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Abstract: Sparse-representation-based single-channel source
separation, which aims to recover each source’s signal using its
corresponding sub-dictionary, has attracted many scholars’ at-
tention. The basic premise of this model is that each sub-dic-
tionary possesses discriminative information about its corres-
ponding source, and this information can be used to recover al-
most every sample from that source. However, in a more gene-
ral sense, the samples from a source are composed not only of
discriminative information but also common information shared
with other sources. This paper proposes learning a discri-
minative high-fidelity dictionary to improve the separation per-
formance. The innovations are threefold. Firstly, an extra sub-
dictionary was combined into a conventional union dictionary to
ensure that the source-specific sub-dictionaries can capture
only the purely discriminative information for their correspond-
ing sources because the common information is collected in the
additional sub-dictionary. Secondly, a task-driven learning al-
gorithm is designed to optimize the new union dictionary and a
set of weights that indicate how much of the common informa-
tion should be allocated to each source. Thirdly, a source separ-
ation scheme based on the learned dictionary is presented. Ex-
perimental results on a human speech dataset yield evidence
that our algorithm can achieve better separation performance
than either state-of-the-art or traditional algorithms.

Keywords: single channel source separation, sparse represent-
ation, dictionary learning, discrimination, high-fidelity.
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1. Introduction

Single-channel source separation (SCSS), as the term
suggests, is the task of separating underlying samples
from different sources from a single mixed signal [1,2].
This is an underdetermined problem because the number
of unknown variables is far greater than the number of
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observed values. Over the last few decades, many meth-
ods have been proposed that exploit prior information
about the underlying sources to determine the solution to
the SCSS problem, such as computational auditory scene
analysis (CASA) [3], the Gaussian mixture model
(GMM) method [4] and the hidden Markov model
(HMM) method [4,5]. CASA determines a solution
mainly by considering the different start and end times of
the different sources, whereas GMM and HMM train a
generative model for each source to achieve separation.
Although these methods have produced many remark-
able results, SCSS remains a challenging issue.

In recent years, a great deal of attention has been de-
voted to sparse representation (SR), which assumes that
most of the signals can be coded by very few atoms of a
specific codebook (dictionary). The characteristic that
only a few atoms are active in a coding procedure is
called sparse prior, which is very useful for source sepa-
ration. Generally, SR based methods for the SCSS prob-
lem basically involve two phases. First, the mixed signal
features are sparsely represented in a union dictionary
composed of several sub-dictionaries. Second, the under-
lying signal from each source is estimated by linearly
combining atoms in the corresponding sub-dictionary
with sparse coefficients. Numerous studies have sugges-
ted that the excellent performance of SR-based SCSS
methods relies heavily on good dictionary properties, e.g.,
high discriminative capabilities [6—8], which are often
obtained through machine learning. Such methods are
also called dictionary learning (DL) [9]. One well-known
DL method is the K-SVD algorithm [10], which updates
atoms to better fit the training samples using a general-
ized singular value decomposition (SVD) method. Con-
sidering that humans sense a physical phenomenon as a
whole based on sensing its individual parts, Lee et al. de-
veloped a new way to construct representative bases,
which is called non-negative matrix factorization (NMF)
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[11]. Inspired by SR and Daniel’s work, Hoyer was the
first to incorporate a sparsity constraint into the NMF
framework, calling the new method sparse NMF (SNMF)
[12]. In addition to learning a single dictionary, coupled
dictionary learning (CDL) has become increasingly popu-
lar in recent years [13,14].

Based on SR, NMF, SNMF, or CDL, many methods
have been proposed for SCSS, among which the repre-
sentative works are [15], [16] and [17]. All the work repor-
ted in [15—17] focused on training reconstruction sub-dic-
tionaries separately and then combining the trained sub-
dictionaries to address the SCSS task. However, when
sparsely coding a mixed sample against a union diction-
ary, it is difficult to guarantee that one source-specific
sub-dictionary is not active in the other sources’ samples,
which will damage the separation performance. This
problem occurs because the separately trained sub-dic-
tionaries possess not only the discriminative information
for their corresponding sources but also the information
shared with other sources. Thus, in the testing stage, a
source’s discriminative information will generally be col-
lected in its corresponding sub-dictionary; however, the
shared information is spread throughout the entire union
dictionary, which leads to poor recovery performance.
This problem has been a topic of study in recent years.
Grais et al. [18,19] achieved good performance by adding
a penalty term to the objective function to minimize the
cross-coherence between source-specific sub-dictionaries.
Xu et al. [20,21] proposed a discriminative dictionary
learning (DDL) method to penalize the energy that con-
tributes to a specific sub-dictionary but also originates
from other sources. However, the work presented in
[20,21] was actually rooted in pattern classification; con-
sequently, they can separate coefficients coming from a
specific source from the entire set of coefficients but can-
not address the SCSS task, in which the input is a mix-
ture. In [22,23], two discriminative sparse non-negative
matrix factorization methods (DSNMF) were proposed,
but interference between sub-dictionaries still existed in
these algorithms, at least to some extent.

With its rapid development, the deep neural network
(DNN) has also been successfully applied to SCSS tasks.
The basic assumption of DNN based SCSS is that signals
from different sources are not overlapped in most of the
time-frequency units of their mixture spectrogram. There-
fore, by carefully designing a mask on the mixture spec-
trogram for the target speaker, underlying signals of isol-
ated sources can be separated from the single mixture re-
cord. Though a lot of recent works have suggested that
DNN is an excellent trainer qualified to complete this job
[24—-27], it seems hardly to explicitly explain the model,
such as features learned from each layer, and takes a lot

of time to train a desirable network. Taking these two
concerns into account, we exclude this kind of methods
for comparison from our current experiments.

In this paper, we propose a new SR-based algorithm to
improve SCSS performance. Our major contributions can
be summarized as follows.

(1) A new structured dictionary is proposed for SCSS.
Concretely, in addition to each source’s corresponding
sub-dictionary, we incorporate an additional sub-diction-
ary into the union dictionary. As discussed above, the
main obstacle to improve the performance of SR-based
SCSS is the interference between sub-dictionaries caused
by information shared among different sources. By incor-
porating this additional sub-dictionary along with proper
training, each source’s discriminative information is bet-
ter separated into its corresponding sub-dictionary be-
cause the bulk of the shared information is captured by
the newly added sub-dictionary. In this sense, the new
sub-dictionary is designed to collect the common inform-
ation shared among different sources; therefore, we call it
the common sub-dictionary. Accordingly, we refer to
each source’s corresponding sub-dictionary as a discrim-
inative sub-dictionary. Because the interference between
the discriminative sub-dictionaries is mitigated by the
common sub-dictionary, the SCSS performance is im-
proved.

