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plications to residual centred modelling of uncertain control sys-
tems, fault detection in feedback control systems with uncertain-
ties, fault-tolerant control (FTC) as well as control performance
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In conclusion, some future perspectives are proposed.
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1. Introduction

It is state of the art that fault detection and isolation (FDI)
functional units are, in parallel to control functional units,
widely integrated into new generation of automatic con-
trol systems, in particular when the control systems are
integrated into safety relevant processes, for instance,
transport and vehicles systems, and aircraft and chemical
plants [1-3]. The diagnostic algorithms are often con-
structed separately from the control ones, although both
the control and diagnostic functional modules are de-
signed based on an identical system model [1]. A critical
issue of integrating a diagnostic module into a feedback
control loop is the interactions between control and dia-
gnosis. Having noticed the importance of this issue three
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decades ago, Nett et al. initiated the study on the integ-
rated design of control and diagnosis [4], which received
much attention in the 1990s [5—10]. The original idea of
the integrated design scheme proposed by Nett et al. was
to manage the interactions between the control and dia-
gnostic algorithms in an integrated manner [5]. To this
end, system configuration with an integrated control and
diagnostic module was proposed. In this way, design of
the control and diagnostic units is considered as a stand-
ard feedback control problem [8—10], and the potential
interactions between them can be systematically ad-
dressed in the so-called H,, optimisation framework that
was very popular at that time and well established in the
robust control theory [11]. These methods have been fur-
ther improved and extended in the next decade [12—14].
The research efforts and the achieved results in these two
decades were reviewed in [15].

Parallel to the above investigations, alternative
schemes towards integrated design and configuration of
control and detection functionalities have been reported,
which can be classified into three groups: (i) integration
of the residual generator that runs in parallel to the con-
troller, as proposed in [16]; (ii) application of the stand-
ard observer-based control scheme with the observer-
based controller delivering both the control and diagnostic
signals, as proposed in [17]; (iii) implementing the Youla
parameterisation controllers [11] in the residual genera-
tor form, the so-called generalised internal model control
[18] structure (GIMC).

Inspired by the investigation in [18], Ding et al. pro-
posed an observer-based parameterisation of all stabili-
sing controllers with an observer-based residual generator
in its core and demonstrated its successful application to
control and detection of engine management systems
[19]. On the basis of this work, a new unified framework
of control and detection has been recently established.
This framework generalises the integrated design methods
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of control and detection developed in the past decades
and has been applied to dealing with issues like fault dia-
gnosis in automatic control systems with uncertainties,
fault-tolerant control (FTC) and, more recently, to con-
trol performance degradation detection and recovery. The
major objective of this paper is to report the results
achieved in this context. In the first part of this paper, a
review is dedicated to an introduction of the basics of the
integrated control and detection framework. It is not a
typical literature survey. The main part includes a de-
tailed summary of the recent results of applying the uni-
fied control and detection framework to fault detection,
performance degradation monitoring and recovering. The
last part is devoted to some promising future perspecti-
ves in the context of the framework.

This paper is organised as follows. In Section 2, the
unified framework of control and detection, together with
the necessary control theoretical and mathematical pre-
liminaries, is first presented. Section 3 is dedicated to the
introduction and review of some methodical applications
of the unified framework, including (i) residual centred
modelling of uncertain control systems, (ii) fault detec-
tion in control systems with uncertainties, (iii) FTC, and
(iv) control performance degradation detection and reco-
very. The future perspectives of the unified framework
are shortly summarised in Section 4.

Throughout this paper, standard notation known in li-
near algebra and the advanced control theory is adopted.
In addition, notation RH,, is adopted for presenting the
set of all stable systems.

2. Review of the unified control and detec-
tion framework

The unified control and detection framework is estab-
lished on the basis of the so-called system factorisation
technique and the well-known Youla parameterisation of
all stabilising controllers.

2.1 System representations

2.1.1 System factorisations and their interpretations

Consider a linear time-invariant (LTI) system modelled by
¥(2) = G(2)u(z) (D

with u € R” and y € R" as the plant input and output vec-
tors. Suppose that G(z) is a proper real-rational matrix
with the minimal state space realisation

x(k+1)=Ax(k) + Bu(k), x(0)= x,, 2)
y(k) = Cx(k) + Du(k), 3)

where x € R" is the state vector and matrices A,B,C,D
are real constant matrices of appropriate dimensions. A

coprime factorisation of G(z) over RH,, factorises G(z)
into two stable and coprime transfer matrices. They are
called left and right coprime factorisations (LCF and
RCF) and given by

G(2)=M"'@NQ@) =NxM ' (2) @)
where (M (2),N (z)) and (M(z), N(z)) are the left and right
coprime pairs (LCP and RCP) of G(z). Correspondingly,
there exist RCP and LCP (X (), f’(z)) and (X(z),Y(2)) so
that the well-known Bezout identity holds [11]

X@ Y@ || M@ -Yo |_[10 )
-N@) M@ || No) X@ | |01 |

The state space realisations of these eight transfer func-
tion matrices are

M) =(A-LC,-L,C,I) 6
NGz =(A-LC,B-LD,C,D) °’ 6)

M(z)=(A+BF,B,F,I) ;
NGz =(A+BF,B,C+DF,D) ° ™)

