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Abstract: Recent advances in electronics have increased the
complexity of radar signal modulation. The quasi-linear fre-
quency modulation (quasi-LFM) radar waveforms (LFM, Frank
code, P1-P4 code) have similar time-frequency distributions,
and it is difficult to identify such signals using traditional time-
frequency analysis methods. To solve this problem, this paper
proposes an algorithm for automatic recognition of quasi-LFM
radar waveforms based on fractional Fourier transform and time-
frequency analysis. First of all, fractional Fourier transform and
the Wigner-Ville distribution (WVD) are used to determine the
number of main ridgelines and the tilt angle of the target com-
ponent in WVD. Next, the standard deviation of the target com-
ponent's width in the signal's WVD is calculated. Finally, an as-
sembled classifier using neural network is built to recognize dif-
ferent waveforms by automatically combining the three features.
Simulation results show that the overall recognition rate of the
proposed algorithm reaches 94.17% under 0 dB. When the train-
ing data set and the test data set are mixed with noise, the re-
cognition rate reaches 89.93%. The best recognition accuracy is
achieved when the size of the training set is taken as 400. The
algorithm complexity can meet the requirements of real-time re-
coghnition.

Keywords: quasi-linear frequency modulation (quasi-LFM) radar
waveform, time-frequency distribution, fractional Fourier trans-
form (FrFT), assembled classifier.
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1. Introduction

Recognizing the waveform of radar signals plays a key
role in electronic warfare. Lots of research around the
world has been devoted to the problem of being able to
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recognize radar signal waveforms [1-3]. Early recogni-
tion algorithms depend on time-domain, frequency-do-
main [4,5] and high-order statistical analysis [6—8] of
radar signals. A radar signal modulation recognition
method was proposed in [9], based on spectrum complex-
ity that achieves a recognition rate greater than 90% at
a signal-to-noise ratio (SNR) of 6 dB, but the overall re-
cognition rate is very low at a low SNR. In [10], a fre-
quency estimator was used to obtain the instantaneous
frequency characteristics of binary phase-shift keying
(BPSK), quadrature amplitude modulation (QAM), and
phase-shift keying (PSK) signals. However, this method
can only identify certain special signals and is not univer-
sal. A method based on random projection and sparse
classification was proposed in [11], to identify radar sig-
nal waveforms. First, the signal is compressed by ran-
dom projections, and then the compressed signal is identi-
fied by the sparse classification (SC) algorithm. With six
kinds of radar signals, the overall recognition rate reaches
90% at an SNR of 0 dB. However, one-dimensional time-
domain or frequency-domain analysis cannot accurately
reflect the time-varying characteristics of non-stationary
signals that arise with the increased complexity of re-
cently developed radar intra-pulse modulation methods.
As aresult, analyzing and recognizing radar signals in the
time-frequency domain and transform-domain have be-
come a focus of recent research. In [12] and [13], short-
time Fourier transform (STFT) methods were used to
analyze and recognize linear frequency modulation
(LFM) signals, frequency shift keying (FSK) signals,
PSK signals, and continuous wave signals. This ap-
proach produced an overall recognition accuracy of 90%
for an SNR of 0 dB. A fractional Fourier transform
(FrFT) approach was adopted in [14], based upon a chirp-
based sparse decomposition of radar signals. Here, an
overall recognition accuracy of 95% was achieved for an
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SNR of —3 dB. However, this method was only able to
classify signals into five categories, according to the chirp-
based parameters. When the number of different types of
signal increases, this method will experience a signific-
ant reduction in the recognition rate. To deal with cross-
term interference in the Wigner-Ville distribution
(WVD), which plays an important part in time-frequency
analysis, a Choi-Williams distribution (CWD) was used
for feature extraction and the recognition of radar wave-
forms. In [15], the singular value entropy from the CWD
of eight types of radar waveforms was extracted. The box
and information dimensions of the signal spectrum were
then extracted, before applying a support vector machine
(SVM) to bring about signal recognition. Here, the over-
all recognition rate reached 95% for an SNR higher than
1 dB. In [16], features were extracted from the CWD of
the signal through image filtering, skeleton extraction,
principal component analysis (PCA), image Binarization
algorithm, Pseudo-Zernike moments, etc. Subsequently,
Elman neural network (ENN) was used to classify differ-
ent radar waveforms. The overall recognition rate
achieved using this method was greater than 94% at an
SNR of =2 dB. In [17], a radial integration method based
on the integral rotation factor was proposed to detect six
kinds of radar waveforms, namely, frequency-modulated
continuous wave (FMCW), BPSK, Costas code, Frank
code, P1 code, P2 code signals in the CWD. However,
the recognition accuracy of the algorithm is not satisfact-
ory at a low SNR. Deep learning (DL) is a method based
on representational learning of data, which can adapt-
ively select features, thereby effectively overcoming the
disadvantages of artificially set features [18,19]. Many
scholars have also utilized this method for recognizing
the radar waveforms. Convolutional neural networks
(CNNs) are deep learning methods, widely used for im-
age recognition [20,21], speech recognition [22,23], com-
puter vision [24], hand writing recognition [25], etc. They
can extract deep-level features and can improve the re-
cognition accuracy. In [26], CNN was used to extract fea-
tures from the CWD of the signal to identify eight differ-
ent radar waveforms, namely, LFM, BPSK, Costas codes,
Frank codes, and polytime codes (T1, T2, T3, T4). The
simulation results show that the overall recognition rate
reached 93.7% at an SNR of -2 dB.