(i) A two-stage SCSS-task-driven learning algorithm
is designed to optimize the dictionary. In the first stage,
the dictionary is updated based on the sparse coefficients
of mixed signals. This differs from the methods found in
[20,21], in which the sparse coefficients used for training
the dictionary are separately obtained from each isolated
sample. The second stage attempts to optimize a set of
weights that indicate how much of the common informa-
tion should be allocated to each underlying source. These
two stages execute iteratively until convergence is
achieved. Furthermore, for each isolated source, the en-
ergy ratio of common component to discriminative com-
ponent is calculated on the training dataset after the two-
stage learning phase is accomplished. As will be ana-
lyzed in detail in Section 3 and Section 5, a dictionary
trained using our learning algorithm achieves better per-
formance because the updating of the dictionary based on
the sparse coefficients of mixed samples implies that our
learning algorithm is driven by the SCSS task. In con-
trast, the learning algorithms employed in [20,21] are
based on the classification task.

(iii) A source separation scheme based on the learned
dictionary is proposed. The scheme consists of three suc-
cessive steps: first, the query mixture is coded against the
learned dictionary to obtain sparse coefficients; second,
ratio parameters indicating how much of the common in-
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formation should be allocated to each underlying source
are calculated; third, by employing the dictionary, sparse
coefficients, and allocating ratios, the underlying source
is reconstructed.

(iv) Extensive experiments on speech separation are
presented, and the results are analyzed in detail.

The remainder of the paper is organized as follows. In
Section 2, a basic formulation of the SR-based SCSS
problem using a well-known dictionary construction
method is described, and some notation is clarified. In
Section 3, we construct a new dictionary structure and es-
tablish the corresponding learning algorithm. Section 4
outlines an SCSS method based on the learned dictionary
introduced in Section 3. The results of simulation experi-
ments are presented and analyzed in Section 5. Section 6
concludes the paper.

2. Problem formulation and notation

Our ears and eyes capture an enormous amount of over-
lapping information every second. This information is of-
ten first embodied in high dimensional signals and then
passed to subsequent processors. Many studies have
proven that the information in a high-dimensional signal,
typically referenced to the time or space domain, actually
resides in several low-dimensional subspaces that are
easier to process [9,28]. Therefore, as long as two signals
differ in any aspect, they can be distinguished by project-
ing them into the proper low-dimensional subspace. For
example, independent component analysis (ICA) sepa-
rates different sources by transforming them into a low-
dimensional subspace that minimizes the mutual informa-
tion between the observed samples. From this perspect-
ive, an important aspect of much previous work on signal
analysis can be summarized as the selection or construc-
tion of an ideal subspace in which samples from different
sources can be separated distinctly. Based on SR, the au-
thors of [28] reported impressive results for face recogni-
tion by constructing a simple but interesting dictionary
whose atoms were selected directly from the raw training
samples. Our method is based on this scheme, but in-
cludes some modifications that make it suitable for the
SCSS task.
In SCSS, a mixed signal is observed, expressed as

=3, (M

where x, € R®™! is a sample with unit L2 norm from the
sth source, and N is the number of underlying sources.
For ease of description, N=2 is considered for illustration
here, namely,

=X tX;. 2

From the following description, one can observe that
our proposed method is also suitable for the case in which
N is more than 2.

The purpose of the SR-based SCSS task is to estimate
every x, from the observed z by using a dictionary. Given

n, training samples, {x",x? ... x")}  from the sth
source, the method presented in [28] directly used
X, =[xV, x®, ... x")] as the sth source-specific sub-dic-

tionary. By combining the samples from all sources, a
union dictionary D is formed.

D = [XI’XZ] = [x(11)7 ’x(lnl)9x;1)9"' ,x(znz)l (3)

Then, a tested signal y, whether a mixed or isolated
sample, can be constructed as a linear combination of the
samples collected in D under a sparsity constraint:

y=Dc=cyx"+ -+, X"+ x4+ ey, 1 (4)
where ¢ =[c1, " ,Cin»Ca15 " »Con,]T 1S @ vector made up

of the coding coefficients, in which most entries are zero
(or approximately zero) and only a few are non-zero.
Please note that the elements of ¢ can be either positive or
negative. Given D, ¢ contains nearly all the information
about the input signal y. Hence, various applications can
be based on this model; for example, in [28], y was as-
signed to a class by identifying the sub-dictionary corres-
ponding to the minimum reconstruction error. Unlike in
[28], we treat the reconstruction X, as an estimate of x; to
accomplish the SCSS task.

2, =X, = cxV +cox? + -+ ¢ 2 5)

Although outstanding results have been reported in
[20,21,28], the dictionary structure used in [20,21,28] has
some drawbacks.

(1) To obtain a sparser representation in the dictionary,
one would either need to collect more samples or select a
fixed number of samples more carefully. However, in-
creasing the dictionary size also increases the computa-
tional complexity for SR.

(i1) Every sub-dictionary (identical to X; in this case) is
constructed separately, and the relationships among the
sub-dictionaries are not considered when they are com-
bined. This approach can lead to severe interference in
the sparse coding and may result in the need to choose
between higher fidelity and stronger discrimination in the
SCSS task.

3. Learning a discriminative high-fidelity
dictionary

3.1 Adding high discrimination and fidelity capabi-
lities to the dictionary

The shortcomings described above remind us that the uni-
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on dictionary used for SR-based SCSS should have the
following two main properties. The first is that the sparse
coefficients [(:_vl,c,YQ,-'~,c,,.v]T in thes th sub-dictionary
should come only from sources and not from others,
which we refer to as the “discriminative property”. The
second is that the signal recovered from a sub-dictionary,
X,c,, should approximate the sample x, from the corres-
ponding source as closely as possible, which we call the
“fidelity property”. However, these properties generally
conflict each other; thus, they cannot be improved simul-
taneously. The conflict occurs because higher fidelity re-
quires not only the discriminative information specific to
a source but also common information shared with others.
In contrast, higher discrimination requires rejecting com-
mon information. The premise for this explanation is that
x, is composed of both discriminative information and
common information. This premise can be taken to be
true because it is extremely rare for samples from two
different sources to be entirely different from each other.