X(z) = (A+BF,L,C+DF.,I) @

Y(z) = (A+BF,-L,F,0) ’ )
X(z)=(A-LC,—(B-LD),F.I) 9
Y(2) = (A— LC.L.F.0) : ©)

which can be interpreted, with different input and output
variables [20], as follows:

(1) a (full) state observer and observer-based residual
generator,

#(k+1) = A%(k) + Bu(k) + L(y(k) - $(k)), (10)
ro(k) = y(k) = y(k), (k) = Cx(k) + Du(k) ~ (11)

ro(z) = M(2)y(z) - N(u(2), (12)

(i1) an observer-based state feedback controller and its
input-output dynamics,
X(k+1)=(A+ BF)x(k)+ Lry(k), (13)

k F
5 cor [0 a9

:[ (I) ]ro(k)+

ro(2), (15)

[ u(z) _[ —f(Z)
Y@ | | X@

(iii) a state feedback controller and its input-output dy-
namics,

x(k+1) = (A + BF)x(k) + Bv(k), (16)
[‘y‘gg = C+FDF]x(k)+ ll)]v(k) (17)
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(iv) an observer-based state feedback controller and the
closed-loop “residual generator”

#(k+1)=(A—-LC)%(k) + (B—LD)u(k)+ Ly(k), (19)
v(k) = u(k) — F&(k) (20)

V(2) = X(2)u(2) + Y (2)y(2). @1

In (10)—(12), the LCP (M, N) is an observer-based re-
sidual generator for a plant G with (u,y) as its input vari-
ables and the primary residual r, as the output. Systems
(13)—(15) can be understood as an observer-based state
feedback control loop driven by the (primary) residual r,
and delivers (u,y). In this sense, (X, f/) is an RCP of an
observer-based controller. Systems (M,N)and (X,Y)
given in (16)—(21) are in fact the dual forms of (M, N)
and ()A(, f/), respectively. While (M,N) is a state feed-
back control loop with the reference signal v as its input
and (u,y) as the (loop) output vector, (X,Y) represents an
observer-based closed-loop dynamics driven by the plant
input and output, (u,y), and, based on it, the “residual
signal” v is generated. It forms in fact an LCP of the ob-
server-based state feedback controller. In the context of
the above-described interpretations, matrices F and L are
often called state feedback gain and observer gain
matrices and are to be selected such that A + BF and
A — LC are Schur [20].

Corresponding to the LCF and RCF, there exist further
two equivalent model forms, the so-called stable kernel
and image representations (SKR and SIR), for a given
system. For instance, given system y(z) = G(2)u(z), its
SKR and SIR are respectively described by

SKR : ro(2) = M(2)y(z) - N(2)u(2), (22)
fu@ | | M@
SIR.[ o _[ NG) ]v(z). (23)

Note that when £(0) = x(0), it holds
ro(2) = M(2)y(2) - N@u(z) = 0

¥@) =M QN@u@) = GRu).
Moreover, it follows from (23) that
¥(@) = N@@v(z) = N@OM ™ (2u(z) = G(2)u(2).
2.1.2  Modelling of nominal system dynamics, uncer-

tainties and faults

When a control system is operating under the fault- and

uncertainty-free condition, its dynamics is called nominal
and denoted, in the sequel, by

¥(2) = Go(u(2) 24
with (2) and (3) as its minimal state space realisation.
Correspondingly, the LCP and RCP of G, are denoted by
(MO,IVO) and (M,,N,). And associated with them, we

have (Xo, f’o) and (X,,Yy).

Extending (2) and (3) to
x(k+1) = Ax(k) + Bu(k) + E,d(k), (25)
y(k) = Cx(k) + Du(k) + F4d(k) (26)
leads to
Y(@) = Go(Du(2) + Gu(2)d(2), (27)
G2)=F,+C(zI-A)"E,, (28)

where d(k) € R% is an unknown input vector, E, and F,
are known and of appropriate dimensions. d can repre-
sent either the (additive) fault vector (in the literature,
notation f(k) is often adopted) or the disturbance vector.
Although many research works are focused on additive
faults and unknown disturbances, their influences on the
control system performance are minor critical, since they
do not affect the system stability and eigen-dynamics.
Moreover, there exist rich well-developed methods to de-
tect and further to compensate and minimise their influ-
ences. Differently, uncertainties or/and faults caused by
changes in the system parameters could be more critical.
For instance, unknown variations modelled by A4, Ag, Ac,
and Ap in the system representation,

x(k+1)=(A+A4)x(k)+(B+Ap)u(k), (29)

Y(k) = (C+Ac)x(k) + (D + Ap)u(k), (30)

could remarkably change the system dynamics. Typically,
such change is a slowly varying process, beginning as
minor parameter variations and thus treated as tolerable
model uncertainties. With increasing time, they could be-
come severe faults and considerably affect the system
performance. Hence, an early detection of this class of
faults, addressed in the literature as detection of incipient
faults, and subsequent online updating of the control sys-
tem are of considerable practical interests, but consider-
ably challenging for research work. In our subsequent
study, we will not distinguish between parameter uncer-
tainties and faults, which are also called multiplica-
tive faults, by notation, and call them uniformly uncer-
tainties, when there is no risk of confusion. Let G(z) be
the transfer function of the uncertain system (29)—(30), and
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M(2)=(Ay=LCy,—L.Cy. D) a1
N()=(A,—LC,,B,—LD,,C\,D,)
M(z) = (Ay+BAF,B,,F,I) (32)
N(z) = (Ay+B\F,B,,C,+D,F,D,) ’
Ay=A+A,
BA = B + AB
CA = C+AC ’ (33)
DA = D+AD

be its LCP and RCP, i.e.,

y(2) = G(u(z) = M QN@u) = NOM ™' Qu(z).

