The concept of swarm intelligence stems from the study
of the behavior of social insects populations such as ants
and bees. These simple individuals can show complex in-
telligent behaviors through interactions [1—4]. With the
continuous advancement of sustainable technology, the
fields of science and engineering involve more and more
real-world problems with non-linear, non-convex, multi-
peak, discontinuous and even dynamic optimization. The
traditional gradient-based method is far from meeting the
actual needs. In the past few decades, people have been
inspired by swarm intelligence and developed various
swarm intelligence optimization techniques to deal with
these complex problems [5,6]. Algorithms such as the ant
colony optimization (ACO) [7], the particle swarm op-
timization (PSO) [8], the honey bees optimization (MBO)
[9], and the artificial fish-swarm algorithm (AFSA) [10]
were produced.

Under the effect of the labor division mechanism, ants
can adjust the tasks performed according to environmen-
tal changes, so that the individual labor division exactly
meets the requirements of the ethnic group for various
tasks. To social insects, the labor division refers to differ-
ent individuals performing different tasks. The labor divi-
sion is a basic characteristic of social insects [11], and it
is considered to be the primary reason for the ecological
success of social insects [12]. At the same time, labor di-
vision is also an important swarm intelligence behavior,
which is instructive to solve problems in dynamic environ-
ments [13].
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Therefore, the labor division algorithm based on the
population was proposed. Gao et al. [14] started to im-
prove the artificial bee colony algorithm and realized in-
formation interaction and learning through labor division
and cooperation. It can be seen that the labor division has
positive significance for improving the performance of
the algorithm. The artificial bee colony algorithm is dif-
ferent from the classic particle optimization algorithm.
The artificial bee colony realizes the division of labor by
dividing bees into employed bees, on-looker bees and re-
connaissance bees. The contradiction between global
wide area search and local precise search of the optimiza-
tion algorithm is solved. This also lays the foundation for
the follow-up research on the division of labor in the bee
colony. Reference [15] was also inspired by the idea of
labor division and cooperation within the bee colony. It
optimizes artificial self-organized networking (SON) sys-
tems and improves the performance and intelligence of
the network. The model of division of labor of ant colo-
nies with adaptive and self-regulating abilities is used to
quantify the parameters such as ants, environmental stim-
ulation and traffic characteristics. Through the optimal di-
vision of labor between ant colonies, the effective adjust-
ment of signal lamp time can be realized. This also high-
lights that the division of labor within the population has
a positive effect on improving the performance of the al-
gorithm. Jiang et al. [16] used the ant colony labor divi-
sion model with adaptive and self-adjusting capabilities
to quantify the biological characteristics of ants, environ-
mental stimuli, traffic characteristics and other parame-
ters, and optimized the labor division ant colonies to
achieve effective adjustment for the signal time. The
labor division algorithm realizes the gradual optimization
of individuals through the corresponding interaction
mode of the environmental stimulus and the individual.
This method is different from the process of the intelli-
gent optimization algorithm gradually searching for the
optimal solution. This method has good interpretability.
Especially for dynamic optimization problems, the optimi-
zation solution can be given more quickly and accurately.
Wang et al. [17] also built a mapping relationship
between ant’s spatial fidelity zones (SFZ) and the cluster
supply chain network based on the ant colony division
model, thereby improving the recovery performance of
the network based on the self-recovery ability of the ant
colony. This is also the advantage of the division of the
labor model, compared to the optimization algorithm. The
division of the labor model has better robustness. Under
the condition that part of the population is damaged, com-
pensation can be achieved through division of labor ad-
justment, which ensures the robustness of the algorithm.
Ravary et al. [18] proposed that human experience can be

used to enhance the individual attributes of the popula-
tion and enhance the ability of the ant colony. This gives
the ants better learning ability, and further improves the
algorithm performance. The labor division algorithm has
a better self-learning ability than the intelligent algorithm,
and it has a positive effect on quickly optimizing the tar-
get solution. Wu et al. [19] improved the ant colony labor
division model, and proposed a dynamic ant colony labor
division model based on the distributed framework,
which realized a highly self-organizing and flexible allo-
cation of unmanned aerial vehicle (UAV) tasks in a dy-
namic environment. This idea also provides a reference
for the algorithm of this paper. Because the bee colony
division of the labor algorithm has better interpretability,
scholars have a clearer explanation of the mechanism of
the bee colony division of the labor algorithm. And com-
pared with the ant colony division of the labor algorithm,
the bee colony division of the labor algorithm has a bet-
ter performance. Therefore, this paper improves the labor
division model of the bee colony to optimize task alloca-
tion of the UAV swarm.

With the development of drone cluster technology,
scholars have also conducted in-depth research on the
task allocation of drone clusters. Huang et al. [20] con-
structed a UAV collaborative task allocation method
based on cross entropy, which can effectively and accur-
ately allocate tasks to different types of collaborative
UAVs. The performance of this method is related to the
random sample extracted. If the randomness of the
sample is not strong or the sample size is small, the per-
formance of the method will be affected. Chen et al. [21]
combined the directed graph method and the wolf pack
algorithm to construct task allocation architecture. Zhu et
al. [22] used the simulated annealing method to optimize
the particle swarm algorithm and to achieve task alloca-
tion. However, intelligent optimization such as the wolf
swarm algorithm and the particle swarm algorithm, due to
the limited diversity of the population, makes the al-
gorithm easy to fall into the local optimum. Zhou et al.
[23] used the iterative Gale-Shapley algorithm to achieve
task allocation for UAVs. A fair and efficient solution
could be achieved. References [24,25] were based on
game theory to optimize the task allocation of UAVs and
get the ideal result. However, such an iterative process is
difficult to apply to highly changing or unexpected tasks.
References [26,27] optimized task sequence through the
auction algorithm and the consensus algorithm, which
can achieve conflict-free task assignment. The defects of
the auctioneer’s identity and the insufficiency of the bid
value restrict the effectiveness of the algorithm, and the
method has limited compatibility for unexpected new
tasks. Cheng et al. [28] constructd an immune cloning al-
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gorithm with limited time, and adjusted task allocation
according to the priority of time. However, the infeasible
elite solution of the algorithm itself should not be re-
tained and the inability to directly learn evolutionary ex-
perience restricts the performance of the algorithm.