Here, we attempt to simultaneously enhance the dis-
criminative property and the fidelity property by adding
an additional sub-dictionary to the union dictionary. For
convenience, we refer to our work as discriminative high-
fidelity dictionary learning (DHFDL).

Dz[Dl,Dch] (6)

D is generally normalized as its columns with unit L2
norms. The subscript of D, indicates that this sub-diction-
ary, which we call the common sub-dictionary, is de-
signed to represent the common information shared
among different sources, while the subscript of D, (where
s can be 1 or 2) which is intended to capture the discrim-
inative information of source s, is called a discriminative
sub-dictionary. For notational simplicity, we assume that
each sub-dictionary contains / atoms; therefore, D is a
matrix with d rows and L=3/ columns. Consequently, a
new DL approach is established as follows. Given a cor-
pus of training samples from two sources, we artificially
mix those samples in a pair-wise manner to serve as the

D.a),a;

input for source separation tasks. Assume that we have n
samples from the sth source, we will construct a total of
M=n,n, source separation tasks. Then, the mixed signals
along with the isolated signals are fed into an iterative al-
gorithm to learn a suitable D and a pair of associated
weights a, and a,, where a; and a, are used to indicate
how much of the common information should be allo-
cated to each underlying source.

Here comes a question that the source to source en-
ergy ratio (SSR) of a mixed signal is always different
between the training and the testing phase, thus the
learned a; and @, cannot be directly used for SCSS tests
under various SSR conditions. To cope with this problem,
we make the following reasonable assumption: given a
pair of sources, for each isolated source, the energy ratio
of common component to discriminative component
(ERoCD) remains to be constant no matter what mixing
SSR is used. After a,, a, and D are trained to be optimal,
the ERoCD can be calculated by the statistical method on
the training dataset. On the contrary, in the testing phase,
ERoCD can be used to estimate a;, and a, which help as-
signing the common information of mixture to each un-
derlying source. In the rest of this paper, we denote
ERoCD of source i as ..

Our learning function can be formulated as (7), where
|I'|l;=0 and ||-||, are functions that calculate the values of
the Frobenius and L1 norms, respectively; X, and X, are
two matrices that contain the training samples from
sources 1 and 2, respectively; D(:, j), D(:, i) and Z(:, i)
represent the jth or the ith column of the matrices D, C
and Z, respectively; C=[CT,CT,C"]" is the sparse coeffi-
cient matrix of Z in D; v is the sparse coefficient vector of
Z (:,i) to be optimized, C(:,i) denotes the optimal v. y=0 is
a tradeoff scalar, and  is a weight scalar that controls
how sparsely Z(:, i) is coded; a larger 7 implies more zero
entries in C(:, i), and y and # mainly depend on the data-
set. Numerous experiments analyzing these two parame-
ters are presented in Section 5.

. 1
min J (D,a1,02) = (X, + Xo) = DCIE+ 2 (1X, = DiCy — s D.C.IE +11X; = D2Co —x D.C.IR)

S.t. ||D(:’j)||2 = 19 j: ]32"" 5L7

ata, = l,

a; >0; a, >0,

1
C(,l):arg{mlnznz(,l)_DV||§+77”V”1}, l:1a2’7M, Z:X1+X2 (7)

The first term of the cost function in (7) measures how
well the mixed samples are coded; we call this term the
total error (TE). Minimizing the TE ensures that the total

energy of the mixed input signal is retained, which is the
basic requirement for a successful separation task. The
second term of the cost function in (7) represents how
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closely the estimated samples approximate the underly-
ing true samples. We refer to this term as the isolated re-
covery error (IRE). Note that each source’s recovery er-
ror in IRE is calculated separately. Consequently, a suffi-
ciently small IRE means that D, a, and a, can be used to
effectively separate the mixed samples from the current
sources. According to the above descriptions, minimiz-
ing the IRE implies a smaller TE. Although this is true,
we retain the TE in the cost function to ensure sparse cod-
ing.

We further study the effects of the IRE and the com-
mon sub-dictionary on DL by means of the illustrations in
Fig. 1. To allow the separation results to be displayed on
a plane, d is reduced to two, and Z, X, and X, are re-
duced to column vectors denoted by z, x; and x,, respect-
ively. The discriminative components of x; and x, are de-
noted by two orthogonal vectors xl(d) and xz(d), whereas
the common components are denoted by two parallel vec-

tors x, and x,, which are both related to vector x' as

follows: xl(c):a lx(c) and xz(c):azx(C)-

L A

(b) Results obtained based
on dictionaries learned
using (17) with the IRE
term removed

(a) A signal composed of
both discriminative
components and common
components

Y

1
1
|
1
I

!
1
I

1
>
p ——

(c) Results obtained based
on dictionaries learned using
(7) with and D, removed

(d) A satisfactory separation result
obtained based on a dictionary
learned using (7) without any
modification

—> X > X —— X, —— x|
- Xy - ik —» i —»  TE;
1 x,@ or x,9.
Fig. 1 Illustration of the effects of the IRE and the common sub-
dictionary on DL

The decomposition of x, and x, is shown in Fig. 1(a). If
we remove the IRE from the objective function in (7), the
separation result shown in Fig. 1(b) may be obtained.
However, although the TE in Fig. 1(b) is sufficiently
small, the deviations between both x; and %, and x, and
X, are too large to accept. Next, we retain the IRE in (7)

but remove D, from D to learn a discriminative diction-
ary. The separation of the mixed signal using this dis-
criminative dictionary may yield the result shown in
Fig. 1(c). In Fig. 1(c), xl(d) and xz(d) are approximately
parallel to X, and X, because of the discriminative pro-
perty of the dictionary, and the TE is also small. However,
the large deviation between x, and X, indicates that the
learned dictionary is not suitable for the SCSS task. The
separation result shown in Fig. 1(d) is based on the dic-
tionary learned using (7) without any modification and
demonstrates the success that can be achieved by satisfy-
ing the requirements on both the IRE and TE in this case.