(34)
Define
Ay = M(z) - My(2)
{ Ay =N@) - Nox) (33)
Ay = M(2) - My(2)
{ Ax = NG@) - No(z) (36)

The uncertain system (34) can be written as
N =1/ A
¥@) = (M@ +Ai) (M@ +Ag)u@ = (37)

(No(2) +Ax) (Mo(2) + Ay) ™ u(2). (38%)

In our work, it is assumed, without loss of generality
[21], that systems with uncertainties are modelled by (37)
or (38) and call

[ AN AM ]ER?’{N, [ AN

A }GR‘HW

left and right coprime factor uncertainties (LCFU and

RCFU). Moreover, both the unknown input vector, LCFU
and RCFU are norm-bounded as

Ay

Ay

2.2 Youla parameterisation of stabilising controllers

<0d7.

)

Idll, <6, [ A Aw || <6x,

The feedback control loops under consideration are
sketched in Fig. 1 with the plant model G(z) and controller

u(z) = K()y(@) +v(2) (39)
where v(z) is the reference signal. Given the LCP and
RCP of the nominal plant model GO,(MO,NO), (M,,N,),

y(@) Xo(2) = No(2)Q(2) Ny(2)

—

[ u(2) - v(2) H ~¥o(2) - My(2)Q(2)
Xo(2) = No(2)Q(2)

(@)

R o 2 o b
0 — 4o

as well as the associated RCP and LCP (Xo,f’o) and

(Xo, Yy) satisfying Bezout identity (5), it is a well-known re-
sult that all stabilising controllers can be parameterised by

K@) =~ (Xo(2) - Q@No(@) " (Y@ +Q@M(2)) (40)

K@) =~ (70 + My(200) (X2 - Ne@Q)  (41)

with parameter system Q(z) € RH.. The parameterisa-
tion expression (40)—(41) is called Youla parameterisa-

tion [11].
v u y
— G o
K «
Fig. 1 Feedback control loop under consideration

2.3 Basics of the unified framework of
control and detection

We are now in the position to review the basics of the
control and detection unified framework.

2.3.1 Observer-based realisation of Youla

parameterisation

It follows from (6), (9), and (40), as well as Bezout iden-
tity (5) that any (stabilising) output feedback controller
described by (39) can be equivalently written as

X(k+1) = Ax(k)+ Bu(k)+ Lry(k), (42)

ro(k) = y(k) = (k)
{ $(k) = C&(k) + Du(k) ° (43)
{ u(z) = F(2) — Q(2)ro(2) +¥(2) (44)
7(2) = (X0(2) - QN ()

That means, any dynamic output feedback controller is
an observer-based controller and driven by the residual
signal ry,. In fact, a special case of this realisation,
0(2) = 0, has been demonstrated by (15) in the context of
interpreting the RCP (Xo, 170) of the controller. Note that
the state space representation (42)—(44) can also be writ-
ten as

LD~ No@0@) Mot |

} (ro(@) + No(2(2)).
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It follows from (42)—(44) that both controller and de-
tector are driven by the residual signal and thus integ-
ratedly constructed on a common observer-based residual
generator. Moreover, the observer parameterisation [1]
reveals a deeper insight into the information aspect of a
feedback controller: the control signal in (44) is an esti-
mate for Fx(k)+v(k) and satisfies

Vx(0),u(k), ;1152 (u(k) — Fx(k)—-v(k)) =0, (45)

when there exists no uncertainty in the plant. The obser-
ver-based controller realisation (42)—(44) and the estima-
tor interpretation of output feedback controllers are the
core of the unified control and detection framework and
the basis of our subsequent study.

2.3.2 Functionalisation of controllers

The configuration of an observer-based stabilising con-
troller (42)—(44) consists of several functional modules:

(1) An observer and an observer-based residual genera-
tor as an information provider for the controller and dia-
gnostic system,

#(k+ 1) = A%(k) + Bu(k) + Lro(k),

ro(k) = y(k) — y(k),
$(k) = Cz(k) + Du(k).

They deliver state estimate %, and the primary residual,
ry=y-y.

(il)) Two controllers u(z) = Fx(z) - Q(2)ro(z) +¥(z),
—F%(2)—Q(2)ry(z) as feedback controllers, and —¥(z) =
V(@)v(z), V(2) = Xo(z) - Q(z)Ny(z) as feed-forward con-
trollers.

999

(iii) A detector R(z)ry(z) can be integrated for the de-
tection purpose with R(z) as a (stable) post-filter.

This modular configuration allows a clear parameteri-
sation of the embedded functional modules: L for para-
meterising the state observer, F and Q(z) for the feed-
back controller, V(z) for the feed-forward controller, and
R(7) for the detector.

It is evident that all the above five parameters have
evidently different functionalities. They are summarised
as follows: F and L for determining the closed-loop sta-
bility and eigen-dynamics; Q(z) for enhancing the sys-
tem robustness and control performance; R(z) serving for
optimising the fault detectability; V(z) for the tracking
behaviour.