The organization of this paper is as follows. Sec-
tion 2 and Section 3 introduce the basic principles of the
bee colony double inhibition labor division algorithm, the
model’s deficiencies and improvements. Section 4 con-
structs the task allocation model of the UAV swarm. The
model is optimized by using an improved bee colony
double inhibition model in Section 5. Through simula-
tion verification and algorithm comparison, the advant-
ages of this method are reflected in Section 6. Finally
conclusions are drawn in Section 7.

2. Principle and deficiency of double inhibi-
tion labor division algorithm

2.1 Basic principle and model of the bee colony
double inhibition labor division algorithm

Amdam et al. proposed the double inhibition hypothesis
in order to explain the differentiation of bees from nest
bees to foraging bees during the research on bee colony
activities [29]. The hypothesis (Fig. 1) proposes that there
are two inhibitors in the bee body —internal repressor
(IR) and external repressor (ER), which together produce
an inhibitory effect with the allatoregulatory central
nervous system (ACNS).

The hypothesis believes that ACNS can promote the
production of juvenile hormone (JH), which in turn de-
pends on juvenile hormone-dependent differentiation

J/(aIR+ER)

Individual 1

pathway (JHDD), and ACNS can directly promote the
generation of a kind of juvenile hormone-independent
differentiation pathway (JHID). For the concentration of
two inhibitors, IR and ER, are produced in the bee body,
thereby inhibiting the production of JH for ACNS, and
ultimately regulating the growth process of the bee.
Among them, because JH has an inhibitory effect on the
synthesis of vitellogenin, the content of vitellogenin is
positively correlated with the content of IR. External in-
hibitors are positively related to the foraging bees.

Vitellogenin

Fig. 1 Double inhibition hypothesis model

Naug et al. [30] further perfected the theoretical model.
This model accomplishes task assignment by individual-
individual interaction. The interaction relationship
between individuals is shown in Fig. 2.

J/(aIR+ER)

Individual 2

Fig. 2 Interaction between individuals in the principle of double inhibition

As shown in Fig. 2, each bee in the colony contains a
stimulant J and two inhibitors IR and ER. IR is an intrin-
sic inhibitor of honeybees, which will not hinder its own
behavioral development, but it will inhibit the behavioral
development of other honeybees during individual inter-
action. ER is an external inhibitor obtained by bees in the

interaction, which will hinder their own behavioral deve-
lopment. Ultimately, the relative levels of stimulator J
and inhibitor J/(aIR+ER) determine whether the bee’s beha-
vior develops at a normal rate or is accelerated, delayed,
or reversed.

Beshers et al. [31] gave a quantitative form of the ex-
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citation-suppression model

x@+1D)=f(x@®,y®) )

where x is a state variable, describing the individual’s
physiological age; y is an auxiliary variable, representing
the social inhibitory effect, which is achieved through the
interaction between individuals.

Zahadat et al. [32] constructed a correspondence
between age and task, as shown in Fig. 3. Individual £’s
physiological age x; € [Xnin, Xmax]> tasks are arranged in or-
der along the physiological age from small to large, and
th;_,.; represents the age threshold between task, ; and
task;. /, and /, respectively represent the upper and lower
limits of the task age threshold.

task, .. task, task,

task,,, .. task,
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Fig.3 Age-task correspondence

If an individual executing task; wants to turn to task, ,,
his age x; needs to be less than the difference between 4, ;
and /,. Similarly, for an individual executing task; to turn
to task;,,, its age x; needs to be greater than the sum of
th..., and [,. Assume that the task corresponding to indi-
vidual k is task,, X and x]"*" represent the physiological
age of other individuals closest to x,. When individual &
interacts with individual j, according to (2) and (3), up-
date x; according to (4), and adjust tasks according to (5).

1
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2.2 Shortcomings of the bee colony double inhibi-
tion labor division

As can be seen from Fig. 3, a clear step in the bee colony
double inhibition algorithm is to connect the tasks toge-
ther to form a task chain, that is, task; to task, in the figure.
The bee colony double inhibition algorithm is to arrange
the tasks according to the time sequence according to the
time sequence of the tasks. And if there is no time se-
quence between tasks, or multiple new tasks appear in the
same time period, it will be difficult for the above-men-
tioned double inhibition algorithm to solve these two
problems. At the same time, the importance of tasks is
not the same. Therefore, it is necessary to consider the
importance of the tasks and arrange the tasks during the

execution process, but the double inhibition algorithm
does not involve this aspect. The following three points
will be discussed in detail.

2.2.1 Difficulty to handle multi-attribute and high-di-

mensional tasks

When the task has nothing to do with the timing, that is,
there is no timing relationship between the tasks, the bee
colony double inhibition algorithm cannot be arranged
according to the timing of the tasks. Classical non-se-
quential optimization problems involve multi-dimen-
sional parameters such as the traveling salesman problem
(TSP), the factory location problem, and the clustering
problem. The bee colony double inhibition algorithm has
limited performance.

From Fig. 3 and the corresponding description, the
double inhibition algorithm does not consider the task
with multiple attributes when it sorts the tasks. Therefore,
in order to construct the correspondence between age and
tasks in the bee colony algorithm, it is necessary to give a
linear ranking method for multi-task, use the bee colony
labor division algorithm to optimize the solution, and ex-
pand the scope of the algorithm.

The factor restricting the double inhibition model is
how to linearly arrange the points in the multi-dimen-
sional space. In a multi-dimensional space, the two task
points with the shortest distance can be regarded as re-
lated tasks and can be arranged linearly. Then the prob-
lem is converted to finding the shortest path of each point
in a multi-dimensional space, and the points that appear
in sequence on this path are the corresponding task chain.

Then the problem of ordering multi-dimensional para-
meter tasks is transformed into the classic multi-dimen-
sional TSP. Assume there are N tasks, and the ranking
problem is transformed into
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0= minz d;; (6)

where Q is the objective function and d;; is the distance
between task; and task;, that is, to find the shortest path
connecting all tasks in the multi-dimensional space.

2.2.2  Sudden tasks

According to the task sequencing method in Fig. 3, it is
assumed that tasks appear one by one according to the
time sequence, so that the task chain in Fig. 3 can be con-
structed. Obviously, in the above process of constructing
the task chain, it is assumed that the previous tasks are
over, and only one task appears at the new moment. That
is, there is only one task to be solved at a time.