Remark 1 1In (7), one can observe that C is obtained
from the mixed signal Z; we call this coding strategy cod-
ing after mixing (CAM). Looking back at (4) and (5), one
can also find that CAM is directly used as a key step in
the final separation task. Here, we embed CAM in (7) to
ensure that our learning algorithm is driven by the separa-
tion task. This is quite different from previously pro-
posed separation methods [20,21], which separately code
each underlying sample on D and then use the resulting
sparse coefficients for DL, in a strategy that we refer to as
coding before mixing (CBM). The main benefit of CBM
is that one can identify the coefficients of a sample when
they are spread throughout other sources’ corresponding
sub-dictionaries. Thus, penalizing these non-source-spe-
cific coefficients by updating their corresponding atoms
can improve the discriminative property of the dictionary.
Obviously, CBM is most suitable for single-input tasks
(e.g., classification or de-noising tasks); however, it is
less suitable for the SCSS task, which involves a multi-
input task. Principle block diagrams for these two tasks
are shown in Fig. 2.

Noise
Degraded sor
Source s .
clean signal
(a) Classification/de-noising model
Noise R
Estimation
Source 1 Mixing of source 1
Source N- Estimation
of source N
(b) SCSS model
Fig. 2 Structures of the classification/de-noising model and the

SCSS model

Furthermore, the CBM strategy is unsuitable for learn-
ing dictionaries for SCSS because in general, C is not
equal to C;’+C,’, where C represents the sparse coeffi-
cients of X;+X, and C," and C," are respectively obtained
by separately sparsely coding X; and X, on D.
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3.2 Optimization

Equation (7) is a typical bi-level optimization problem.
The minimization of the objective function is called the
upper-level problem, and C(:,i)=arg{ min||Z(:,i)—
Dv|;+n|v|l,} (at the bottom of (7)) is called the lower-
level problem. This is a special kind of optimization in
which optimizing the upper-level problem requires the
sparse coefficients C to be known, whereas D, which is
used to solve the lower-level problem, is the variable op-
timized in the upper-level problem. Although bi-level
problems are usually solved by using descent methods,
(7) is difficult to solve because the L1 norm in the lower-
level problem is not smooth. Fortunately, Yang et al. ad-
dressed a bi-level optimization problem similar to (7) in
[13] and proposed an efficient procedure for updating the
dictionary atoms. In this section, we follow the routine
presented in [13] for updating the dictionary via the
stochastic gradient descent algorithm. In addition, the in-
terior-point method is employed to find the optimal a,
and a, values. Thus, our strategy for solving (7) is to iter-
atively implement two stages for a specified number of
times, namely, first updating D and then optimizing a;
and a,. After a, a, and D are updated to be optimal, the
ER0CD of each source is calculated.

3.2.1 Updating D with o, and a, fixed

In the stochastic gradient descent method, the dictionary
is updated based on only one training sample during each
loop. In a given loop, we letx, and x, denote a pair of
training samples (d-dimensional column vectors) from
sources | and 2, respectively. Consistent with the nota-
tion used in Section 2, we let z=x,+x,. The sparse coeffi-

cients of z are denoted by c=[cT,cT,c"]", which is calcu-
lated by using (8).
1
c=arg{mvmi||z—Dv||§+n||v||l}. ®)

Let P, and P, denote two index matrices as follows:

[ I, O 0
P=( 0 0 0
0 0 ol | ©)
[0 0 0
P,=10 I, 0
L0 0 aly |

where I,,; is the identity matrix and 0 is an /x/ zero ma-
trix. Then, based on the notation defined above, under the
assumption that o, and a, are optimal, (7) can be reformu-
lated as the compact single-level optimization problem
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shown in (10):
1
minJ (D)= <|z—- Dc||§ +
D 2
Z(Ibvi ~ DPicl} + v — DPxcl?)

st. IDC, I, =1, j=1,2,--- L. (10)

The major issue with descent methods is the availabil-

ity of the gradient of J for a feasible D. Applying the
chain rule, we arrive at

aJ T dc
a_D —(DC_Z) (C+D0_D)+

dc dc
0% ((DPI X, )T(P, C+DP'3_D )+(Dch—x2)T(ch+DPza—D)) .
(11)
We let I” denote the active set of ¢ and I" represent the

complementary set of . The gradient of ¢ with respect to
D is calculated as follows:

der (0D} 9(DLDy)
- (D'D -
D, ~ DPrDr) (aDFZ oD, ‘"
ocr
=0 (12)
oD,
e
=0
oD

where D, and D, are matrices that consist of the
columns of D in I" and I"“, respectively, and ¢, and ¢/
are composed of the entries of ¢ in " and I, respectively.

After obtaining dJ/9D, the dictionary can be updated

as
(n)
po_g 010D 13
07/ 6D™],

where & = ro/ Vi/M+1. Here, i is the iteration number
for the updating of D, and r, is the initial learning rate.

Considering the constraint expressed in (10), we normal-
ize D at the end of each iteration.

D(n+l) —

3.2.2 Updating a, and a, with D fixed

If we suppose that D is fixed, then (7) can be reduced to a
quadratic programming problem, as shown in (14).

min o' Ha+ q"«
st.a;+a, =1, a;,>0; a, >0
IDCJ: 0 ]

0 IDC.:
— ZZ(XI_DICI)O(DCCU) (14)
22 (X, - D,G)o(D.C,)
where a=[a,, ocz]T , and © stands for the Hadamard
product. The constant term and the scalar y are ignored

because they are meaningless for the optimization of a. In
this study, the interior-point method is used to solve (14).

g
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3.2.3 Calculating ERoCD of each source

After a desirable dictionary D and an optimal weight scal-
ar ¢ are learned, we calculate p; by
|a',D cﬂ”

|
=32 o,

where c ’and ¢! are cut from the jth training sample’s

=1,2 (15)

sparse coefficients ¢ = argf{ mvm% “zj - Dv“i +7vll,} .
Since the basic computing unit ||*||, of (15) is positive, ;=
0 accordingly.

We summarize the proposed DHFDL algorithm in Al-
gorithm 1. The convergence of DHFDL in practice is
shown in Fig. 3.

Algorithm 1 DHFDL

Input Each source’s training samples, i.e., X, € R
and X, € R”" Initially, D© € R and a© e R*!. T'is
the number of iterations. The model parameters are y and 7.