Due to their different functionalities, these parameters
should be treated with different priorities. The funda-
mental importance of the system stability and eigen-dy-
namics requires the highest priority of tuning of F and L.
When a temporary system performance degradation is
tolerable, the priority for an online optimisation of Q,R,
and V is lower.

2.3.3 Variations of Youla parameterisation

An immediate application of the observer-based realisa-
tion of (42)—(44) and controller functionalisation is the
establishment of the so-called FTC system architecture
sketched in Fig. 2 [20]. Note that the integration of the
diagnostic residual generator R(z)ry(z) allows a reliable
fault diagnosis and can be used, for instance, for the pur-
pose of activating online updating of the control modules
once a fault is detected.

v y
> V@) —> > G(2) >
Feed-forward | |
controller '
F ol f(kr1)=AR(k)y-Bu(ky+Lrok)

ry(k)=y(k)~Cx(k)~Du(k)

00)

State observer, residual generator

Feedback
i controller

Diagnostic residual

>
>

R(z)

Fig.2 An FTC architecture

Suppose that the control loop shown in Fig. 1 with the

(nominal) controller

u(z) = Ko(2)y(2) +v(z)

is running stable but with degraded control performance.
Since this controller can be equivalently written as

u(z) = Fx(z) — Qo(2)ro(z) +v(2)
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for some F ensuring A+ BF being Schur and Q,(z) €

RH.., it follows from the observer-based realisation of

Youla parameterisation that YQ(z) € RH.,

u(z) = Fx(z) — Qo(2)ro(z) +¥(2) + Q()ro(z) =
Ko (2)y(2) +v(2) + Q(2)ro(2), (46)

and thus the closed-loop dynamics with the new control-
ler satisfying (46) is guaranteed stable. In fact, switching
on or off the dynamic system Qr, does not affect the sys-
tem stability, when the switching rate is lower so that the
switching effect can be neglected. Remember that feed-
ing back the residual signal could enhance the system ro-
bustness and control performance, as will be demon-
strated in our subsequent study as well. In this context,
we call the configuration described by (46) and schemati-
cally sketched in Fig. 3 plug-and-play (PnP) FTC [21].
The most important feature of the PnP configuration con-
sists in the realisation of FTC without any modification
on the nominal controller Ky(z). This is of considerable
practical interest in real applications.

N, i,

PnP-controller

K,

Fig.3 PnP configuration of FTC

On the basis of the claim that the control signal u(k) is
an estimate for Fx(k)+7v(k) (in the sense of (45)), a fur-
ther variant of the Youla parameterisation can be realised.
Construct a state estimator as follows:

®(k+1) = A %K) + Buk) + Ly(k) 47
A.=A-LC, B,=B-LD . (4
{ X(2) = X(2) + R(2)ro(2) (48)
ro(k) = y(k) — Cx(k) — Du(k) °

where R(z)ry(z) is added to increase the degree of design
freedom for some parameterisation matrix R(z) € RH..
Now, according to (9), setting

u(k) = Fx(k) +v(k) (49)
results in

Xo(@u(z) = =Yo(2)y(z) +¥(z) + FR(2)ro(2)

u(z) = K(2)y(2) + v(2),
7(2) = (Xo(2) - QRN @) (),

K@) = - (X0 -0@N®) (Y@ +Q@M()).
Q) = ~FR(),

which is equivalent to a Youla parameterisation output
feedback controller.

Xo(@u(z) = =Yo(2)y(2) +¥(z) + FR(2)ro(2)

We would like to draw the reader’s attention to the
state estimator (47)—(48). The feedback of the residual
signal Rr, provides us with a higher degree of design
freedom and thus could deliver better estimation and de-
tection performance. For instance, system (47)—(48) can
be viewed as a general form of disturbance observers. A
realisation of the system configuration is sketched in
Fig. 4.

v u | G(z) >

t | X(k+1)=Ax(k)y+Bu(k)y+Ly(k) |, :
ry r(K)=y(k)~Cx(k)~Du(k) i

X(2)=x(2)_R(z)r(2)
R

i Observer-based controller |
' and detector

Fig. 4
detection

Observer-based configuration with unified control and

2.4 Summary

As a summary of this section, we would like to underline
the corner points of the control and detection unified
framework. The information insight of feedback control-
lers, which has not received the deserved attention in re-
search and practice, plays a central role in establishing
and understanding the unified framework. We have
demonstrated that a feedback controller is driven by the
residual signal that is the information carrier about uncer-
tainties in the control system under consideration.
Moreover, a feedback controller is an estimator for the
state feedback controller. These two (information) as-
pects unify control and detection functionalities.

While the integrated design of controller and fault de-
tector in a control system is focused on controller and de-
tector design based on a common design problem formu-
lation [15], the control theoretical basis for the establish-
ment of the unified framework is Youla parameterisation
of all (LTI) stabilising controllers. The technical core of
the unified framework is the observer-based realisation of
Youla parameterisation. Based on it, modularisation and
functionalisation of feedback controllers are achieved,
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which, together with three variants of the system configu-
ration, build the basis for the applications of the unified
framework to detection, diagnosis and FTC in automatic
control systems. To be specific, we are able to (i) gain
deeper insight into intimate relations between control
loop performance and fault detection, (ii) develop effec-
tive methods of detecting multiplicative faults in feed-
back control loops, (iii) detect system performance de-
gradation, and (iv) recover the loop performance degrada-
tion (LPD). Some of these applications are reviewed and
reported in the next section.

