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Abstract: This paper proposes a quantitative reconfigurability
evaluation method for control systems with actuator saturation
and additive faults from the perspective of system stability. Pla-
cing the saturated feedback law in the convex hull of a group of
auxiliary linear controls, the sufficient reconfigurability condi-
tions for the system under additive faults are derived using in-
variant sets. These conditions are then expressed as linear ma-
trix inequalities (LMIs) and applied to quantify the degree of re-
configurability for the fault system. The largest fault magnitude
for which the system can be stabilized, the largest initial state
domain from which all the trajectories are convergent, and the
minimum final state domain to which the trajectories will con-
verge are investigated. The effectiveness of the proposed method
is illustrated through an application example.
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1. Introduction

A control system should be designed to have both excel-
lent performance in normal situations and high dependabi-
lity in the case of fault conditions. Therefore, a fault-tole-
rant control (FTC) strategy is needed to maintain or
gracefully degrade control objectives at the occurrence of
faults [1,2]. Many efforts have been devoted to FTC [2,3]
which can be divided into passive fault-tolerant control
(PFTC) [4,5] and active fault-tolerant control (AFTC)
[6,7]. In PFTC, a single controller is designed to be ro-
bust against a group of faults while AFTC reacts to faults
actively by fault detection and diagnosis (FDD) and con-
trol reconfiguration (CR). Therefore, AFTC is more flexi-
ble and effective than PFTC and has attracted a lot of at-
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tention [8].

The prerequisite of developing an FTC strategy for a
control system is that the system must have enough FTC
capability. However, the existing studies mostly focus on
how to develop advanced FTC methods without paying
much attention to fundamental FTC capability analysis,
which has seriously hindered the application of these ad-
vanced FTC methods in real systems. Given this, a sys-
tem attribute called reconfigurability is defined to assess
the system ability to recover its function by CR after the
occurrence of a fault [9,10]. The reconfigurability can be
used as a guideline for system design, including the struc-
ture and the algorithm, to improve the FTC capability.

The existing reconfigurability analysis methods can be
divided into qualitative methods and quantitative me-
thods. The qualitative methods, such as the functional
structure-based method [9,11], determine only whether a
system is reconfigurable when some fault occurs, which
is a binary result. The quantitative methods [10—12], on
the other hand, can further measure the degree of recon-
figurability and provide more valuable information for
designers to develop a system structure or an FTC scheme
more efficiently. To quantitatively measure the reconfigu-
rability of the control systems with both sensor and actua-
tor faults, Wu [10] proposed the controllability- and ob-
servability-based reconfigurability evaluation methods,
which was then extended to various complex systems and
applied in the design of fault-tolerant power systems
[13,14] and multirotor unmanned aerial vehicles (UAVs)
[15,16]. Considering the actuator fault in particular, along
with the energy limitation, Staroswiecki [12] proposed an
energy-based reconfigurability evaluation method with
the aid of controllability Gramian.

Although the existing studies have made great contri-
butions to control reconfigurability research, they have
some deficiencies. First, their reconfigurability evalua-
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tion indices are designed for control systems with multi-
plicative faults rather than additive faults which also oc-
cur frequently in practical engineering. Second, practical
operating conditions, such as actuator saturation, are
rarely considered. Indeed, actuator saturation occurs in
many practical control systems, which can degrade the
dynamic performance of the systems, leading to a loss of
stability and considerably impacting system operation
[17]. Hence, it is of great practical significance to con-
sider these actual influence factors in the reconfigurabi-
lity analysis. Third, the exiting methods relevant to actua-
tor faults are mostly based on the controllability Gramian
[18,19] and consequently are only appliable for control-
lable systems. Sometimes, especially when the control
objectives have been degraded because of the actuator
faults, we are more concerned about system stability.
Therefore, the reconfigurability analysis methods should
be studied from the perspective of system stability as well.