Output The optimal dictionary D and the ERoCD p,

and f,.
Initialization Initialize all the atoms of D as ran-
dom vectors with unit L2 norms; &"”=[0.5, 0.5]".
for =0, 1, ---, 7-1 do
fori=1,2, -, M do

Calculate 6J/dD™ according to (11) and (12);

0 — PO _ r— aJ
Update D = D D0 ;
—+1

Normalize each column of D

end for

D =p®

Set the solution to (14) as "

end for

Calculate 8, and 3, by (15). Please note that D and a
involved in (15) are D" and a”.
Return D", p, and S,

1500
q

1000
s
s
500
0 : - -
0 5 10 15 20 25 30
Number of iterations
—o— :IRE; —8—: TE.
Fig. 3 Curves of the error values associated with (7) in the pro-

cessing of a small set of the experimental database

From Fig. 3, one can see that the IRE decreases ra-
pidly as the number of iterations increases, and it ulti-
mately tends toward stability. When the number of itera-
tions is small, the IRE drops rapidly. However, the TE re-
mains unchanged because the dictionary is overcomplete
and the mixed signal can be fitted well. Also note that the
TE is smaller than the IRE in each iteration; this mainly
occurs because the sparse coding is performed on the en-
tire union dictionary, which means that it closely tracks
the TE term. Because the optimization problem in (7) is
highly nonlinear, we can expect the stochastic gradient
procedure to find only a local minimum. However, we
find that our algorithm works well in practice.

4. SCSS scheme based on learned dictionary

After the training of D and the calculating of £, and £, are
complete, the SCSS problem can be solved by perform-
ing the following three steps in sequence.

First, we code a query mixture sample z=x,+x, against
the dictionary D and obtain the coding coefficients ¢ by
solving

1
c :arg{mvmz||z—DV||§+77||V||1} (16)

where v is the sparse coefficiont vector of z to be optim-
ized, e=[cT,cl,cT]" denotes the optimal value of v, where
¢, ¢, and ¢, are the coefficient vectors over the sub-dic-
tionaries D,, D, and D,, respectively.

Second, estimate a, and a, as

a=p\lIDcill,/ (BilID il +B:|D2eoll) (17)
@, =0l Dses |,/ (BilIDy eyl +BxlIDseslly)

Finally, we can calculate the underlying samples asso-
ciated with the different sources as follows:

{ j\:]:chl'i'(Ychcc (18)

.i'z = D2C2 +02DCCC

5. Experimental results and discussion

In this section, the effects of several important parame-
ters on DL are first simulated and then analyzed. Then,
the SCSS and classification performances based on the
learned dictionary are compared with those of several ex-
isting methods. Because the new dictionary structure and
the learning algorithm are motivated by the SCSS task,
the effects of the algorithm parameters are analyzed
based on the SCSS performance.

5.1 Experimental setup

5.1.1 Evaluation dataset and extracted features

All the experiments in this paper were simulated by us-
ing the PASCAL computational hearing in multi-source
environments (CHiME) speech separation and recogni-
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tion challenge dataset [29]. The CHiME evaluation data-
set is an extension of the GRID corpus (each of 34 speak-
ers spoke 1 000 utterances) and consists of three parts:
training, development and test sets. The training set is
composed of 500 clean utterances spoken by each of the
34 speakers, and the development and test sets are com-
posed of 600 utterances at each of 6 signal to noise ratio
(SNR) levels, namely, =6 dB, —3 dB, 0 dB, 3 dB, 6 dB,
and 9 dB. For each noise level, the content is different.
Limited by the performance of our computer, all our ex-
periments run for 10 trails, and the results are the aver-
ages. For each trail, we randomly selected 6 out of the 34
speakers (3 men and 3 women) and randomly divided the
500 utterances into two parts, 350 for training and 150 for
testing. Also, 10 short sentences were grouped to form a
long sentence for each speaker to further reduce the learn-
ing task. Thus, in total, we construct 1 225 long mixed
training sentences and 225 long clean mixed testing sen-
tences for each pair of speakers. The corresponding utter-
ances of the 6 selected speakers in the CHiME test data-
set were then used as the noisy scenario test data to evalu-
ate our method.

Similar to [15,22], the Mel spectra were extracted as
features in our experiments. Specifically, each sentence
was first enhanced by using a finite impulse response (FIR)
filter and then transformed by using a short-time Fourier
transform (STFT). Finally, the STFT power spectra were
projected to the Mel scale. The FIR coefficient was 0.97,
the STFT window was 32 ms (512 sample points at a
16 kHz sampling rate) sliding at 16 ms, and the number
of Mel-scale pitches was 80.

5.1.2 Performance metrics

Two metrics are employed to evaluate the separation per-
formance. The first is the signal to recovery error ratio
(SER):

fi-f

2
ser=3 Y 0(k(lA-A) a9
s=1
where £, is the Mel spectra of X,, and f, is the reconstruc-
tion of f;. Obviously, SER keeps close track of the IRE
term of our objective function. One may also note that the
SER metric is similar to SNR™ defined in [22] but with
some slight differences, such as the scalar 1/2. The
second metric is the signal to interference ratio (SIR) [30].
We selected these two metrics in the Mel spectral do-
main for two reasons. The first reason is that in practice,
the phase information of the underlying isolated speech
signals generally cannot be obtained from a single ob-
served mixed speech signal. Therefore, the separated re-
sults in the Mel spectral domain cannot be inverted to the

spectrum domain or the time domain because of a lack of
phase information. The second reason is that the Mel
spectrum is a powerful feature of the human voice; nu-
merous works have indicated that speech signal pro-
cessing tasks [1,4,15,22,26,27,31] can be well realized in
the Mel spectral domain. Another note about these two
criteria is that the SIR is calculated by using a window
because it involves the projection of the reconstructions
onto a subspace expanded by the Mel spectra of the two
speech signals in an analysis window, whereas f, used in
(19) to calculate the SER is a matrix formed by arranging
all of the Mel spectra of the test speech signals. There-
fore, in later sections, one can observe that the SER is
lower than the SIR, but this has no effect on the compa-
rison of different methods.

5.1.3 Comparison of methods

To evaluate the SCSS performance based on the DHFDL
algorithm, for comparison, the K-SVD-, DDL- and DSN-
MF-LS [23]-based SCSS methods were also simulated.
Because the original K-SVD method trains the sub-dic-
tionary for each source separately, for comparison pur-
poses, we present the results obtained by combining these
trained sub-dictionaries and coding the mixed speech
samples over the resulting union dictionary. Note that the
K-SVD based SCSS method described here is similar to
that in [20,21] except for some trivialities. The only dif-
ference between DHFDL and DDL is that DHFDL trains
a union dictionary containing an additional sub-diction-
ary, namely, the common sub-dictionary. DSNMF-LS is
similar with DDL except for its updating rule and non-
negative constraint.