However, it is clear that this assumption has certain
limitations. First, it is likely that there are multiple tasks
to be solved at this time, that is, the tasks that have been
planned before but are left unsolved due to limited re-
sources. Secondly, the number of sudden new tasks can
be more or less and cannot be generalized. Finally, the
proportional relationship between the newly added tasks
and the remaining tasks also affects the subsequent pro-
cessing methods. Therefore, it is necessary to adjust the
task chain in Fig. 3 according to the proportional relation-
ship between the number of new tasks and the remaining
tasks in order to make the bee colony double inhibition
labor division algorithm more applicable.

2.2.3 Importance of tasks

The importance of tasks is not the same. Some tasks are
more important and urgent and need to be executed as
soon as possible, while other tasks have no urgent need
for time, as long as they are completed. Formula (6)
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needs to be improved, namely,

1
Q= min E aTd,‘_,’
J

where w; is the importance of task; The method for de-
termining the importance may be obtained according to
expert scoring or weight calculation methods, but it will
not be repeated here. The more important the task, the
larger the value of w;, the smaller the reciprocal, and the
lower the cost to the task point. After considering the im-
portance of the task, the ordering of the task chain is con-
verted to optimize (7).

This is also an improvement point of this paper. We
believe that task execution is not good only by consider-
ing the spatial attributes, which is similar to the execu-
tion of which task point is closer. This strategy is a typi-
cal solution to the multiple TSP, but obviously, it does
not consider the timeliness of the task. Therefore, this pa-
per weights the path according to the importance of the
task. In this way, from the perspective of task space, the
relationship between distance and importance is balanced.
The more important the task, the shorter the distance
from the task being performed in the task space, the more
likely it is to perform the corresponding important task.

(7

3. Improved double inhibition labor
division algorithm

3.1 Improved algorithm flow

In order to improve the ability of the double inhibition
labor division algorithm to solve spatio-temporal coup-
ling tasks and burst tasks, the improved algorithm flow
constructed in this paper is shown in Fig. 4.

Connect in group to Using clustering |
build task sub-chains methods to group tasks|

Original task A small number of o | Insert task into the
g tasks "] remaining tasks
Task sequencing ¢ Sudden task

¢ A

Connect between groups
to form task chain

Task sequencing process

Sort sudden tasks and
remaining tasks together

Burst of tasks [ €—

3

Sudden task processing flow

Perform tasks

!

End of task

Fig. 4 Improved algorithm flow

In the improved algorithm flow, the original tasks are
first sorted according to the spatio-temporal characteris-

tics, and then the tasks are executed. The criterion of sort-
ing is to connect tasks with high similarity one by one as
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much as possible. In order to reduce the amount of calcu-
lation, this paper uses a clustering method to initially
group tasks. Due to the high similarity within the cluster-
ing group, the task sub-chains are formed after connect-
ing within each group, and then the task sub-chains are
connected in sequence according to the similarity
between the groups, thereby forming the task chain.

When there is a sudden task in the process of execu-
tion, the task sequence is adjusted according to the pro-
portional relationship between the sudden task and the re-
maining tasks. When there are fewer sudden tasks, the
tasks are inserted in the remaining task chain. If there are
many burst tasks, rearrange the burst tasks together with
the remaining tasks.

Through the above process, it is possible to handle spa-
tio-temporal coupling tasks and sudden tasks. Obviously,
the task sequencing and handling of unexpected tasks are
the core tasks of this improved process. Therefore, this
paper introduces these two tasks in detail.

3.2 Linear arrangement method of multi-attribute
tasks based on clustering

As mentioned earlier, the double inhibition labor division
algorithm cannot handle multiple tasks that occur at the
same time. The core reason is that the algorithm does not
have the ability to linearly arrange tasks with spatial at-
tributes in a certain order. If a task with spatial attributes
or more dimensional attributes is considered as a point in
a high-dimensional space, then the problem is trans-
formed to find a line that sequentially connects the spe-
cified points in the space. At the same time, as shown in
Fig. 3, the task chain corresponds to the age of the bees
one by one. That is, the age of the bees is arranged in or-
der from small to large. The corresponding task chain
also needs to follow certain criteria to maintain a one-to-
one mapping with the age. To this end, this paper hopes
to build a task chain based on the relevance of the task.
Correlation is more reflected in the spatial distance in
space, therefore, this paper strives to build a shortest line
that passes through each task point one by one.

Due to the large amount of tasks, similar to the TSP,
greedy search can be used to traverse, which can get a
more ideal solution. But the calculation amount is too
large, and the problem of explosion of combined dimen-
sions is prone to occur. Therefore, in this paper, all task
points are clustered to obtain multiple task groups, and
the shortest path within the group is first obtained, mean-
ing that, the task sub-chain is constructed. After that, the
shortest path of each cluster center is calculated to de-
termine the link order of task sub-chains. Finally, the or-
der of the shortest path of the clustering center connects
each sub-chain to form a task chain.

In this way, a complex whole is integrated into mul-
tiple organic parts, and the number of task points in each
part is significantly reduced, thereby improving the ope-
rational efficiency of the algorithm. At the same time, the
number of clusters is the same as the number of agents
performing tasks, which also facilitates the coordination
of subsequent tasks.

Considering the iterative self-organizing data analysis
techniques algorithm (ISODATA) has good grouping ac-
curacy and strong real-time performance, and can also
change the grouping parameters according to actual
needs, this section uses the ISODATA algorithm to lin-
early sort the tasks. Since the algorithm is relatively ma-
ture, it will not be repeated here.

At this point, we can use the ISODATA algorithm to
achieve task grouping and task sequencing. The al-
gorithm can be summarized as quantifying tasks first,
making the number of clusters the same as the number of
agents performing the tasks, and then performing cluster-
ing processing on all tasks to obtain multiple cluster
groups and corresponding cluster centers. The shortest
path within each group is required to build a task sub-
chain, and to find the shortest connection between clus-
tering centers to determine the connection order of each
group, and finally each sub-chain constitutes a complete
task chain. It is possible to sort multi-attribute tasks. To
this end, this paper briefly discusses it.