Given the above, a novel stability-based quantitative
reconfigurability evaluation method is developed in this
paper for control systems with actuator saturation and ad-
ditive faults. The main contributions are as follows.

(i) The additive actuator faults are taken into account in
reconfigurability research for control systems.

(ii) Actuator saturation is considered in reconfigurabi-
lity research, and the stability-based sufficient reconfigur-
ability conditions are derived by placing the saturated
feedback law in the convex hull of a group of auxiliary
linear controls.

(iii) The degree of reconfigurability is quantified for
the fault control system based on the sufficient reconfi-
gurability conditions.

In the reconfigurability quantization process, the fol-
lowing three problems are considered:

(1) Can the system be stabilized after some fault oc-
curs?

(i1) What is the range of the initial state domain from
which all the system trajectories will be convergent?

(i) What is the range of the final state domain to
which all the system trajectories starting from a certain
initial state domain will converge?

This paper is organized as follows. In Section 2, the
problems to be addressed are formulated. In Section 3,
the system reconfigurability is qualitatively judged by de-
riving the sufficient conditions. In Section 4, the degree
of reconfigurability is further quantified based on the suf-
ficient conditions in the linear matrix inequality (LMI)
form. Section 5 presents an application example. Finally,
the conclusions are summarized in Section 6.
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2. Problem formulation

Consider the following linear time-invariant system with
additive faults:

{ X()=Ax(®)+Bsat(u () + Ff (1)

x (1)) = xo

M

where x e R", u e R”, and f € R™ are the system state,
control input, and additive fault vectors, respectively, and
m, is the dimension of the fault vector, R denotes the Eu-
clidean space; x, is the state at the initial time instant #,;
A, B, and F are constant matrices of corresponding di-
mensions. The mapping sat(-) : R” — R” is the standard
unity saturation function and the non-unity saturation can
be absorbed into B and u.

Remark 1 The existing reconfigurability evaluation
methods are mostly proposed for control systems with
multiplicative faults rather than additive faults which are
also very common in practical engineering. To remedy
this situation, this paper focuses on reconfigurability
evaluation for the control systems with additive faults.

Due to the input saturation and the resource limitation
of the system, only the additive faults with limited mag-
nitude are concerned in this paper. Otherwise, the recon-
figuration cost will exceed the system capacity, resulting
in unreconfigurability. Given this, the faults discussed in
this paper are assumed to be in the following set:

Foo={f R, > R™ 1 fT(0) f (1) < 6.V1) 2)

where R, denotes the set of positive real numbers. The
subscript “T” indicates matrix transposition. 60 is a con-
stant that reflects the fault magnitude.

A state feedback controller is utilized to stabilize the

system:
u() = Kx(@7). 3

For a given feedback gain K € R™", define the state
domain where actuator saturation does not occur as

LK) :={xeR" :|kx|<1,i=12-,m} (4

where k; is the ith row of K, and R”" denotes the set of
all mxn real matrices.

Let M be a set of mxm diagonal matrices whose ele-
ments are 0 or 1. The set M has 2" elements in total and
each element is denoted as M; (i=1,2,---,2"). Let M; = I-
M, and clearly, M;” € M.

Before giving the main result of this paper, the follow-
ing Lemma from [20,21] is introduced.

Lemma 1 Let u,v € R™. Suppose that |v;| <1 for all
i €[1,m], then

sat() € co{Mu+ M;v:iec[1,2"]} %)
sat(u,),---,sat(u,)]", and

where sat(u) = [sat(u,),
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sat(u;) = sgn(u;)min{1,|u;]}. co{-} denotes the convex
hull of “.”.

Definition 1 (Reconfigurability) The fault system (1) is
control reconfigurable with the initial state set X, C R"
under a given fault f e F,;° if there exists at least one
controller that is stabilizing for system (1) with Yx, € Xj.

Definition 2 (Invariant set) A set in R” is said to be in-
variant if all the trajectories starting from it will remain in
it regardless of f € F,°.