It can be seen from the state-of-the-art that the method
of time-frequency analysis is widely used for radar wave-
forms recognition. Artificially predefined feature extrac-
tion methods and CNNs are the two broad categories of
methods used to extract feature parameters from the time-

frequency distribution of the signal. Finally, a classifier is
used to identify different radar waveforms. However, for
quasi-LFM radar waveforms (LFM, Frank code, P1-P4
code), the time-frequency distributions are similar, which
poses difficulties in using the traditional time-frequency
analysis methods for identification. In this paper a me-
thod based on FrFT and time-frequency analysis is pro-
posed to identify such signals. First, an FrFT is applied
on the signal to determine the number of main ridgelines
and the tilt angle of the target component in WVD. Then,
the standard deviation of the target component’s width in
the signal’s WVD is calculated. Finally, an assembled
classifier using neural network is built that adopts the
fusion algorithm to recognize different waveforms by
automatically combining the three features. Simulation
results verify the proposed algorithm’s recognition accur-
acy, robustness, and algorithm complexity. Moreover, the
proposed algorithm is compared with the existing al-
gorithm proposed in [16] and [26] to demonstrate its su-
periority.

2. Quasi-LFM radar signal model

The mathematical model of quasi-LFM signals is as fol-
lows [27]:

xX(1) = A (1)

where A represents the amplitude, f. represents the carri-
er frequency, and ¢; represents the modulation phase. The
six types of quasi-LFM signals discussed in this paper
differ in terms of the modulation phase. The specific
mathematical models for each of the six types are shown
in Table 1, in which m=1,2,---,M; n=1,2,---,N;
M=+N.;and k=1,2,---,N..

Table 1 Modulation phase of six kinds of quasi-LFM signals

Code type Definition of ¢;
LFM ¢ =mur®
Frank Gmn =2n(m—-1)(n—1)/M
P1 Gon = —1[M = 2n—-D][(n—1)M +(m -1 /M
P2 Gpn = —1Q2n—1-M)(2m—1-M)/2M
P3 ¢ =mn(k—1)?/N,
P4 ¢ = n(k—1)*/Ne —m(k—1)

It is assumed that N,= 256, the signal amplitude is
A =1, the carrier frequency isf,=3000 Hz, and the
sampling frequency is f=12000 Hz. The LFM, Frank
code, P1 code, P2 code, P3 code, and P4 code WVDs are
shown in Fig. 1.