5.2 Effects of parameters on the dictionary

Many parameters influence the performance of our meth-
od. In this section, we discuss three of them: the size of
each sub-dictionary, /; the sparsity parameter, #; and the
weight coefficient, y . Each sub-dictionary contains /

atoms; hence, L=3/ for DHFDL and L=2/ for DDL, DSN-
MEF-LS and K-SVD. r, is set to 0.1. The effects of the
three parameters are analyzed based on the SER and SIR
results achieved in the separation of clean mixed samples.

5.2.1 Obtaining values for / and

Fixing y to 0.85, we trained models with / values of 60,
70, 80, 100, and 120 and with # values of 0.06, 0.07,
0.08, 0.1, and 0.15. Other parameters involved in DSN-
MF-LS are in line with [23]. The performances of the dif-
ferent models in terms of the SER and SIR are listed in
Table 1. The best values are shown in bold.
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Table1 Comparison of K-SVD-, DDL-, DSNMF-LS and DHFDL-based SCSS for various values of / and n

Method SER/dB SIR/dB
n=0.06 n=0.07 7=0.08 7=0.1 7=0.15 7=0.06 7=0.07 7n=0.08 7n=0.1 n=0.15
60 0.75 1.39 1.81 1.82 1.98 6.56 7.83 8.67 8.93 9.35
70 0.48 1.25 1.72 1.91 2.02 5.77 6.98 8.32 8.79 9.06
K-SVD 80 0.92 1.31 1.66 191 2.07 5.40 7.01 7.61 8.34 9.02
100 1.03 1.33 1.47 1.67 1.84 5.55 6.49 7.21 7.50 7.89
120 1.09 1.33 1.53 1.67 1.79 5.50 6.51 6.91 7.16 7.57
60 2.15 2.09 2.03 2.00 1.95 9.21 8.95 9.07 9.25 9.34
70 2.12 2.17 2.13 2.09 2.07 9.40 9.32 9.18 9.34 9.50
DDL 80 2.12 2.18 2.17 2.11 2.12 9.68 9.23 9.30 9.07 9.38
100 2.08 2.12 2.11 2.16 2.16 9.96 9.42 9.23 9.29 9.25
120 2.00 2.11 2.17 222 2.24 9.87 9.71 9.72 9.70 9.69
60 2.00 2.11 2.19 221 2.19 8.98 9.12 9.38 9.46 9.42
70 2.08 2.22 2.26 2.26 2.20 9.00 9.22 9.46 9.61 9.57
DSNMF-LS 80 2.10 2.30 2.35 2.30 2.21 9.40 9.76 9.92 10.09 9.65
100 2.00 2.10 2.19 2.16 2.17 9.48 9.62 9.82 9.79 10.00
120 1.96 1.98 2.12 2.14 2.15 9.03 9.54 9.76 9.84 9.99
60 2.56 2.90 2.87 2.83 2.83 9.45 9.26 8.98 8.75 8.79
70 2.64 2.80 2.80 2.90 291 10.48 9.93 8.99 9.29 9.16
DHFDL 80 2.46 2.68 2.77 2.84 2.90 10.49 10.02 9.72 9.34 9.36
100 2.16 2.58 2.63 2.74 2.81 7.78 10.32 9.95 9.79 9.93
120 2.13 2.39 2.59 2.64 2.72 7.19 9.63 10.22 10.38 10.21
Table 1 shows that DHFDL outperforms the three  stronger interference because possible correlations

compared SCSS methods in terms of both the SER and
the SIR at almost all the settings. To display the trends in
the SER and the SIR as / and # increase, the averages of
all the rows and columns, respectively, for the different
methods are plotted in Fig. 4.
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Fig. 4 Comparisons of K-SVD, DDL, DSNMF-LS, and DHFDL-
based SCSS with varying n and [ values

(d) Mean SIR versus /
: DSNMF-LS; —e— : DHFDL.

From the horizontal comparisons in Table 1, one can
observe that both the SER and the SIR of K-SVD de-
crease as 57 decreases. This is mainly because using more
coefficients to code the mixed signals may result in

between the sub-dictionaries are not considered. From
Fig. 4 (a) and Fig. 4(b), one can see that the SER and the
SIR obviously increase for DDL, DSNMF-LS and DHF-
DL slower than those for K-SVD due to the discrimina-
tive capabilities of the former's sub-dictionaries.

In detail, Table 1 shows that the SIR of DHFDL gene-
rally decreases with increasing #, except in the rows cor-
responding to /=100, 120. This decreasing SIR trend oc-
curs because a higher # means that less discriminative in-
formation is used to reconstruct the input signals. In con-
trast, the increased values when /=100, 120 mainly occur
because the sub-dictionaries are overcomplete when
/=100, 120; therefore, a smaller # may result in stronger
interference in these cases. The SIR of DDL shows essen-
tially the same trend as that of DHFDL, although with
some disturbance caused by the common information
present in its sub-dictionaries.

The SER of DHFDL increases as 7 increases for all /
except 60, and the SER of DDL shows a downward trend
at /=60, 70 but an upward trend at /=80, 100 and 120. For
both SER and SIR of DSNMF-LS, when / <80 the best
values tend to shift to smaller # with / increasing. While
>80, the best values appear in the largest #. This per-
formance indicates that DSNMF-LS can achieve better
performance over under-complete dictionary (/<80), but
not over the over-complete dictionary (/>80).
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The vertical comparisons in Table 1 show that when
7n=0.1, 0.15, the SERs of K-SVD, DSNMF-LS and DHF-
DL initially increase and then decrease with increasing /,
whereas the SER of DDL monotonically increases with
increasing /. The main reason the trend increases in the
DDL is that its sub-dictionaries contain not only discrim-
inative information but also a relatively large proportion
of common information. Therefore, a larger / can cause
IIfs — f |I2 to decrease, which increases the SER. For DHF-
DL, a possible reason for the decreasing phase is that a
larger / increases the interference caused by the common
sub-dictionary. This is even more the case when #=0.06,
0.08, 0.1, where the SER of DHFDL exhibits a monoto-
nically decreasing trend as / increases. For K-SVD and
DSNMF-LS, the increasing phase of the SER can be ex-
plained by the fact that with a larger /, the dictionary con-
tains richer information when# is relatively large.
However, when # is small, such as 0.07 or 0.08, the inter-
ference caused by increasing / outweighs the advantage
gained from information enrichment.