For our work, the factorisation technique is applied as
the mathematical tool. The control theoretical interpreta-
tions of the LCF and RCF of plant dynamics and control-
lers are helpful to understand Youla parameterisation and
Bezout identity that is very essential for the proof of
Youla parameterisation.

3. Review of applications and new results

In this section, we review the reported applications of the
control and detection unified framework to dealing with
fault detection and FTC and associated modelling issues,
and present some new results.

3.1 Residual centred system model

Consider the nominal system model (24) with the minimal
state space realisation (2)—(3), the corresponding state ob-
server and observer-based residual generator (10)—(12).
Note that system (10)—(12) can be equivalently written as

£+ 1) = A% (k) + Bu(k) + Lro(k), (50)
y(k) = ro(k) + C2(k) + Du(k), (51)

and its input-output dynamics is identical with one of
(24). Moreover, for x(0) = x(0), £(k) =x(k),k=1,2,---
as well. That is, the dynamic system (50)—(51) is an al-
ternative input-output (I/O)-model for the nominal sys-
tem (24). In this regard, system model (50)—(51) is called

A

—» x(k+1)=Ax(k)+Bu(k)

d—> _ y
] mesirpun |7

K «

observer-based I/O-model of (24).

Now, feedback control systems with the configuration
shown in Fig. 1 are considered. Viewing the paramete-
risation form

u(z) = Fx(2) - Q(2)ro(z) +(2) (52)

where Q(z) € RH., it is evident that all variables in the
control system (52) are available in the observer-based
I/O-model (50)—(51). This fact is of elemental import-
ance for the subsequent work.

Next, the influences of uncertainties like unknown in-
puts, parameter variations and faults on the system dy-
namics are investigated. As mentioned before, we do not
distinguish between disturbances and faults. Instead,
summarise them as system uncertainties. For additive un-
certainties represented by d and modelled by (25)—(26),
the dynamics of r, with respect to (w.r.t.) d is governed
by

e(k+1)=(A-LC)e(k)+(E,— LF,)d(k),
rotk) = Ce(k) + Fd(b),
e (k) = x(k) — % (k).
When, for instance, LCFU is under consideration,
A =1/ A
Y@ = G@u@) = (My@) +Azr)  (No(@) +Ag)u(2),

the dynamics of ry w.r.t. (Ay,Ay) is described by
ro(2) = Agu(z) — Ay (2). (53)
It is noteworthy that all these types of uncertainties, not
measurable and accessible, affect the model parameters
and the dynamics of (24) as well as (2)—(3) directly. On
the other hand, it is of considerable interest to notice that
the configuration of observer-based I/O-model (50)—(51)
is independent of the system uncertainties. Moreover,
fully embedded in the residual vector r,, information
about the uncertainties is accessible via the model
(50)—(51). These two different model forms are schema-
tically demonstrated in Fig. 5, in which A indicates the
system uncertainties schematically [21].

R(k+1)~AR(K)+Bu(k)+Lr,(k)

ro(k)=y(k)—p(k), p(k)y=Cx(k)*+Du(k) y
y(=ry(k)tp(k)

u(z)=Fx(z)=0(2)ry(2)

v

ro

v

Fig.5 From the standard model to the observer-based I/0-model: a schematic description

In summary, the residual centred closed-loop model is
given at the end of this section,

£ (k+1) = A% (k) + Bu(k) + Lro(k) =
(A+BF)%(K)+ B (rogk) +9(k)) + Lro(k),  (54)



1002 Journal of Systems Engineering and Electronics Vol. 32, No. 5, October 2021

x,(k+1)=(A-LC)x, (k) +(B-LC)v(k), (55)

y(k) = Cx(k) + Du(k) + ro(k) =
(C+ DF)x(k)+ D (ro(k)+v(k)) + ro(k), (56)

u(z) = Fx(2) - Q(2)ro(2) +v(2) (57)
——
u(k) = Fx (k) +ryo(k) +v(k),
ro(k) = y(k) - $(k) =
¥(k) = (C+ DF) £(k) = D (roo(k) + (k)
7(2) = (X0(2) - QN (@) v(2)
-

v(k) =v(k)— Fx, (k) +vq(k),
ro0(2) = —Q(@)ry(2),
v0(2) = —Q@)Ny(2¥(2) = —0(2) (D + Cx, () v(2).

It is worth emphasising that r, and y are signals with
redundant information.

3.2 Diagnosis of additive faults and an FTC
control scheme

Although additive faults do not affect the (closed-loop)
system stability and eigen-dynamics, diagnosis and FTC
schemes for this type of faults, due to their simple model-
ling form and intimate relations to many existing control
theoretical problem formulations, attract most attention in
research. In this section, we briefly review some solu-
tions and their derivations based on the observer-based
input-output model (50)—(51).