1132

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

Frequency/Hz

100200 300400 500 600 700 800 9001 000
Time/s

(a) LFM

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

Frequency/Hz

100200 300400 500 600 700 800 9001 000
Time/s

(c) P1

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

Frequency/Hz

100200300400 50 600 700 8009001 000
Time/s

(e) P3

Journal of Systems Engineering and Electronics Vol. 32, No. 5, October 2021

0.50
0.45
0.40
0.35
0.30
0.25
3 0.20
0.15
0.10
0.05

uency/Hz

Fre

100200 300 400 500600 700 8009001 000
Time/s

(b) Frank

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

Frequency/Hz

100200 300400 500 600 700 800 9001 000
Time/s

(d) P2

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

Frequency/Hz

100200300400 500 600 700 800 9001 000
Time/s

(f) P4

Fig. 1 WVDs for six types of quasi-LFM signals

3. Time-frequency feature extraction
3.1 FrFT
An FrFT takes the following form [28]:
X, = [~ K,anx@d. )

The transformation kernel function K, (u,f) can be
defined as follows:

Aaejn[(uz+t2)colar—2utcsca] , a £ nm
K,(u,ty=4 6(t—u), a=2nn 3)
o0(t+u), a=Q2n+D)n

where p represents the fractional order, @ = pm/2 repre-
sents the fractional rotation angle, and A, = /1 —jcota.

The essence of the FrFT is the chirp basis decomposi-
tion [29]. Therefore, FrFT has good time-frequency ener-
gy accumulation characteristics for quasi-LFM signals.

Moreover, the relationship between an FrFT and the
WVD is demonstrated in [29], which can be described as
the WVD of a signal’s FrFT is the rotated coordinate
form of the original signal’s WVD, with the direction of
rotation being counterclockwise and the rotation angle
being equal to the fractional rotation angle.
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3.2 Signal characteristics in the fractional domain

The WVDs of the quasi-LFM signals shown in Fig.1 are
all inclined straight lines at a certain angle to the time do-
main axis. Let us assume that the angle between the
straight line and the time domain axis is 8. According to
the relationship between the FrFT and the WVD ob-
tained in Section 3.1, as long as the rotation angle of the
FrFT, @, and 8 are orthogonal, signal energy aggregation
will occur in a narrow band of the fractional domain, as
shown in Fig. 2.
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Fig.2 Signal energy aggregation in the fractional domain

In practical applications, the inclination angle, 3, of a
signal’s WVD cannot be known in advance, so it is ne-
cessary to use the rotation angle, «, as a variable to per-
form an FrFT on the observed signal. This gives the ener-
gy distribution of the signal in different fractional do-
mains, thereby providing the two-dimensional distribu-
tion of the signal energy on the plane («,u). By conduct-
ing a two-dimensional search of the signal energy, the ener-
gy peak value and the corresponding rotation angle a,
and the fractional domain frequency u, can be described as

(o, 1o} = argmax|X, ). “4)

Then the optimal fractional order p, can be obtained as
Do = 2a,/m.

Taking the Frank code as an example, the two-dimen-
sional distribution of signal energy on the plane (a,u) is
shown in Fig. 3.

1o 15
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Fig. 3 Two-dimensional distribution of Frank code signal energy
on the plane (a,u)
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According to the energy aggregation of the quasi-LFM
signals in the fractional domain in Fig. 2, we can get that

M = —cota,
{ f. =upcscay ®)

where u and f. represent the modulation frequency and
the carrier frequency of the quasi-LFM signal, respect-
ively. Considering that the modulation frequency and the
carrier frequency of the Frank code signal are both posit-
ive, then we can get that n/2 <o, <7n(l < py, <2) and
uy > 0.

By performing an FrFT with a rotation angle of a,, the
corresponding energy distribution in the best fractional
domain is shown in Fig. 4.

100
90
80
70
60
50
40 !

30 [

20 1

10 o gl Fiy
0 g " iNIM

-15 -10 -5 0 5 10 15
u

X, (w)l?

Fig. 4 Frank code signal energy distribution in the best fractional
domain

It can be seen from Fig. 4 that the Frank code signal
has two energy peaks in the best fractional domain, which
correspond to the two main ridges in the WVD. There-
fore, the number of main ridges in the WVD of the signal
can be judged according to the energy peak in the best
fractional domain of the signal. At the same time, Fig. 1
shows that only the P2 code signal corresponds to the

. . T .
fractional rotation angle, a < 5 with the other signals

corresponding to the fractional rotation angle « > g All

the above characteristics can be used for signal classifica-
tion. The specific algorithm for this is as follows:

(i) Take the rotation angle, @, as a variable and per-
form an FrFT on the observed signal to obtain the two-di-
mensional distribution of the signal energy on the plane
(a,u).