Let V(x) =x"Px, where P€R™ is a positive defi-
nite symmetric matrix. The set

Q(P.p):={xeR":x"Px <p)
is an invariant set if and only if V(x) = 2x"P(Ax+
Bo (u)) is negative definite for all x € Q(P,p).
3. Reconfigurability qualification

The reconfigurability is analyzed qualitatively in this sec-
tion and the sufficient conditions of reconfigurability are
given below.

Theorem 1 For the fault system (1) with initial state
set X, if there exist a feedback gain K € R, matrices
P=P"eR™, HeR™, and a positive number 70, sat-
isfying the following conditions:

X, € 2(P,5) (6a)
[A+B(M,K+M; H)|' P+ P[A+B (M, K+M; H)}+
1
—PFF"P+3P<0, i=1,2,---,2" , (6b)
n
Q(P,0)c L(H) (6¢)

then system (1) is reconfigurable with X, and all the tra-
jectories starting from inside X, will remain in it.
Proof Select the Lyapunov function.

V(x)=x"Px 7

The derivative of V(x) along the trajectories of the
system is

V(x) =2x"Px = 2x"P[Ax (t) + Bsat(u (1)) + Ff (1)].
(®)
Given that Q(P,6) c L(H), according to Lemma 1,
Vx e Q(P,9),

V(x)=2x"P[Ax+B(M,K+M;H)x + Ff] =
2x"P[A+B(MK+M;H)|x+2x"PFf <
2x"P[A+B(M,K + M; H)| x+

1
—x"PFF'Px+nf"f <
n
1
x"|2P(A+B(M.K+M; H))+ -PFF"P|x +n0,
n

i=1,2,-,2" 9)

When (6) is satisfied, we have
V(x) < —nx"Px +16. (10)

Therefore, Vx € Q(P,5), V(x) <0. Since X, € (P, 6),
V(x) <0 holds for Vx € X, and thereby all the trajecto-
ries starting from X, will remain in it.

Theorem 1 is proved. O

Theorem 1 offers a sufficient criterion for control re-
configurability, but it only concerns the stability of the
system without considering its convergence effect. In
practice, the fault system is expected to have the ability to
reduce the impact of the faults as much as possible, mak-
ing the system trajectory from X, converge to a smaller
domain X,, (X, C Xy).

Assume that the initial state domain of the system is
Xo=92(Ry,1) and the expected final state domain is
X, =R2(R.,1). The following theorem is given to deve-
lop the condition under which all the trajectories starting
from Q (R, 1) converge to (R, 1).

Theorem 2 For the fault system (1), if there exist
P=P" eR™, H,, H, e R™ and positive numbers 70,
0e. 1, such that

Q(Ry, 1) c2(P,)) (11a)
Q(P,e.0) C 2(R,,1) (11b)
[A+B(M,K+M;H)]"P+P[A+
1
B(MK + M:H)] + - PFF"P +P<0,
n
i=1,2,---,2m ,  (1l¢)
[A+B(M,-K+M,TH)]TP+P[A+
1
B(M.K+M H)|+-PFF'P+-L P<0 (11d)
n e
i=1,2,---,2"
Q(P,5)c L(H)) (11e)
Q(P,e.,0) C L(H,) (11£)

then for all € € [e.,1], Q(P,&d) is also invariant, which
consequently implies that all the trajectories starting from
(R, 1) will converge to 2(R., 1).

Proof It can be simply proved from constraints (11a)
and (11b) and the properties of the convex function that

[A+BMK+M H)]'P+P[A+
1
BMK+M H)|+-PFF'P+1pP<0.  (12)
n E

Let h, ; and h, ; be the ith rows of H, and H,. Then, it
can be seen from [22] that conditions (11e) and (11f) are
equivalent to

1 1
= —
0 120, &0 ’
h]TY,. P h{i P
Because ¢ € [e.,, 1], there exist 4 € [0, 1] satisfying

>0, ie[l,m].