For our purpose, the uncertain model (25)—(26) is writ-
ten as

x(k+1) = Ax(k)+ Bu(k) + w(k) + E;f(k), (58)

Y(k) = Cx(k) + Du(k) + n(k) + F 1 f (k) (59)

where w(k) and i(k) are process and measurement noises,
and f € R* represents the (unknown) fault vector, which
could be sensor and actuator faults and thus called here-
after system component faults. It is assumed that
w(k) and n(k) are uncorrelated with the state and input
vectors, and

@)~ N(0.E,),
Nk ~ N (0,%,),

(i) [ w() | T Sup
. - 6,‘/ 0
S| n) || n() | |= [sg,, z, ] - ,
x(0) x(0) 0 Ty

1, i=j
5i/={ . J .
’ 0, i#]

Moreover, E;, Ff,X,,X,, and S, are known matrices
of appropriate dimensions.

It is well-known that the Kalman filter algorithm given
below delivers a white residual vector r,(k) with the mini-
mum covariance matrix,

X(k+1)= A%(k)+ Bu(k) + Lgry(k), 2(0)=0,  (60)
ro(k) = y(k) = 3(k), 3(k) = Cx(k) + Du(k),
Ly =(AYC"+8,,)%;",
Y =AYAT+X, - L, L,
X, =&(ryk)rik)) =CYC" +%,.
The whiteness of r, allows us to approach the fault de-
tection problem using the model

ro(k) = f,(k) + &(k), (k) ~ N(0,X,) (61)

where f, represents the influence of fon ry,. Con-
sequently, setting {J, J,,} equal to

{ T = IO ro(k)

(62)
‘]th = X{zy

leads to an optimal fault detection, where « is the accept-
able false alarm rate (FAR) [21].

It is the state of the art that, during fault-free opera-
tions, a linear quadratic Gaussian (LQG) controller delivers
optimal control performance in the context of minimi-
sing the cost function of the following general form:

I Qx qu
YA ECRTY bl P
k=i

qu Qu
[ QQ QQ >0, Q,>0,
Q=0 0<y<l (63)

Without loss of generality, it is assumed that the (op-
timal) controller is Kalman filter based,

u(k) = Fx(k),

with v = 0. Although the solution to the LQG controller
design is well-established, below we schematically illus-
trate the alternative solution based on the observer-based
input-output model (50)—(51). Let

n}lin JO) =T (X% +c

and following the dynamic programming method, write it
as

S T Ty
II'tlI’l.](l)—I’ilé)IlS([ x'(@) u'(i) ] 0.. 0, (i
[10ptly2"(i + DXRGE+ 1) +yc).

0. Qu H x(i) }

Since ry(k) is independent of £(k) and u(k), and
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E(x(k)) = 2(k),E(ro(k)) =0,
E(xT()Q.x(k)) = Ex" (k) Q. Ex(k) + tr(QxS(X(k) —&x(k)) (x(k) - Sx(k))T) = 21(k)Q.%(k) +tr (Q.Y),
Y = 8(x(k) — Ex(k)) (x(k) — Ex(k))',
8((LKr0(k))T XLKrO(k)) =tr(XLgX,LY),

it yields

min /(i) =nul(ii)n([ £7G)  u" () ]Q[

u(i)

b0}
u(i)

]) +tr(Q,Y) +ytr(XLE, L") +yc,

0= 0.+yA"XA Q.. +yA"XB
0..+yB'XA Q,+yB'XB |’

As a result, we have the final solution
min J(i) = T (H)XE(G) +c,
u(i)= argn:(%)n J(i) = Fox(i),
Fy=—(Q.+yB"XB) (Qu.+YB'XA).,  (64)
with X and c satisfying

X =yA"XA+Q,~ F'(Q. +yB"XB)Fo,X >0,
¢ =yc+tr(Q,Y) +ytr(XLE,L")

_ tr(Q,Y) +ytr(XLE,L")
c= 1=y .

It is noteworthy that F, in (64) is the linear quadratic
feedback gain matrix. Moreover, recall the optimal esti-
mate for the state vector delivered by the Kalman filter. It
can be concluded that the optimal control is achieved by
an optimal estimate of the optimal state feedback Fyx(k).

Now, we consider an (optimal) FTC scheme in the case
that the fault vector f(k) given in (58)—(59) is detected.
The dynamics of the observer-based residual generator
with respect to f is governed by

e(k+1)=(A-LC)e(k)+(E;—LFy) f(k), (65)

ro(k) = Ce(k) + Ff k). (66)

It is well-known that with the observer gain matrix

L=L, = (AYC" +E,F")(CYCT+F,FT)
Y = AYA"+ E/E} - L,(CYC" + F,F}) L,

we have an H, optimal observer [1]. Here, without loss
of generality, it is assumed that F fF} =1. This moti-
vates us to propose the following FTC scheme,
X(k+1) = A%(k) + Bu(k) + Lry(k)
{ u(k) = Fox(k) ’
- { Ly, fault-free
L,, faulty

(67)

This fault-tolerant controller is of a simple and fixed

configuration. In its core, it consists of a switching ob-
server whose observer gain matrix is switched between
the Kalman filter gain Ly and H, optimal observer gain
L,. And, the switching is triggered by the fault detection
logic.

Next, we would like to characterise the proposed detec-
tion and FTC system from the following system aspects,
which are helpful to gain deeper insight into optimal fault
detection and FTC.

(i) The observer (67) can serve as an estimator for the
fault vector f(k), once the fault is detected and the ob-
server is running with L = L,.