(i1) Perform a two-dimensional search on the signal
energy to obtain the fractional rotation angle, @, corres-

ponding to the peak energy. If a < g, the signal can be

regarded as a P2 code signal. Conversely, perform an
FrFT on the signal with the fractional rotation angle, @, to
obtain the energy distribution of the signal in the best
fractional domain.

(iii) Call the signal energy peak in the best fractional
domain E, then select the location points

Uy, iy, -+, upywhere the energy value is greater than 0.6E
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1 .
and calculate the average value, u, = % Z u;. According

to the average value, u,, divide the location points into
two parts, U;and U,. U, incorporates the points that are
less than u,; U, incorporates the points that are greater
than u,. Calculate the corresponding mean values, «’ and
u”, respectively.

’

(iv) Calculate r = ©

—. If r<0.5, it indicates that the

WYVD of the signal has two main ridges. If » > 0.5, it in-

dicates that the WVD of the signal has one main ridge.
The classification of six types of quasi-LFM signals

based on the above algorithm is shown in Fig. 5.

N
= P2 code
N Y
LFM Frank code
P1 code P3 code
P4 code

Fig. 5 Signal classification process based on the FrFT algorithm

3.3 Standard deviation of target component
width in WVD

The identification of quasi-LFM radar waveforms from
the number of main ridgelines and from the tilt angle of
the target component in WVD has the following limita-
tions:

(i) LFM, P1 code signal and P4 code signal cannot be
distinguished.

(ii) Frank code signal cannot be distguished from the
P3 code signal.

As shown in Fig. 1, Frank, P1 and P2 code signals are
uneven curves with obvious blocky structures as they are
based on frequency approximations of an LFM signal. P3
and P4 code signals have smoother curves because they
are sampled from an LFM signal. The LFM signal has the
smoothest curves and contains no additional components
[30]. This feature is reflected by the standard deviation of
the target component width.

However, the target component is at a certain angle to
the time domain axis, which makes the direct calculation
difficult. The calculation of the standard deviation of the
target component becomes easier if the time-frequency
image is rotated so that the target component is parallel
either to the time domain axis or to the frequency domain
axis. However, this rotation process requires additional
computations for calculating the interpolation.

The WVD of the signal x(¢) is rotated counterclock-
wise by an angle of 6 (6 = pn/2), to obtain X, (1), which

Journal of Systems Engineering and Electronics Vol. 32, No. 5, October 2021

is the FrFT of x(¢). Therefore, the FrFT of the signal x(¢)
with a specific fractional order p, makes the target com-
ponent in the WVD of X, (u) parallel to the time domain
axis. This algorithm reduces the difficulty in calculating
the standard deviation of the target component, and it can
also reduce the number of computations needed for rotat-
ing the time-frequency distribution.

The signal parameters are the same as those mentioned
in Section 2, and an FrFT with a specific fractional order
p is performed on the quasi-LFM signals. The WVD is
shown in Fig. 6, in which the target component is paral-
lel to the time domain axis.
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Fig. 6 'WYVD for the six different quasi-LFM signals after an FrFT

The specific fractional order p has to be determined.
According to the assumption mentioned in Section 3.2, if
the WVD of the signal x(f) is rotated counterclockwise
by an angle of 3, then the target component becomes par-
allel to the time domain axis. Therefore, the FrFT is ap-
plied to the signal x(#) so as to obtain X, () by rotating
its WVD by an angle of 8 (8 = pn/2). This makes the tar-
get component in the WVD of X, (1) parallel to the time
domain axis. In accordance with the description given in
Section 3.2, to determine the angle 8 between the target
component and the time domain axis, a two-dimensional

1135

search is conducted on the signal energy. From this two-
dimensional search, the energy peak value and the corres-
ponding rotation angle, a, can be obtained. @ is ortho-
gonal to 3, so 8 can be determined as

T >7[

a——=, az—

2 2
ST ®)

a+—-, a<-—

2 2

Then the specific fractional order can be calculated as
p=2p/m.