Assuming that there are N tasks, quantify them and
project them into a two-dimensional space. The corres-
ponding task points are 7,—7). As shown by the red dot in
Fig. 5.

Fig.5 Task grouping diagram

Suppose that there are U agents performing corres-
ponding tasks. Using the ISODATA algorithm, the above
N tasks are clustered, and the number of clusters is U.
Each cluster group G, and corresponding grouping center
C, are obtained, as shown in Fig. 5.

For each point in each group, solve its shortest path in
each group, and get sub-chains as {75, T}, T5 }, --,{ T,,
Tt s ATwvs, Tno1s Ty Ty}, as shown by the red line in
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Fig. 5.

Finally, the shortest path of each cluster center is cal-
culated, and the corresponding module chain is {C;, ‘-,
C,,Cy }. Then calculate the two points with the
shortest distance in each group. It is the connection point
of each sub-chain and connected. Thus, the correspond-
ing task chain can be obtained as {75, T}, T5, -, T,
Toirs s Tyzs Tiv1s Ty Tyo}-

In this way, the task of spatial attributes and even more
dimensional attributes can be realized.

3.3 Reconstruction method of sudden task and
executed task chain

3.3.1 A few sudden tasks

Assume that some tasks have been completed during the
execution of the task, as shown by the yellow circle in
Fig. 6. At this time a small number of tasks burst. That is,
the ratio of the number of new tasks to the number of re-
maining tasks is not higher than the threshold of the full
group, as shown in Fig. 6.

Fig. 6 Schematic diagram of a small number of sudden tasks

Assume that tasks are executed synchronously in the
order in the previous section. Among them, {7, T}, ",
T,, -+, Ty, Ty} has been completed, indicated by a yel-
low circle. At this time, {73, **, Ty, ", Ty, Ty} hasa
total of N, remaining tasks. At this time, NT tasks burst.
Suppose its schematic point in two-dimensional space is
shown in the blue circle. Calculate the ratio of the new
task to the remaining tasks, and set the re-threshold 7%,
and determine the relationship between the ratio and the
threshold, namely,

NT

<Th. (8)

r

Assume no higher than the set threshold, and calculate
the distance between N7 new tasks and {C,, ---,C,, ",
Cy}. Take the group corresponding to the shortest dis-
tance and put it into the group. Then recalculate the
shortest path in the group, which is the task sequence.

Then calculate the point with the shortest distance
between the group and other groups. If there is no new
task group, the corresponding task chain order remains
unchanged, and a new task chain can be obtained.

In this way, a small number of sudden tasks can be
processed.

3.3.2 A lot of unexpected tasks

Assume that a large number of tasks burst during the exe-
cution of tasks. The ratio of the number of new tasks to
the number of remaining tasks is higher than the full
group threshold, as shown in the blue circle in Fig. 7. The
task process and related discussions are the same as in
Fig. 7.

Fig. 7 Schematic diagram of a large number of tasks

At this time, the ratio of the number of newly added
tasks to the number of remaining tasks is higher than the
threshold 7%. In this case, re-planning is required.

At this time, {Ts, =+, Tpe1,*, Ty Tyas NTy, -, NTy}
exists in the space, and there are (N7+N,) tasks in total.
Re-plan the remaining tasks and burst tasks together.
Thus, a large number of sudden tasks can be processed.

3.4 Improved algorithm model of the bee colony
double inhabition labor division

The improved algorithm can be discussed as quantifying
and clustering the tasks to be processed, and solving the
shortest path in each clustering group according to the
similarity of task attributes. That is to order the tasks
within the group, which can be regarded as a task sub-
chain. Then find the shortest path for each center point,
so that all the task fragments can be connected together
according to the order of the center points. Thus, the task
chain in Fig. 3 is formed. When a new task appears, cal-
culate the group corresponding to the task and add it to
the group. Finally, the above model is used to allocate the
task. The process is shown in Fig. 8.
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All tasks
completed?

There are new
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End of optimization New tasks

Fig. 8 Flow chart of improved bee colony double inhibition labor
division algorithm

The above flow chart can be summarized as the follow-
ing steps.

Step 1 Initialize parameters and quantify all tasks.

Step2 Usethe ISODATA algorithm to cluster all tasks.
At the same time get each cluster center.

Step 3 Solve the shortest path of each task point in
the group, and connect each task point into a task seg-
ment.

Step 4 Solve the shortest path between each cluster
center, take the shortest two task points between groups
as the connection point, and connect each task segment
into a task chain.

Step 5 After performing a one-step task, determine
whether all tasks are completed. If all tasks are com-
pleted, the optimization ends. Otherwise, go to Step 6.

Step 6 Determine whether there is a new task. If there
is no new task, go to Step 5. Otherwise, go to Step 7.

Step 7 After new tasks appear, count the number of
new tasks and remaining tasks, and quantify the new tasks.

WU Husheng et al.: A blockchain bee colony double inhibition labor division algorithm for spatio-temporal coupling task... 1187

Step 8 Calculate the ratio k& between the new task and
the remaining tasks, when k is greater than the threshold,
then consider integrating all tasks as a new whole, per-
form regrouping, and return to Step 2. Otherwise, go to
Step 9.

Step 9 £ is not greater than the threshold, indicating
fewer new tasks. After calculating the distance between
the newly added task and each grouping center, the mini-
mum distance is selected, and it is classified into the cor-
responding group. Perform Step 3.

Through the above process, the connection to the task
with spatial characteristics can be determined and the
newly added task can be executed. Subsequently, the ap-
plication of the improved bee colony double inhibition
labor division model in the dynamic assignment of UAV
swarm tasks will be introduced.

4. Modeling of UAV swarm task dynamic
assignment problem

4.1 Drone cluster task dynamic allocation process

A typical task allocation process is shown in Fig. 9
[33,34].

Identify mission
requirements
A l A
. Modeling the UAYV motion
Task decomposition eung .
environment constraints
Objective function L»| Restrictions |e

A

Get an optimized
"] distribution plan

Complete al
tasks?