The advantage of DHFDL becomes clear when its SIR
is compared with those of K-SVD, DSNMF-LS and DDL
in each column. In detail, when #=0.08, 0.1, 0.15, the
SIR of K-SVD decreases as / increases, whereas the SIRs
of DDL, DSNMF-LS and DHFDL mainly show upward
trends as / increases. This difference occurs mainly be-
cause the sub-dictionaries in DDL and DHFDL have a
discriminative capability. Moreover, as shown in Fig. 4(d),
the increase rate of SIR decreases the different al-
gorithms as [ grows, and the SIR increases for DHFDL is
distinctly faster than that for DSNMF-LS and DDL. As
previously discussed, the use of too many coefficients to
code a mixed signal may result in stronger interference;
consequently, the SIR of DHFDL drops to 7.194 § when
7=0.06, 0.07 and /=100, 120.

In summary, our proposed DHFDL algorithm offers
significantly improved speech separation performance in
terms of both the SER and the SIR. When / is fixed at a
specific value, a moderate decrease in# can reduce the
reconstruction error and improve the SIR and the SER.
However, an 7 that is too small may result in severe inter-
ference because too many coefficients are used to code
the input speech signal. A similar trend can be seen when
[ increases with fixed #; the explanations of the previous
trends also apply in this case. For all four methods, one
can observe that /=80 and #=0.15 may be chosen as a
good trade-off for fair comparison in rest experiments.

5.2.2 Effects of y

We assigned values of 0.5, 0.75, 1, 2, 4, 6, and 8 to the
parameter y, which balances the contributions of the TE

term and the IRE term in the training objective function,
to investigate how it influences our method and DDL-
based SCSS. The results are shown in Fig. 5. Note that K-
SVD and DSNMF-LS were excluded from this experi-
ment because their objective function for learning con-
tains only one term.
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Fig. 5 Comparison of the SCSS results obtained via DHFDL and
DDL for different values of y

As shown in Fig. 5, the SER and SIR of the SCSS
methods based on DHFDL and DDL both show an initial
rapid climb to a maximum and then drop somewhat. This
trend indicates that increasingy to approximately 0.5
helps the dictionary learn more information about the
speech signals, whereas an excessively high value of'y
may exacerbate the interference between the sub-diction-
aries and reduce the SER and the SIR. From Fig. 5(a),
one can also conclude that DHFDL outperforms DDL in
terms of the SER when y<2. This is because in DHFDL,
the common sub-dictionary improves the discriminative
capability of the source-specific sub-dictionaries. In the
case of y=0.75, the SER of DHFDL is close to 3, where-
as DDL achieves an SER of less than 2. Asy increases,
the SER drops faster and to a lower value for DHFDL
than for DDL because a larger y amplifies the interfer-
ence caused by the common sub-dictionary. Fig. 5(b)
shows the same qualitative trend as Fig. 5(a) except dur-
ing the rising phase. The SIR of DHFDL is lower than the
SIR of DDL, indicating that the common sub-dictionary
may play a more important role when y is neither too
large nor too small. Overall, the best SCSS performances
in terms of both the SIR and the SER are achieved by
DHFDL, providing evidence that DHFDL is superior to
DDL, at least to some extent.

5.3 SCSS results

Based on the results obtained in Section 5.2, in the fol-
lowing experiments, we set the parameters as follows:
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1=80, #=0.15, r,=0.1 and y=0.85.

5.3.1 Illustrative example

We first provided an example of separating a mixed
speech signal. Two short sentences were randomly selec-
ted: ‘sgai8a.wav’, spoken by a male speaker with the la-
bel ‘id2’°, and ‘bgid7s.wav’, spoken by a female speaker
with the label ‘id31°. In addition to reconstructing the
Mel spectra of the two underlying sentences, we also in-
verted the Mel spectra into the time domain using the
code package provided by Dan Eills on his homepage.
Because we assumed the phases of the underlying sen-
tences after the STFT to be unknown, random phases
were employed instead. The results are shown in Fig. 6.
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Fig. 6 Separation of two underlying speech signals from a single
mixed signal using the proposed SCSS method based on DHFDL

From Fig. 6, one can observe that our proposed meth-
od of single-channel source separation based on DHFDL
can reconstruct the underlying speech signals well, al-
though with some errors. These errors mainly reside in
locations where the amplitudes are small and vary ra-
pidly. This behavior can be explained as follows: sparse
coding mainly captures the general features of the input
signal using only a few of the coefficients; consequently,
the envelopes of Fig. 6(a) and Fig. 6(d) are similar to
each other, as are those of Fig. 6(b) and Fig. 6(e). Mean-
while, the window size of the filters used to extract the
Mel spectra from the power spectra increases as the fre-
quency increases, meaning that the Mel spectra place
more emphasis on low frequencies. In addition, the ran-
dom phases used to invert the power spectra into the time
domain are another important factor that cannot be ig-
nored.

5.3.2 Results for different genders

We further evaluated our method by separating mixed
signals composed of speech signals generated by speak-
ers of the same gender and different genders, as presen-
ted in this section. The results are shown in Fig. 7.
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Fig. 7 Performance comparison between SCSS methods based on
K-SVD, DDL, DSNMF-LS and DHFDL for mixed speech signals
corresponding to different gender combinations

In Fig. 7, M+M, F+M and F+F denote mixed signals
generated by mixing speech signals from two men, a man
and a woman, and two women, respectively. Fig. 7 re-
veals that our DHFDL-based method outperforms the SC-
SS methods based on DDL, DSNMF-LS and K-SVD in
terms of both the SER and the SIR in all cases. Notably,
when separating the mixed speech signals of two men,
the SER and SIR performances of our method exceed
those of the DSNMF-LS-based method by nearly 1 dB
and 1.8 dB, respectively, and the SER and SIR perform-
ances of DSNMF-LS exceed those of DDL by 0.2 dB and
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0.5 dB, respectively. K-SVD achieves the worst perform-
ance among these four methods. Compared with DSNMF-
LS, DHFDL mainly benefits from the common sub-dic-
tionary, whereas the superior performance of DDL and
DSNMF-LS with respect to K-SVD can be mainly attri-
buted to the joint optimization of the sub-dictionaries. As
discussed in pervious sections, we state that joint optimiz-
ing the sub-dictionaries can lift the discriminative pro-
perty of the sub-dictionaries.