Note that

Fo := FL(CYC" + F,FY) ro(k) (68)

can be viewed as an estimate for the fault vector and the
observer (67) is re-written as
X(k+1) = Ax(k) + Bu(k) + Lyry(k) =
Ax(k) + Bu(k) + E ;. f (k) + L,r(k),
L. = AYC'(CYC"+F,F}) .

In [21,22], it is also called least squares (LS) estimate
of the unknown input f(k).
(i1) On the assumption

rank (G,;(z)) = m,
Gyf(z) = C(ZI_ A)il Ef + Ff,

_ 0
voe0.2m).rank| AT Ea

C F, =n+m,

the residual generator (65)—(66) connected with a post-
filter

V,= (CYCT +F ,F})’E
is indeed a so-called co-inner system [1], i.e.,

r(2):=V,ro(2) = V,N; ) f(2), (69)
Vo € [0,2n], V,N,(&") (V,Nf(e‘jg))T =1, (70)

Nyz)=F;+CzI—-A+L,C) ' (E;— L,Fy).
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Consequently, it holds that
Ir @, < 1f @Iy, lIr@l, = If @I, m=k;.

Hence, the residual signal r(k) delivers an optimal es-
timation of the energy level of the fault vector. It is worth
remarking that there exists the following relationship
between the LS estimate (68) and r(k):

|IF @, = Ir@llew = [Wir @], < lIr @I,
Wi = FT(CYCT+ FyF) " = 0 (WH) < 1,

which demonstrates again that f (k) is an estimate for
f(k) satisfying the output equation

y(k) = Cx(k)+ Du(k) + F s f (k)

with the least /,-norm.

(iii) It should be emphasised that, due to the existence
of uncertainties in the system, e.g., noises or parameter
variations, performing fault detection by means of the es-
timated fault, a very popular strategy as reported in the
literature, leads to (very) poor detection performance.
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This can be evidently recognised by comparing the fault
detection scheme with the test statistic and the threshold
given in (62) and the use of the estimate f (k) or r(k) for
building the evaluation (detection) function.

(iv) In order to assess the influence of f(k) on the cost
function J(i) (63) under the use of the fault-tolerant con-
troller (67), consider

| ¥ ') ][ 0 COu H O

Qu Q. || ut) |
Qx qu I
T T —
X[ I F ][ 0. o H F, ]x(k)—.
xT(k)CTC.x(k)

It holds that C.x(k) = C.x(k) + C.e(k),e(k) = x(k) — %(k),
whose frequency representation is given by
C.x(z) = C((zI - A= BF)"' LN, (x)+
(@l - A+ L,C) " (B - L F)) )f(2).

Remember that V,N +(z) 1is co-inner and hence
(V.R;(z)" is anti-stable, which yields

”Cz ((zI— A=BF))" LN/(2)+ (I - A+ L,C)™ (E; - LzFf))”z -
Hc ((zl —A-BF) 'L,V + (- A+LC)" (E, - L,F;) (VJVf(Z"))T)H2 =

|C.zI-A-BF,)"L,V;!

.

i.e., the H,-norm of the transfer function from f to C.x
is minimum. In this sense, the proposed fault-tolerant
controller minimises the influence of the detected fault on
the control performance.

3.3 Detection of multiplicative faults and
FTC schemes

3.3.1 Residual dynamics

Next, we consider the standard feedback control configu-

ration sketched in Fig. 1 with plant model G, feedback

controller K, and reference v. We assume that
G(2)=M"'N@) = NM'(2)

is corrupted either with the LCFU (35) or RCFU (36),

and when

for some given 5y > 0,”[ Ay Ay ]'L < Oy,

Ay
<
AM 6]7

or for some given 6; > 0, ”

LCFU or RCFU represents (tolerable) model uncertainty.
As the degradation becomes stronger,
Ay
oL

Ox < H[ -Ay Ay ]Hmor 07 <
the uncertainty is defined as the fault to be detected.

C.zI-A+L,C)" (E;— L2Ff)”2 ’

Remark Hereafter, the domain operator z or k£ may
be dropped out, when there is no risk of confusion.
Denoting all stabilisation controllers by
K@) =-UV'@=-V"'0U0),

[ vV U ]:[ XO_QNO Y0+QM0 ],

U| | Y,+MQ
VI | X%-NQ |’

leads to the uncertainty-free closed-loop dynamics ex-
pressed in the following two (equivalent) forms:

sF%

v o |
-N, M,

M, -U|[V b | Moy, -
N V{o]|"T| N -
My o[ My U'[T] [ MV ] _
o vi]l-nVv]|o]"|va "7
[(I) v+ _‘fj}l%v. (71)

In the above computations, the extended form of the
Bezout identity (5),
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M, -U Vv U | |1 o

Ny V -No, M, | |0 I |
is applied [21]. It is of interest to notice that relation (71)
can also be applied to generating a residual vector as

y

-| 'w (72)

In fact, based on the residual centred closed-loop model
(54)—(57), the above closed-loop residual generator can
be derived as well. In our subsequent work, both residual
vectors, r, and r., will be used for the detection purpose.