End of mission

Fig. 9 UAYV swarm task allocation process

First define the task requirements of the UAV swarm
[35-38], then perform task decomposition, decompose
the task set into sub-tasks that can be assigned to the
UAYV for execution according to the task type, and con-
struct the objective function when performing the task ac-
cording to the task requirements. At the same time, it col-
lects environmental information, including the current co-
ordinates of the drone, the coordinates of the mission
point, and the threat area information, and combines it
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with the UAV’s own motion and load constraints to build
constraints. After the objective function and constraints
are obtained, intelligent algorithms are used for optimal
scheduling and resource allocation to realize the mission
planning of the UAV swarm, and an optimized solution is
obtained. Obviously, in actual application, the number of
tasks is significantly greater than the number of drones,
and the tasks may increase. Therefore, it is necessary to
judge whether all tasks have been completed after this
task is executed. Thus, task allocation should be a cyclic
and progressive process.

In order to achieve this effect, before the task alloca-
tion model is established, it is necessary to decompose
the issued combat task set and decompose the task set in-
to sub-tasks suitable for a single UAV to complete. The
typical combat tasks of UAV swarms include [39—43] re-
connaissance, detection, interference, communication re-
lay, and attack.

4.2 Description of UAV swarm dynamic task alloca-
tion problem

This paper takes the background of joint execution of
multi-UAV operations against the enemy, and performs
reconnaissance (R), detection (D), interference (I), attack
(A), and communication relay (C) tasks. Suppose the
number of tasks to be performed in the battlefield is Ny,
which are Ny, Ny, Ny, Ny, and Ny, respectively. The
number of drones that can perform tasks is N,. The task
assignment problem of UAV swarms can be represented
by a quadruple {U,T,M,L}, where U represents the set of
drones, T represents the set of tasks, M represents the set
of task types, and L represents the set of constraints.

Define the set of combatable drones in the battlefield
U={U,,U,, *-, Uy, }; the set of tasks is 7={T\,T,,"*-, T, };
the type of task is represented by the set, M={R, D, I, A4,
C}, where each UAV can perform one or more tasks.

For any T;€T, the definition R;={Ur,,M; ,Qr } means
the constraint condition of task 7;. Uy, represents the
UAV’s own constraints, including the UAV’s maximum
range constraints, UAV’s executable task type con-
straints and UAV weapon load constraints, M, repre-
sents task type constraints, Qy, represents the task load
constraint, the reconnaissance task load is optical detec-
tion and electronic reconnaissance, the detection task load
is an airborne radar, the interference task load is a jam-
mer, the attack task load is a missile, and the communica-
tion relay task load is a communication management sys-
tem.

The description of the conventional UAV swarm task
allocation problem can be summarized as the cost of con-
sumption under the condition of the maximum comple-
tion rate.
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The number of missions is likely to be greater than the
number of UAVs, and the missions may increase, for ex-
ample, interference or attack missions may be performed
after the search process. Therefore, this paper believes
that task planning is a problem of dynamic allocation of
time series. When planning, we must consider not only
the current situation, but also the impact of the current de-
cision on the next step. For example, when a certain UAV
performs reconnaissance on target 1, after the task is
completed, it can fire on the nearby target 2 or the distant
target 3. Obviously, it is very advantageous to perform
task 2, because the corresponding transfer cost is small,
or the similarity of the just ended task is high. Therefore,
this paper believes that in the task planning, the effi-
ciency of executing the task this time should be higher,
and it can also have a good effect on the next moment.

In summary, this paper believes that the description of
the problem of dynamic task allocation for UAV swarms
should be as follows: single planning can maximize the
task completion rate J;, the fuel consumption and mount-
ing resource consumption costs J, are small, and the ter-
rain and radar threats J; are small. The cost of perform-
ing subsequent tasks J, is also small.

According to the task set, a single drone can only per-
form one task in one plan. Then the task completion rate
Jis

=2 ©)

In a single plan, the cost of consumption.J, and the
threats received .J; are

JZZinjCijv (10)
i=1
Uy,
Jszzxijfij, (11)
i=1
where x; represents the 7th drone to perform the jth task,
c; represents the corresponding cost, and #; represents the
threat.

The cost of moving to the next task is small, which
means that the next task is closer to the current task.
Therefore, after quantifying the tasks and calculating the
similarity between tasks, 7, is larger, the transfer func-
tion is

Uny
J4=Zr,~kx,~k (12)

i=1
where r;, represents the similarity between task i and task
k, which is the size of the correlation coefficient between
the two groups of tasks after quantification. x; represents
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the ith drone performing the kth task, and c; represents
the corresponding cost.

Therefore, the optimization goal can be expressed as:
perform as many tasks as possible, the cost of perform-
ing the task is relatively small, and it is easier to execute
the tasks of the next stage after the execution of the task.
That is, make J, and J, as large as possible, and J, and J;
as small as possible in one planning.

Obviously, this paper is to study a multi-objective op-
timization problem. There are many methods for solving
multi-objective optimization problems at this stage, such
as PSO [44], genetic algorithm [45], artificial bee colony
[46], ant colony [47] and other intelligent algorithms. The
core of this type of algorithm is to convert the multi-ob-
jectives in the task assignment problem into linear single-
weight optimization or linear optimization methods, and
then optimize and solve the objective function through
the above-mentioned intelligent algorithm. This design
optimization model solution method works well when
dealing with static problems, but when dealing with dy-
namic problems, it is often difficult to make timely and
dynamic adjustments according to changes in the envi-
ronment. The battlefield environment may change at any
time, such as in reconnaissance missions and detection
missions. As the mission progresses, the opponent’s tar-
get may be gradually discovered, and the number of tar-

gets will rise. During the electronic interference and fire
strike missions, the opponent’s target position changes.
After detecting the target, perform new tasks such as in-
terference or strike, and other uncertain factors. There-
fore, this paper believes that the problem to be solved is a
typical dynamic task assignment problem.

The core of the task allocation research is how to allo-
cate the appropriate tasks to the appropriate drones to
achieve the best overall execution effect. Swarm intelli-
gent labor division can effectively and quickly achieve
flexible assignment of tasks, has obvious adaptability,
and can still efficiently complete tasks in a dynamic en-
vironment, showing superiority.

5. Dynamic task assignment of UAV swarm
based on improved bee colony double in-
habition labor division algorithm

5.1 Algorithm mapping

Based on the previous description, this paper builds a
double-inhibition task assignment mapping model based
on the improved bee colonization. This model takes bee
individuals as modeling objects, and achieves a reason-
able labor division for the entire bee colony by superim-
posing the simple behaviors of bee individuals.