As shown in Fig. 7, all the methods achieve their best
performances in terms of both the SER and the SIR in the
M+F case, and a sharper contrast is seen among the me-
thods in the M+M and F+F cases. This finding can be ex-
plained as follows: speech signals from speakers of the
same gender always contain more common information,

Table 2 SER and SIR results for SCSS based on different DL methods at different SSRs
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which DHFDL can handle well because of the common
sub-dictionary, whereas the other methods cannot. Al-
though the relative performance improvement of our
method compared with the other methods is reduced in
the M+F case, the results indicate that the common sub-
dictionary can still suppress the interference between the
source-specific sub-dictionaries and enhance the separa-
tion performance.

5.3.3 Results for different SSRs

In this section, we test our method in different SSRs, and
compare the results with K-SVD-, DDL-, and DSNMF-
LS-based SCSS methods. For each pair of speakers, we
artificially mixed the utterances spoken by them with the
energy ratio varing from —2 dB to 2 dB with a step size of
1 dB. The results are listed in Table 2.

dB
SER SIR
SSR
K-SVD DDL DSNMEF-LS DHFDL K-SVD DDL DSNMF-LS DHFDL
-2 0.94 1.68 1.81 2.04 7.62 8.27 8.43 8.75
-1 1.42 2.05 2.09 2.37 8.34 8.95 9.12 9.13
0 2.07 2.12 221 2.90 9.02 9.38 9.65 9.36
1 1.43 2.05 2.18 2.36 8.34 8.97 9.12 9.14
2 0.96 1.67 1.69 1.99 7.67 8.20 8.43 8.69
Average 1.36 1.91 2.00 2.33 8.20 8.75 8.95 9.01

From Table 2, one can observe both SER and SIR for
all the methods are getting worse with the absolute value
of SSR increasing. This is an expected result since a large
absolute value of SSR means the mixture comprises a
weak signal and a strong signal. Furthermore, because the
dictionary is trained by SSR=0 dB and we do not know
the current test mixture’s input SSR, the strong signal can
interfere with the recovery of the weak signal, on the con-
trary, a worse recovery of the weak signal can also dama-
ge the separating of the strong signal. Both aspects cause
the lower separation performance under large SSR cases.

It is also obvious to see that the SCSS performance de-
creases in order of DHFDL, DSNMF-LS, DDL and K-
SVD. We can roughly conclude from this trend that dis-
criminative property can lift the quality of SCSS; adding
common sub-dictionary to discriminative sub-dictiona-
ries can further improve the performance of SCSS; non-
negative constraint imposed on dictionary benefits SCSS.

When compared with DSNMF-LS, the small drops of
DHFDL from 0 dB to 1 dB and from 1 dB to 2 dB indi-

cate the validation and superiority of our proposed me-
thod.

5.3.4 Noisy scenario

This section presents the results of testing our SCSS
method and the other methods considered for compari-
son on noisy data. For any 6 speakers randomly selected
from the entire speaker set of 34 speakers for a trail, we
acquired 15 short noise-contaminated sentences for each
speaker at each SNR level. At each level (-6 dB, —3 dB,
0 dB, 3 dB, 6 dB, and 9 dB), we mixed pairs of utterances
from different speakers with SSR varing from —2 dB to
2 dB, with 1 dB as a step. The average results of differ-
ent SSRs were calculated as clean signals (although the
signals fed into the system were mixed with noise), and
the recovery was assessed by using (19) and SIR. The
results are listed in Table 3.
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Table 3 SER and SIR results for SCSS based on different DL methods at different SNR levels dB
SER SIR
SNR K-SVD DDL DSNMF-LS DHFDL K-SVD DDL DSNMF-LS DHFDL

-6 0.10 0.09 0.13 0.49 0.78 0.95 1.20 2.97

-3 0.27 0.15 0.20 0.64 1.50 1.54 1.78 3.90

0 0.37 0.40 0.48 0.79 2.59 2.38 2.35 5.20

3 0.57 0.87 0.95 1.00 3.12 3.10 3.28 6.02

6 1.23 1.69 1.70 1.86 3.70 4.12 4.94 7.13

9 1.98 2.22 2.48 2.69 4.84 5.44 6.88 7.34

Average 0.75 0.90 0.99 1.24 2.76 2.92 3.41 5.43

In Table 3, each row shows an increasing trend as the
SNR increases. This trend is expected, because a higher
SNR means less interference from noise. A comparison
of different rows reveals that the differences in the me-
trics between K-SVD and DDL gradually diminish as the
SNR decreases. In contrast, the gaps in the metrics
between DHFDL and the other methods widen. At
SNR=-6 dB, SIR and SER differences between DDL and
K-SVD almost disappear, whereas the corresponding
gaps between DHFDL and DSNMF-LS are 1.77 dB and
0.36 dB, respectively. This phenomenon can be ex-
plained as follows: in the presence of strong noise, the
amount of common information increases, which exacer-
bates the interference between sub-dictionaries. By vir-
tue of its common sub-dictionary, DHFDL has some re-
sistance to this noisy scenario.

6. Conclusions and future work

In this paper, a learning algorithm called DHFDL, which
is based on a union dictionary with a novel structure, is
proposed to improve the performance of SCSS. Unlike in
conventional methods, we consider not only the discri-
minative information of each isolated source but also the
common information shared among different sources, and
we jointly optimize the entire union dictionary (which in-
cludes both the discriminative sub-dictionaries and a
common sub-dictionary). The learned dictionary collects
discriminative information in the source-specific sub-dic-
tionaries and collects common information in the com-
mon sub-dictionary. This structure is enormously benefi-
cial for separating mixed signals. To solve the objective
function for DHFDL, which is a bi-level optimization
problem, we propose an algorithm that consists of a dic-
tionary updating step and a weight optimization step;
these two steps are performed iteratively until conver-
gence is reached. Numerical experiments confirm the ad-
vantages of the proposed method compared with other
SCSS algorithms.

A signal’s phase is an important information which af-

fects the SCSS well. Though we have demonstrated the
superiority of our method through extending experiments
in the Mel domain, we cannot revert a signal in the Mel
domain to the time domain due to the lack of phase in-
formation. However, converting signals in the MFC do-
main to the time domain is meaningful for speech en-
hancement and very interesting, and therefore we will
conclude the complex mixture signal separation task
based on DL in our future research scope.
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