The above-mentioned time-frequency image needs to
be binarized to eliminate the influence of independent
noise points. The binarized image is essentially a two-di-
mensional matrix B (i, j), where i and j can take integer
values 1,2,---, M. The sum of the rows of the matrix are

M-1
given by D (i) = ZB(i,j), where i=1,2,---,M. As the
=0
target value is 1 and the background value is O after the
binarization process, D (i) represents the width of the tar-
get component with respect to the time domain axis.

Normalizing D (i) to maintain its value between 0 and
1, we get
D@

" maxD(@)

D) (7

Then the standard deviation of the target component
width can be calculated as follows:

1 M-1 . 1 M-1 . 2
o= M;Dz(i)_(M;D(i))' (3

4. Assembled neural network classifier design

The neural network has the ability to learn by itself. It can
analyze the underlying laws between the input and the
output data, provided during its training phase. Finally, it
uses these laws to predict the output for a given input
[31]. Therefore, it is a good choice to use a neural net-
work to identify different radar waveforms.

According to the signal features described in Section 3,
the quasi-LFM radar waveforms can be identified by us-
ing these features. However, these features need to be ef-
fectively integrated to improve the overall recognition
performance. In order to achieve multi-feature fusion, and
to overcome the problem of overfitting [32], an as-
sembled neural network has to be used as a signal classi-
fier.

An assembled classifier model using neural networks is
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composed of system inputs, single neural network design,
combination structures, and fusion principles [32], as
shown in Fig.7.

Neural network 1 +—

Feature

Outputs
—

Neural network 2

Fusion principles

Neural network Nl

Fig. 7 Assembled neural network classifier model

The back propagation (BP) neural network is widely
used in machine learning. The mathematical theory has
proved that a three-layer BP neural network can fit any
kind of nonlinear function with arbitrary precision, and
has a strong ability to nonlinearly map the inputs to the
outputs [33]. The radial basis function (RBF) neural net-
work is a kind of local approaching neural network that
can adaptively determine the radial neurons and has a fast
convergence speed. In this paper different neural net-
works based on BP and RBF are used for the waveform
classification.

The numbers of neurons in the input layer and in the
output layer are determined by the number of features and
by the number of waveforms, respectively. There are
three feature parameters and six waveforms for each clas-
sifier.

The performance of the assembled classifier depends
heavily on fusion principles. Several fusion algorithms
have been proposed such as the majority vote algorithm,
the simple average algorithm, the optimal linear combina-
tion algorithm, and the confidence factor algorithm [34].
The output of a trained neural network can be an appro-
ximate posterior probability. In this paper the waveforms
are recognized through the majority vote algorithm which
utilizes weighted posterior probabilities.

Assume the number of the waveforms that are classi-
fied to be K, the number of the classifiers to be N and the
input feature vector to be X. The kth output of the nth
classifier is

O (X) = P(cilX) + €, (X) ©)

where P (c;|X) is the posterior probability that X is clas-
sified as the kth type of waveform; e, (X) is the output
error of the kth node in the n th classifier. Assuming
Wy = {Wi, W, -+ Wi} to be the kth output weight of the
nth classifier, the summation of the weighted outputs that
each classifier classifies as the same type is

$(X) =) wuOu(X) (10)

n=1

N N
with the restriction that ank =1 and ankenk (X)) =

n=1 n=1

0, then
S(X)=PalX). (11)

When S, = max S ;, the kth type of waveform could be

1<j<K

recognized.
5. Simulation and analysis
5.1 Simulated signal generation

Targeting the six quasi-LFM radar signals mentioned
above, the feature extraction algorithm proposed in Sec-
tion 3 was verified by using Matlab simulations.

For each of these six quasi-LFM radar signals, 1000
samples with different SNRs were generated. The charac-
teristics of the samples were obtained by using the pro-
posed feature extraction algorithm. Out of these 1000
samples, 800 were used for training, and the remaining
200 were used for testing. Ten different simulations were
performed by using the same data and the recognition
rates were calculated. The final signal recognition rate
was taken as the average of these ten recognition rates.