The mapping relationship between the double inhibi-
tion model and task assignment is shown in Fig. 10.

Mapping relations

Double-suppression model

Mission planning

-

Stimulator J

Bee <¢——— Equivalent —— 9 UAV

Age <¢——— Equivalent — g Task execution rate J,
Function

- ., ———————— P

ER sedten Resources consumed J,
Function

IR — unetio —_— Threatened J,
association
Function

association

—— > Transfer function J,

Fig. 10 Mapping relationship between the bee colony double inhibition model and UAYV task assignment

The corresponding relationship can be described as fol-
lows:

(i) Each UAYV is equivalent to a bee.

(il)) The task execution rateJ, is regarded as the
physiological age of bees.

(iii) The resource J, consumed in the mission planning
is regarded as the bee’s ER.

(iv) The threat J; in the mission planning is regarded as
the bee’s IR.

(v) Consider the transfer functionJ, in mission plan-

ning as a bee stimulant.

When the system does not perform tasks efficiently,
the content of the stimulant increases. Under the action of
the double inhibition principle, its task execution rate J,
will increase. At the same time, when the efficiency of
the system execution task is not high, the larger the ex-
ternal inhibitor, the task execution rate.J; will increase
under the action of double inhibition principle. The tasks
corresponding to each UAV are adaptively adjusted
through the changes of stimulants and inhibitors, which
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has the characteristics of concise principles and easy im-
plementation.

In this way, the solution method of swarm labor divi-
sion is adopted. Over time, the tasks performed by each
drone will be adaptively adjusted and the purpose of
adaptively improving the task execution rate can be achi-
eved without the need to establish an optimization model.

5.2 Dynamic task allocation process

The double inhibition principle requires a comparison of
the stimulator, internal inhibitor, and external inhibitor.
However, when the drone is performing a task, the task
execution rate, the threat, and the cost are received. These
parameters have different dimensions and magnitudes for
each performance index, resulting in that the physical
meaning of each index weight model is not clear, or due
to a certain index. It is difficult to directly compare the
dimensionless ambassadorial objective function and over-
coming the magnitude difference of the performance in-
dex. Since this is a practical problem, the distance mag-
nitude and parameters are difficult to determine directly.
For this reason, in the single planning, the maximum
value J,..« and the minimum value J,..,;, of all UAVs’ re-
source consumption are selected. The threatened maxi-
mum value and minimum value are J;..;, and Jy., Te-
spectively. And the maximum value and minimum value
are Jy.,a and Jy..i, of the transfer function respectively.
The relative resource consumption index RJ,(k) of the
kth UAV is
J2 (k) = Jomin

JZ:max - JZ:min

RJ, (k) = (13)

The relative resource consumption index RJ;(k) of the
kth UAV is

JS (k) - J3:min
J3:max - J3:min .

The relative index RJ,(k) of the task transfer function
of the kth UAV is

RJ, (k) = (14)

RJ, (k) = %. (15)
The stimulant J(k) of the kth UAV is
J(k)=RJ, (k). (16)
The internal inhibitor /R(k) of the kth drone is
IR (k) =RJ; (k). (17)
The external inhibitor ER(k) of the kth UAV is
ER(k) = iRJZ (k). (18)

k=1
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The excitation suppression ratio A(k) of the kth UAV is

J (k) (19)

AR = RO ERD)’

The principle of double inhibition is to control the
physiological age of bees through the ratio of the sum of
the stimulator, internal inhibitor and external inhibitor,
namely the above formula. Correspondingly, in the al-
gorithm of this paper, the execution rate of the task is de-
termined by the excitation suppression ratio, as follows:

et 0y, A (k) > dhighcr
k= k— Oy A(k), < dlowcr (20)
Zks dlowcr < A (k) < dhighcr

where dyge; is the upper threshold of the excitation sup-
pression ratio, d,o,.. is the lower threshold of the excita-
tion suppression ratio, z; is the age of the bee correspond-
ing to the kth drone, and o, is the change in age. When the
excitation-inhibition ratio is greater than the upper
threshold, age increases; when the excitation-inhibi-
tion ratio is lower than the lower threshold, age de-
creases; when the excitation-inhibition ratio is greater
than the lower threshold and less than the upper
threshold, age does not change.

A (k) - dhighera A(k)l > dhigher
g;= dlower - A (k) 5 A (k) < dlower (21)

Ti-1, dlower <A (k) < dhigher

In (21), when the excitation-inhibition ratio is greater
than the upper threshold, the age change is positively cor-
related; when the excitation-inhibition ratio is lower than
the lower threshold, the age change is negatively corre-
lated; when the excitation-inhibition ratio is greater than
the lower threshold, and less than the upper threshold, the
amount of change in age remains unchanged.

Then the task planning process based on the improved
bee colony dual-suppression division of the labor al-
gorithm is shown in Fig. 11.

Original task New task

\— Task chain [«

. Perform
ﬁ?gﬁ)?:s | corresponding
g tasks

Initialize bee
parameters

Fig. 11 Improved task allocation algorithm
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The process in Fig. 11 can be described as follows.

Step 1 Initialize parameters. Parameters include the
number of drones Uy, the number of tasks Uy, the age of
the bee corresponding to the drone, the coordinates and
task types of each task point, the consumption of per-
forming each task, the transfer function between tasks,
the upper threshold g, the lower threshold djy,,, in-
ternal Inhibitor coefficient a, and age change o,

Step 2 According to the task parameters and the pro-
cess in Fig. 8, get the task chain.

Step 3 Calculate the content of the stimulant, intern-
al inhibitor and external inhibitor corresponding to each
UAYV, and calculate the excitation inhibition ratio 4A(k).

Step 4 Adjust the age of the bee corresponding to the
drone according to (20) and (21).

Step 5 According to the adjusted age, combined with
Fig. 8, perform the tasks corresponding to the task chain.

Step 6 Determine whether there is a new task. Step 3
is executed if it does not continue, otherwise Step 2 is
executed.

Step 7 Repeat Step 2 to Step 6 until all tasks are
completed.

Through the above process, it is possible to realize the
dynamic allocation of tasks of the UAV swarm.