1 1-2
- =4+ .
& Ew

(13)



1026

Let H=AH, +(1-2)H,, then

1
&0 ' =
KT P
1-4\1
(/1 + )_ /lhlj + (1 _/l) hz’,‘
Ex 0 ' =
AT+ (1= )T, P
1 1
= hl,i s h2,i
Al o +(1=2) | &0 >0 (14)
hi, P hy, P

which is equivalent to Q(P,&6) C L(H). Similar to The-
orem 1, we can derive that Q(P,&d) is an invariant set
from (12) and (14). Because of the arbitrariness of € over
[e., 1], all the trajectories starting from 2 (P,d) will con-
verge to Q(P,e,.6). Further, from (11a) and (11b), all the
trajectories starting from (R, 1) will converge to
Q(R.,1). Theorem 2 is proved. O

Theorem 2 provides a sufficient condition of system
reconfigurability under certain convergence requirements.

4. Reconfigurability quantification

Based on the reconfigurability qualification given by
Theorem 1 and Theorem 2, the reconfigurability is fur-
ther quantified in this section. The reconfigurability of
control systems can be reflected from three aspects: (i)
the largest fault magnitude 6* for which the system can
be stabilized; (ii) the largest initial state domain X; start-
ing from which all the trajectories will converge to a giv-
en final state domain X, ; (iii) the minimum final state
domain X7, to which all the trajectories start from a giv-
eninitial state domain X, will converge. This paper quantita-
tively analyzes the reconfigurability of control systems
from these three aspects.

4.1 The largest fault magnitude

The largest fault magnitude ¢* for which the system can
be stabilized reflects the fault tolerance range of the con-
trol system. Given an initial state domain X, = 2(R,, 1),
the following optimization problems can be used to es-
timate §*:

sup o
P>0,7>0,K.H
Q(Ry,1) e Q2(P,9)
[A+B(M,K+M; H)]|"P+P[A+ (15a)
s.t. B(M,K+M; H)]+ 1PFFTP+17P<0,
n

i=1,2,.--,2" (15b)

Q(P,0)c L(H) (15¢)
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Constraints (15a) and (15b) are respectively equivalent
to

RO In
p — -
R>-0e| ° % |50 (16)
6 I)L
- P!
9

and
P'[A+B(M,K+M; H)]"+[A+

1
B(MK+M; H)|P"' + —FF" +nP'<0. 17
n
From [22], 15(c) is equivalent to

1 .
0 < m,]=1,2,“',m (18)
j j

where h; is the jth row of H. Furthermore, it can be trans-
formed into

1
P'nt P

\
S

(19)

1
Letv= 5 Q=P', Y=HQ,and Z = KQ. The optimi-

zation problem (15a)—(15c) can be rewritten as follows:

inf v
0>01>0Y.Z
vR, ul,
>0 (20a)
ul, Q
(AQ+BM,Z +BM;Y) + AQ+
1
s.t. M,Z +BM;Y + —FF" +nQ<0,
n
i=1,2,---,2" (20b)
U .
[ . Yilse, j=12.m (20c)
y; 0

where y; is the jth row of Y.

If n is fixed, the optimization problem (20a)—(20c) is
an LMI problem, which can be solved directly by using
the LMI toolbox of Matlab. Varying n from 0 to co, the
global optimal solution can be obtained, i.e., the largest
fault magnitude 6* for which the system is reconfigur-

. | .
able can be estimated as ¢ = — with the corresponding
"

optimal control gain K*:Z*QH, where Q* and Z are the
optimal solutions of @ and Z.