The generated signals had the following specific para-
meters: the sampling frequency was 12000 Hz and the
carrier frequency was evenly distributed between 3 000 Hz
and 3500 Hz. There were N ranges from 4 to 8 for the
Frank code and P1 code signals. The P2 code signal had
the values of 6 and 8. The signal pulse compression ratio
p of the P3 code and the P4 code was N XN, where
N € [4,8]. The symbol rate was one-fourth of the carrier
frequency. The signal samples were generated with an
SNR of —6 dB, —4 dB, —2 dB, ‘-, 12 dB. The structure of
the CNN and the specific parameters were taken to be the
same as those presented in Section 4. Since BP network
and RBF network have a faster convergence speed than
other networks, four neural networks having different
structures were used. These networks had independent
initial statuses and training procedures to form an as-
sembled neural network classifier. These neural net-
works are BP1(5-10-6), BP2(5-12-6), RBF1(5-10-6),
RBF2(5-12-6). The initial weights were set randomly.
When the recognition mean square error is less than
0.001, it can be considered as an effective recognition.

The experimental flow graph is shown in Fig. 8.
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Fig. 8 Experimental flow graph

5.2 Recognition accuracy verification strate its supremacy.

The radar waveform recognition algorithm based on FrFT Fig. 9and Fig. 10 show the recognition rate and the

and time-frequency analysis proposed in this paper is  overall recognition rate for the six quasi-LFM signals at
simulated and verified. It is also compared with the other ~ different SNRs, respectively.
recognition algorithms available in [16,26] to demon-
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Fig. 9 Correct recognition rate for the six quasi-LFM signals
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Fig. 10 Overall recognition rate

It can be seen from Fig. 9 that for each of the quasi-
LFM signal, the recognition performance of the proposed
algorithm is higher than the recognition performance of
the algorithms proposed in [16,26]. This is especi-
ally true for the recognition of Frank codes and P2 codes.
Thus, the proposed algorithm has obvious advantages.

It can be seen in Fig. 10 that by using the proposed al-
gorithm for identifying the six different quasi-LFM sig-
nals, the overall recognition rate reaches 94.17% at an
SNR of 0 dB, which is better than the recognition rates
achieved by using the algorithms proposed in [16,26].

The confusion matrices for signal recognition at SNRs
of =6 dB, —4 dB, —2 dB, 0 dB, and 2 dB are shown in
Fig. 11. It can be seen from Fig. 11 that the recognition
rate for the P2 code signal reaches 100% for all the SNRs
considered. This is because the P2 code signal can be dir-
ectly identified by the feature extraction algorithm based
on the FrFT. The FrFT has good energy accumulation for
the quasi-LFM signals and is robust against noise. This
also demonstrates the superiority of the proposed feature
extraction algorithm.

Nonetheless, some confusion did arise with low SNRs.

For example, around 25% of the Frank codes were incor-
rectly classified as P3 codes at an SNR of —6 dB. Be-
sides, roughly 41% of the P4 codes were incorrectly clas-
sified as LFM at —6 dB. Although in theory, the Frank
code signal can be distinguished from the P3 code signal,
and the LFM signal can be distinguished from the P4
code signal, based on the difference in the standard devi-
ation of the target component width in WVD, at low
SNRs, noise affects the time-frequency distribution. As a
result, the proportion of non-target components increases,
which affects the feature extraction and signal recogni-
tion process. This also gives the directions for improving
the algorithm.

: 1.0
LEM J0s7d 0 0.11 003 0 [0.41 os
Frank { 0 0.07 0 031 0

o 0.6

£ P1{004 00303 0 o0 005

(]

E P2{0 0 0 0 0.4
P3| 0 (025 0 o I o 02
P4 1039 0 02 002 0

- 000 0
LFMFrank PI P2 P3 P4
Predicted label
(a)—6 dB

1.0

LrM J0% 0 003 002 0 031
08

0

2 0 0.6

(o}

& 0 04

2/l 02
P4102 0 02 o OM
__ 0
LFMFrank PI P2 P3 P4
Predicted label
(b) —4 dB



XIE Cunxiang et al.: Quasi-LFM radar waveform recognition based on fractional Fourier transform and time-frequency... 1139