6. Simulation
6.1 UAVs taking off from the same location

In order to verify the feasibility and advantages of the
proposed method, the above algorithm is simulated. This
paper assumes that 10 drones will go to 50 points to per-
form missions and take off from the same point. Assume
that there are 50 task points, 10 for each task, the distribu-
tion is shown in Fig. 12.
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o: Attack; +: Detect;
: Interference; x: Communication relay.

¢: Reconnaissance;

Fig. 12 Original distribution map of 50 task points in situation A

Assuming that the drone is an integrated surveillance
UAV, and it can only perform one task at a time.

In order to reflect the advantages of the method in this
paper, it is compared with the classical labor division of
hordes, the labor division in ant colonies, and the im-
proved labor division methods in [48—50]. The simulation
environment is 17-4960, the main frequency is 2.60 GHz,
16 G memory, and the simulation experiment is carried
out based on Matlab 2014a. Dispatch five drones to per-
form the corresponding tasks, and the simulation results
are shown in Fig. 13.
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(b) Labor division of bee colony (the cost is 82.908 4)
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(c) Ant colony labor division (the cost is 83.598 4)
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(f) Algorithm in [50] (the cost is 79.002 5)
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Fig. 13 Comparison of task plan and cost of five algorithms in

situation A

It can be seen from the cost function of each algorithm
that the cost function of the improved algorithm in this
paper is smaller than the other four algorithms. Due to the
double inhibition model, the performance of the al-
gorithm in this paper is superior to the classical bee
colony division labor and ant colony division labor al-
gorithms. The method in [48] designs variable thresholds,

but due to the large number of drones set in this paper
and the limited parameters for each UAV to perform
tasks, the calculated variable threshold cannot be guaran-
teed to be the optimal threshold. Therefore, the method in
this paper is slightly better. The method of [49] needs to
design the calculation and evaluation method of suitabil-
ity and specify the interaction constraints and update
rules to have good performance. However, the research in
this paper is for both sides of the military confrontation,
and the information is not enough to support the corres-
ponding rules and parameters of the design. Therefore,
the method in this paper is due to the improvement
strategy of [49]. At the same time, it also reflects the
strong practicability of this method. Among them, [50] is
a typical improved ACO algorithm, and its essence is an
intelligent optimization algorithm. It can be seen from
Fig. 13 that the algorithm in this paper has a better effect,
because as the search dimension increases, the literature
[50] has the risk of falling into a local optimum.

In order to further compare the performance of the
method, the performance of the algorithm in this paper
and the other four algorithms are subjected to 100 Monte-
Carlo experiments to calculate the corresponding optimal
cost function, average cost function, corresponding vari-
ance, and time-consuming. Results are shown in Table 1.

It can be seen from the comparison that the algorithm
in this paper has better performance and stability. It is
more suitable for solving the problem of task assignment.

The algorithm in this paper has obvious advantages,
mainly because of the following four reasons.

(1) Specificity

Conventional intelligent optimization algorithms, such
as particle swarms, ant colonies and genetic algorithms,
and corresponding improved algorithms, all have a con-
tradiction between algorithm speed and accuracy. That is,
the intelligent optimization algorithm always switches
between the global broad search and the local precise
search, and the corresponding particles also switch bet-
ween different states. The bee colony division of the
labor algorithm is to realize the division of labor for each
particle, that is, the particles only perform extensive
search or precise search, so that there will be no switch-
ing problems, which further improves the performance of
the algorithm.

(i1) Robustness

The efficiency of the intelligent optimization algo-
rithm is highly related to the diversity of the population.
If the original population can be distributed as evenly as
possible in the search space, the possibility of the al-
gorithm converging to the local optimum will be reduced.
However, when the population is generated, there is no
guarantee that particles can appear in all spaces. Or if the
particles in a certain part of the search space disappear,
the space here cannot be searched. That is, it is difficult to
guarantee the diversity of the population.
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Table 1 Algorithm performance comparison in situation A
Cost function The a.lgorithm of Bee C(.)l(.)r?y Ant C(.)l(.)rTy A?gorithm AFgorithm AFgorithm

this paper labor division labor division in [48] in [49] in [50]

Min 77.3205 82.5620 83.3530 79.6902 79.3347 77.9551

Average 78.3763 82.9944 84.3801 80.0487 80.2851 79.0156
Variance 1.3537 1.6286 1.9977 1.4713 1.5642 1.1135
Time-consuming 0.5377 1.3499 1.6715 0.8864 0.8637 2.0991

The bee colony division of the labor algorithm tra-
verses all possible situations in the optimization process,
thus reducing the possibility of falling into a local opti-
mum. Compared with intelligent algorithms, the al-
gorithm in this paper has better robustness.

(iii) Suitable for solving dynamic problems

Intelligent algorithms mainly use particles to optimize
the objective function, that is, after the objective function
and constraint conditions are determined, the optimal
solution is obtained through particle search, meaning that
this is a static process. The bee colony division of the
labor algorithm is based on an environmental stimulus-
colony response mode, and gradually converges to the
optimal process through interaction with the environment
and loop iterations. This is a method that is more similar
to biological characteristics and more interpretable.

(iv) High algorithm efficiency

The fast speed of this algorithm is reflected in the al-
gorithm design level and the bee colony algorithm itself.

In this designed hierarchically algorithm, the task
points are classified first, and then the optimization is
performed in each classification group. This method has a
faster algorithm than the global optimization.

The bee colony algorithm level is because the intelli-
gent optimization algorithm is independent for each op-
timization, that is, when a new task appears, the intelli-
gent optimization algorithm optimizes it as a brand new
problem. The optimization of the bee colony division of
the labor model is continuous. When a new task appears,
as shown in Section 5.3 of this paper, after 20 new ran-
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(a) The algorithm in this paper (the cost is 43.154 4)

dom tasks are added, the previous optimization state con-
tinues, and the optimization continues. The algorithm
speeds faster than the the intelligent optimization al-
gorithm.