4.2 The largest initial state set

Due to the nonlinear properties caused by the input con-
straints, it is difficult to calculate the largest initial state
domain Xj accurately. Given this, the elliptic invariant
set 2(P,9) is used to estimate X based on Theorem 2.
Accordingly, the problem of estimating the largest initial
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state domain of the system can be described as: given an
expected final state domain 2(R.,, 1), design K so that
the system has an invariant set Q(P,6) D2 (,,1) with
@, maximized, where «, is the inscribed radius of
Q(P,0), and all the trajectory starting from it will
converge into a smaller invariant set 2 (P, &..0) C (R, 1)
(Oe1).
This problem can be formulated as

sup Q
P>0,7>0,0<e.<1,K,H,,H,

22,1 C 2(P.5) (21a)
Q(P.c.5)C Q(R..1) (21b)
[A+B(M,K+M: H,)|" P+P[A+
B(M,K+MH, VL PFETPinP<0 Qlc¢)
n
SUY [ AB(M KM H,)|" PrPLAB(M KM H,)} .
L pFFps Tpegi=1.2,....om 21d)
n £
Q(P,0)c L(H)) (21e)
Q(P.£.5) C L(H,) Q1f)

Let Q=P',Y,=H\Q,Y,=H,0, and Z = KQ, then
(212)—(21f) can be transformed into the following forms:

sup Qg
0>0,7>0,0<e.<1,Z,Y,,Y,
6In aOIu
>0 (22a)
a’OIn Q
I £.0R..0
(22b)
£.0R.0 I
(AQ+BM.Z + BM;Y))' + AQ+
1
BM.Z + BM:Y, + —FF" + Q<0 (22¢)
n
(AQ+BM.Z + BM;Y,)' + AQ+
S.L.
1
BM,Z+BM:Y,+~-FF"+-L0<0 |
n Eo
i=1,2,---,2m (22d)
1
s T ‘ >0 (22¢)
y;, @
1
e V¥ }>0,j:1,2, m (22f)
Ly, @

where y;; and y,; are the jth row of Y, and Y,, respect-
ively. The problem (22a)—(22f) is an LMI problem when
n and &, are fixed. Varying n from 0 to co and &, from
0 to 1, the global optimal solution can be obtained to es-
timate the largest initial state domain X ~ 2 (P, ).

4.3 Minimum final state domain

Similar to the above, the minimum final state domain X7,
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is estimated by the elliptic invariant set 2 (P,e.0) based
on Theorem 2. This problem can be formulated as: given
an initial state domain 2(R,, 1), design K so that the sys-
tem has an invariant set 2(P,0) 2 Q(R,, 1), and all the
trajectory starting from it will converge into a smaller in-
variant set Q(P,&.0) C a.2(1,,1) with «a,, minimized,
where Oe,l and @, is the circumscribed radius of
Q(P,e..0).
This problem can be formulated as

inf oo
P>0,7>0,0<e.<1,K.H,,H,
Q(R,,1)CQ(P,)) (23a)
Q(P,e.0) Ca.2(,1) (23b)
[A+B(M,K+M;H)|"P+ P[A+
1
B(M.K +M:H,)|+-PFF'"P+7P<0  (23c)
n
st.{ [A+B(M.K+M;H)|"P+P[A+
1
B(MK + M:H,)|+ —-PFF'P+ L P<0,
n Ewo
i=1,2,--,2m (23d)
Q(P,0)c L(H)) (23e)
QP,e0)Cc LHy), j=12,---,m (23f)

Let Q = P—I’ Yl = Hle Y2 = H2Q9 and Z = KQ
Then, (23a)—(23f) can be transformed into

inf .,
0>0,7>0,0<e<1,Z,Y,,Y,

SR, I,
>0 (24a)
Ill Q
aol, €.,00
>0 (24b)
.00  a.l,
(AQ+BM,Z +BM;Y,)" + AQ+
1
BM.Z + BM:Y, + ~FF" +10Q<0 (24c¢)
n
(AQ+BM,Z + BM;Y,)" + AQ+
s.t.
1
BM,Z + BM:Y, + - FF" + L 9<0,
n Ew
i=1,2,---,2" (24d)
!
s YVl>0 (24e)
y, @
1
ed VY ]>0, j=1,2,-.m (24f)
v, 0

Similar to (22a)—(22f), varying n from 0 to oo and &,
from 0 to 1, the global optimal solution to the problem
(24a)—(24f) can be obtained by the LMI toolbox.