1.0
LFM
Frank 08
°
g Pl 0.6
2
& P2 0.4
P3 0.09 0 (U 0.86 1) 02
P4 40.17 0 0.1 0
. . : : : 0
LFMFrank P1 P2 P3 P4
Predicted label
(¢)—2 dB
1.0
LFM
0.8
Frank
£ 1 0.6
o
& P2 0.4
P3 002 0 02
P4 {0.11 0 0.05 0 0 QO3
. . . : : 0
LFMFrank P1 P2 P3 P4
Predicted label
(d)0dB
1.0
LFM
Frank 08
£ p1 ] 0.6
2
e P2 0.4
P3 02
P4 40.02 0
. . : . : Lo
LFMFrank P1 P2 P3 P4
Predicted label
(e)2dB

Fig. 11  Confusion matrices for signal recognition at SNRs of —6
dB, -4 dB, -2 dB, 0 dB, and 2 dB

5.3 Verification of the recognition robustness

In reality, the SNR of the received radar signals cannot be
guaranteed to be the same, so it is necessary to mix sig-
nals with different SNRs for training and testing of the
classifier. Besides, the number of samples used for train-
ing the neural network is an important factor to measure
the recognition performance of the algorithm. A good al-
gorithm does not require a large number of training
samples to achieve efficient signal recognition. There-
fore, we need to test the recognition rate by changing the
number of training samples.

In summary, the recognition robustness was verified in
two ways: (i) Sample signals were generated, the feature
parameters were extracted for different SNRs, which

were used for obtaining the recognition rate. (ii) The
number of samples in the training set varied and the num-
ber of test samples was fixed to obtain the recognition
rates.

First, the signal parameters were set in accordance with
the values mentioned in Section 5.1. Two hundred signal
samples each were generated at SNRs of —6 dB, —4 dB,
—2 dB, 0 dB and 2 dB respectively. These 1000 samples
were mixed randomly to serve as the training set. Simi-
larly, a further 40 signal samples were generated with the
same SNRs and mixed randomly to obtain the test set
(200 test samples). Finally, the signal recognition rate
was obtained by using the assembled neural network, by
mixing signals with different SNRs. The confusion mat-
rix for the signal recognition is shown in Fig. 12. It can
be seen from Fig. 12 that the overall signal recognition
rate is 89.93%, and the signal recognition confusion mat-
rix for mixed SNRs is similar to the confusion matrix for
signal recognition at an SNR of —2 dB in Section 5.2.
This indicates that the signal recognition model proposed
in this paper does not have the problem of low recogni-
tion rates when processing and identifying mixed SNR
signals. On the contrary, it can still achieve a high recog-
nition rate, even with signals having different SNRs. This
is attributed to the anti-noise performance of the feature
extraction algorithm and the good classification perform-
ance of the classification network. On the one hand, the
FrFT has good energy aggregation for quasi-LFM sig-
nals, so it can extract characteristic parameters accurately
at high, medium and low SNRs. On the other hand, the
assembled neural network classifier has a good adaptabil-
ity to the characteristic parameters extracted from the
same class of signals with different SNRs, so that the fea-
ture parameters can be determined as the same class.
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Fig. 12 Signal recognition confusion matrix for mixed SNRs

Then, for each radar signal, the number of training
samples was increased from 100 to 500, in increments of
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100 and the number of test samples was fixed at 200. The
experiments were performed for SNRs of —6 dB,
—4 dB,---, 12 dB, and the results are shown in Fig. 13.
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Fig. 13  Signal recognition rate for different numbers of training
samples

Fig. 13 shows that, as the number of training samples
increases, the signal recognition rate for different SNRs
also increases. When the number of samples in the train-
ing set reaches 400, the signal recognition rate saturates.
Therefore, the best recognition rates can be achieved by
using the training set having 400 samples. This indicates
that the proposed signal recognition model can work well
in the small number of samples. This is because the fea-
ture parameters obtained through the feature extraction
algorithm proposed in this paper can well reflect the chara-
cteristics of different types of signals. At the same time,
the neural network has good nonlinear mapping and con-
vergence performance. Therefore, the signal recognition
model can accurately link the characteristic parameters of
the signal with the category by training the network with
only a few samples.

In summary, the simulation results confirm that the
proposed algorithm is both robust and practically viable.

5.4 Algorithm complexity analysis

Algorithm complexity analysis includes three main parts:
two-dimensional search for the signal energy through the
FrFT, calculating the number of energy peaks in the frac-
tional domain, and calculation of the target component
width’s standard deviation in WVD.