6.2 UAVs taking off from any point

In order to further reflect the applicable scope of the al-
gorithm in this paper, it is assumed that five drones are
going to perform tasks at 50 points and can take off from
any point. The 50 task points are shown in Fig. 14. Also
assume that there are 50 task points, each with 10 tasks.
The distribution is shown in Fig. 14.
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Fig. 14 Original distribution map of 50 task points in situation B

The simulation parameters and platform parameters re-
main unchanged, and the above task points are planned.
The results and comparison are shown in Fig. 15.
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(b) Bee colony labor division (the cost is 46.231 7)
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Fig. 15 Comparison of task plan and cost of five algorithms in situation B

It can be seen from the above comparison that the
method in this paper has a better performance than the
other four methods in task planning. To further compare

the performance of the method, another 100 Monte-Carlo
experiments are performed to calculate the correspond-
ing cost function. The results are shown in Table 2.

Table 2 Algorithm performance comparison in situation B

Cost function The algorithm Bee colony Ant colony Algorithm Algorithm Algorithm
of this paper labor division labor division in [48] in [49] in [49]

Min 42.8168 46.1087 46.0672 43.7242 43.3587 43.0057
Average 43.0036 46.3920 46.4903 443134 443390 433505
Variance 1.0816 2.5849 1.2977 0.9302 0.8053 1.2326
Time-consuming 0.3188 0.7873 0.8093 0.5305 0.5968 1.165 8

Through the above comparison, it can be seen that the
performance of the algorithm in this paper is superior to
the other five algorithms. Although from the point of
view of variance, the algorithm in this paper is not as
stable as the other five algorithms, but it still oscillates
around a better value. This shows that the algorithm in
this paper is superior to other algorithms.

It can be seen from the above simulations that the al-
gorithm in this paper can be used for multi-objective task
allocation in different scenarios and has good efficiency.

6.3 Sudden tasks

As mentioned above, in the process of performing tasks,
the UAV swarm may burst new tasks. The simulation
parameters and environment are the same as the previous
section. Five drones are dispatched to perform 50 tasks,
but in the process of execution, 20 new tasks will be ge-
nerated. That is, on the basis of Fig. 14, 20 task points are
added at random, of which five are added for each task,

as shown in Fig. 16.
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Fig. 16 Original distribution map of 50 task points in situation C
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Using the above algorithm for comparison, the results
are shown in Fig. 17 to Fig. 22. By comparison, it can be
seen that the algorithm in this paper is superior to other
algorithms. This is also because the algorithm in this pa-
per has a better effect on dynamic problems. A total of
100 Monte-Carlo simulation experiments are also con-
ducted, and the results are shown in Table 3.

It can be seen from the comparison that the perform-
ance of the algorithm in this paper is not stable compared
to the algorithms in [48,49]. However, the overall per-
formance parameters are better than the other four al-
gorithms. It is more suitable for solving the situation of
newly added tasks. And through the time-consuming al-
gorithm, it can be seen that the algorithm based on the di-
vision of labor has better real-time performance than the
intelligent optimization algorithm.

100

90 I/ \ |

80 + E

ol s K/:

50 ++ e
+

40 + E
* o

?3:. ﬁ\\;\:

0
0 10 20 30 40 50 60 70 80 90 100
Range/km

Range/km

(b) Results of performing all tasks

: Interference; = : Communication relay;
: UAV4; : UAVS.

Fig. 17 Algorithm of this paper (the cost is 53.8064)
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Fig. 22 Algorithm in reference [50] (the cost is 54.4227)
Table 3 Algorithm performance comparison in situation C
Cost function The a‘lgorlthm Bee c?lf)l?y Ant ct.)lf')n‘y Al‘gorlthm Al‘gorlthm AFgorlthm
of this paper labor division labor division in [48] in [49] in [50]
Min 53.2255 57.4162 58.706 6 53.6427 53.3404 53.3354
Average 53.9264 58.7420 59.4014 54.3888 54.4026 54.2643
Variance 1.7927 2.8647 33160 1.6347 1.6094 1.8479
Time-consuming 1.5545 2.1977 2.7015 2.0187 2.0679 42573

7. Conclusions

Aiming at the bee colony double inhibition labor division
algorithm that is difficult to handle tasks with multi-di-
mensional attributes and sudden tasks, this paper im-
proves the algorithm and applies the improved algorithm
to the task allocation of the UAV swarm. The results
achieved are as follows.

In order to solve the problem that the labor division al-
gorithm is difficult to construct the task chain with multi-
attributes, this paper regards it as the problem of finding
the strongest point of correlation one by one according to
the relevance and similarity of tasks. This paper first
clusters the task points, finds the points with the strongest
correlation in the cluster group, and forms multiple task
sub-chains. Then, according to the relevance of each clus-
tering center, multiple task sub-chains are connected to-
gether to form a complete task chain, which can con-
struct a correspondence with the age of the bees in the
labor division algorithm.

In order to improve the ability of the labor division al-
gorithm to deal with sudden tasks during the execution of
tasks, this paper sets a threshold for the relative propor-
tion between the number of sudden tasks and the number
of remaining tasks. When it is lower than the threshold,
the sudden task is less than the remaining tasks, the de-
gree of correlation between the sudden task and each

cluster center is calculated and grouped. Then, insert the
sudden task into the original task sub-chain of the group
to form a new task chain. When it is higher than the
threshold, all tasks are re-planned according to the me-
thod above, and a new task chain is obtained.

In order to reflect the performance advantages of the
algorithm and the ability to solve practical problems, this
paper uses the improved algorithm to solve the dynamic
task planning problem of the UAV swarm. Firstly, a mo-
del of dynamic task assignment for the UAV swarm is
constructed, and then the task types are refined, and mul-
tiple objective functions in the task assignment process
are quantified. After that, the mapping relationship
between biological characteristics and task planning in
the labor division algorithm is constructed, and the dy-
namic adjustment of the task assignment of the UAV
swarm is realized by using the self-adjusting characteris-
tics of the bee colony. Through simulation verification
and algorithm comparison, the feasibility and superiority
of the algorithm in this paper are reflected.

Although this paper is for UAV research, if the task is
replaced by another agent’s executable task, and the con-
straints are adjusted. The model constructed in this paper
can be applied to the task assignment of other agents.
And from a theoretical perspective, the model construc-
ted in this paper can also be applied to solve the multi-
TSP completely as shown in Section 5.1 and Section 5.2.
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The research is of great significance for solving such op-
timization problems.
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