5. Numerical simulation

In this section, a simulation example is presented to
demonstrate the effectiveness of the proposed methods.
The parameters of system (1) are
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06 -0.8

A= ’F:

2
’B:

4

0.1

0.1
From (20), the maximum additive fault magnitude

is a function of#z . Given the initial state domain

X,=Q(,,1), the curve of the maximum additive fault
magnitude with different values of  is shown in Fig. 1.

0.8 0.6

The global optimal solution over 7€ (0,00)is
. . .| 76.8516 —69.9721
0°=12.7106 with P —[ 2699721 103.761 4 } and
K =| 23367 -50943 | when 7=0.50.
14
12} T 1
w _
:
£ .
&
E u
E
& _
0 0.2 0.4 0.6 0.8 1.0
Value of 5

Fig. 1 Additive fault magnitude 6 with different n

Given the expected final state domain X, =Q(41,,1)
and the additive fault magnitude 6 = 1, the largest initial
state domain X; starting from which all the trajectories
will converge to X, is estimated by solving the optimiza-
tion problem (22) to obtain the elliptic invariant set
Q(P;,1). The inscribed radius @, of the invariant set with
different ¢, and 7 is shown as Fig. 2. The optimal solu-

tion a; = 1.678 3, with P; = [ _0(511741096 _00.2144;026 and

K;=| 11077 -35866 |, is obtained when &, =0.016
and 1 =0.003 6. Fig. 3 presents the estimated largest ini-
tial state domain and some trajectories. It can be seen that

the trajectories starting from Q(P;,1)> X; will con-
verge to 2(P;,0.0166) c X...

SErm

008 0.08
0.0100.10

Fig. 2
ent &, and n

Inscribed radius « of the initial state domain with differ-

4
3t ——
2t //
1
< 0F &
1t /
-2t /
-3t ¥”//
4

4 3 2 -1 0 1 2 3 4
X

1
— 1 Q(P)Y); — 2(Pg0); o X, : Trajectories.

Fig.3 Estimated largest initial state domain

Given the initial state domain X, = £(0.251,,1) and
the additive fault magnitude 6 =1, the minimum final
state domain X!, to which all the trajectories from X
will converge is estimated by solving the optimization
problem (24) to obtain the elliptic domain Q(P:,1).

The optimal solution «af =0.9562, with P! =
_0(')10196287 _00'1%95257 ]and K, =] 8361 -33929 |,

is obtained when & =0.05 and 7 =0.0058. The esti-
mated minimum final state domain and some trajectories
are shown in Fig. 4. It can be seen that the trajectories start-
ing from Q(P:,1) > X, will converge to 2(P.,,0.056) c

X
4
3 I
/
2 |,
o { 7
w0 7
-1
2 U N IR e ]
3L \_,//
4

4 3 2 -1 0 1 2 3 4
X

1
— 1 Q(P,9); — : 2(P:,0); - : X3 —- : Trajectories.

Fig. 4 Estimated minimum final state domain

6. Conclusions

This paper proposes a quantitative reconfigurability eva-
luation method for control systems with actuator satura-
tion and additive faults from the perspective of stability.
This method provides system designers with more in-
formation about the reconfigurability level of the control
system, which can be used as a guideline for system
design, including the structure and FTC algorithm, from
the perspective of improving the reconfiguration capabi-
lity of the system in the presence of faults.
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In future work, other practical factors, such as time
delays, finite horizons, and nonlinearities could be fur-
ther considered. Moreover, the reconfigurability evalu-
ation idea can be extended to other fault conditions, such
as sensor faults and structural faults.
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