Assume that the number of sampling points per signal
is N, and the discrete algorithm of the FrFT adopts the
Pei sampling algorithm, the complexity for one calcula-
tion is O (Nlog,N). Assume that in the process of the two-
dimensional search for the signal energy, the resolution of
the fractional order p is Ap, and its range is between 0
and 2. Thus, the algorithm complexity for the two-dimen-
sional search of the signal’s energy is O (2/Ap- Nlog,N).
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Assume that the peak energy of the signal in the best
fractional domain is E, and the number of points in the
best fractional domain having energy greater than 0.6F is
K (K < N). The algorithm complexity for calculating the
mean of all these points is O(K). The algorithm complex-
ity for dividing the points into U, and U, based on the
mean value of the points is O(K). The algorithm com-
plexity for calculating the mean value of the points of U,
and U, is O(K). Finally, the number of energy peaks in
the fractional domain is determined, so the overall al-
gorithm complexity is O (3K + 1).

To calculate the standard deviation of the target com-
ponent width in WVD, first the FrFT of the signal with a
specific fractional order has to be calculated, whose al-
gorithm complexity is O (Nlog,N). Next, the WVD of the
fractional domain signal has to be calculated. Two-di-
mensional FFT can be used to simplify the calculation
and reduce the complexity. The algorithm complexity is
O (N*og,N). Finally, the standard deviation of the tar-
get component width is calculated and the complexity is
O(BN+2).

In summary, the overall algorithm complexity is
O((P+N+1)Nlog,N+3K+3N+3). When the signal
sampling points are in the range of 128 to 1024, and the
resolution of the fractional order p is 0.01, then the over-
all algorithm complexity is in the range of 10°to 107,
which meets the requirement of quasi-LFM radar wave-
forms real-time recognition.

6. Conclusions

This paper proposes a recognition algorithm that uses the
FrFT and time-frequency analysis for recognizing six
types of quasi-LFM radar signals. The algorithm works as
follows. First, an FrFT and a two-dimensional energy
peak search are performed to determine the number of
main ridgelines and the tilt angle of the target component
in WVD. This is done on the basis of the relationship
between the WVD and the FrFT. After this, the signal can
be divided into three categories: the first category con-
sists of the LFM, the P1 code and the P4 code; the second
category consists of the Frank code and the P3 code; the
third category consists of the P2 code. Based on the pre-
sence of block structure in the target component and its
smoothness, and by calculating the standard deviation of
the target component width, signals in category 1, as well
as category 2, can be distinguished from each other. To
simplify the algorithm, this paper proposes to rotate the
WVD by performing an FrFT on the signal to ensure that
the target component in the rotated WVD is parallel to
the time-domain axis, so that the standard deviation of the
target component width can be calculated easily.
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Simulations show that the overall signal recognition
rate can reach 94.17% at an SNR of 0 dB, and this per-
formance is better than the algorithms proposed in
[16,26]. In particular, as the FrFT has good anti-noise
properties, for P2 code signals, the recognition rate is
greater than 90% at an SNR of —6 dB. For verifying the
robustness, the assembled neural network was trained and
tested with a data set having signals with mixed SNRs,
and the overall signal recognition rate reached 89.93%.
Fixing the number of samples in the test set, the recogni-
tion rate was the highest as the number of samples in the
training set reached 400, after which, it remained stable.
Thus, the robustness of the proposed algorithm was con-
firmed from two different perspectives. Finally, by ana-
lyzing the algorithm complexity, it can be concluded that
this algorithm can meet the requirements of real-time sig-
nal recognition.

However, the proposed radar waveform recognition al-
gorithm still has some limitations. Firstly, except the P2
code signal, the other quasi-LFM radar waveforms are
still disturbed by noise at low SNRs. It is mainly affected
by noise in the process of extracting the standard devi-
ation of target component width in WVD. How to reduce
the noise influence of this process is the direction of al-
gorithm optimization in the following. Secondly, the re-
cognition performance of the algorithm in complex wire-
less communication channels (multipath fading, Doppler
shift, etc.) is not discussed. This is the direction of the
next research, which can ensure the algorithm adapts to
the quasi-LFM radar waveforms recognition task in dif-
ferent wireless communication channels.
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