Under consideration of the LCFU (35), it holds that

u

ro=| Ay —Ay ][ ]:

y 1
v U Y%
[ Ay~ A ][ —No—-Ay  My+Ay ] [ 0 ]”'

Without loss of generality, it is assumed, in the above

el
_[ v ][ s Ay ](1+

It is worth noting that the relation between r. and ry,
-U
o= [ I ]ro (74)

can be immediately found by the residual centered closed-

N A
[M 0] I+ v U][A”; 0 [ R
o v [—No Mo ][ i:] 1 ~No
A
Since

VA, I +A)'V+VN, =
No(I=A T+A))V+A T +A) ™,
V=NIT+A)'V, (75)
we finally have

MK

Consequently, the dynamics of the residual generators

T+A)"7. (76)

e Tl
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handling, that the same observer gain matrix L is shared
by the residual generator and the LCF adopted in the con-
troller. By Bezout identity, it is straightforward that

14 v
_N()—AN M()"‘AM

1+

which further results in

ro=

| A Ay ](1+

—(I+[ ~Ay Ay ][ _‘ij ]

Similarly, it holds that

loop model (54)—(57), which is indeed independent of the
type of the uncertainty under consideration.

Next, we check the residual dynamics corresponding to
the LCFU (36). It turns out that

RIS

| M 0 I+A)™" 0 v
"Zlo -v || —ad+ayt 1 || =N, |V

A=| ¥ 0][Af]’ Au=| -, MO][AM].

Ay

are governed by

1
S [l (R Bl |
rtz[_é] ro (77)

Before we introduce the design of fault detection sys-
tems, we would like to call attention to the following facts:
(i) Comparing the residual dynamics (73) and (77)
demonstrates clearly that the responses to the LCFU and
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RCFU are in the dual form. For the simplicity, in the se-
quel, we only consider the RCFU case;

(i1) As far as the feedback control system is stable, the
stability of the observer-based fault detection system is
guaranteed. In addition, the control performance of the

v

closed-loop expressed by (I+[ Ay Ay ][
-1
D has influence on the dynam-

Ay

ics of the fault detection system;

(iii) In the closed-loop configuration with RCFU, the
corresponding “reference signal” for the RCF of the plant
in the context of (18) is (I +A,)™' ¥;

(iv) The residuals r, and r, can be viewed, from the in-
formation point of view, as being of the identical fault
ability. For this reason, in our subsequent work, only r; is

wa (4] V0 ]|
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applied for the detection and FTC purposes.
3.3.2 Design of the observer-based fault detection system

Concerning with the design of the observer-based fault
detection system, threshold setting and the observer-
based control system parameters should be determined.
We first address the threshold setting issue on the as-
sumptions:

(1) L,-norm of the residual signal r, is adopted for the
detection purpose;

(i1) the threshold is determined based on the definition
(”’P”Z)nvnz.

w1l

<87,5%0

Jin

= sup
R

It follows from (77) that

-1
_ e ~ AM ~ A~ AM _
||r0||2—H[ -N, MO][AN (1+[V U][ o ]) | =
-1
N . A PN A _
Ty = sup -N, M, ][ A (1+[ Vv U ][ A D 1911, .
T N N
”[ AM AN ] m<§1 o
Assume that
Ay vV U Ay A
<67, A = <
Aol 5 s U LA L= &
=
V. U || Au
sup ) [ —NO MO :||: AN ]H —Kcéj = b, (79)
H[ AM A ] <0
Vv U
S B (8°>
It is a known result [23,24] that as possible [1]. Considering that the threshold is an evalua-
. b tion of the maximal influence of the uncertainty on the re-
”AZ (I+A) ”oo < —5 (81)  sidual, the requirement on the robustness can be ex-
pressed as maximally reducing J, so far allowed. For
Thus, formulating the sensitivity handling, the minimum influ-
b B K0 _ ence of the fault on the residual is checked according to
o= ==l = =Pl (82) s
V1-b? 1= (x.07)

We would like to mention that the condition (78) is, ac-
cording to the small gain theorem, a sufficient condition
so that the closed-loop is stable.

We now briefly discuss about the detection system
design towards maximising the fault detectability in the
unified framework of control and detection. It is state of
the art in dealing with optimal fault detection that the de-
tection (and control) system is designed in such a way
that the residual is robust against uncertainties and simul-
taneously sensitivity to the faults to be detected as much

inf (”"_0”2) _ HA2(1+A.)_'” ’
H[ Ay Ay ]T ~orseo\ Pl _

where ”Az I+A)™" “7 denotes the (nonzero) minimum
singular value of A, (I+A))™", i.e.,

min o (A T+A)™ ().
Note that
i (A T+A) ™ (€7)) > T (M) i (T +A1) ' (€1)).

In summary, the design objective is
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Kcéj

V1= (.6,)? . (83)

Max O in (Ao(€)) T (1 + A1) ()

min

It is obvious that in (83) only the LCP of the controller,
(‘7, U ), is the design parameter. Moreover, reducing

” vV U ]'L leads to the decrease of «,,
<l o - |

oo
K(‘(S]

VI= (0,

Tin (T + A1) (€9)),
Tain (T4 A (@) = ol (T + A (),

and so as well as the increase of

for smaller ||[ VU HL implies larger oo (I+A;) (€)).

As a conclusion, minimising H[ vV U ]'L subject to

certain control performance requirements uniformly
solves our optimal detection problem. We would like to

emphasise that minimising ”[ vV U ]“ also increases

the closed-loop stability margin and, as will be demon-
strated in the next sub-section, improves the so-called
loop recovery performance. Thanks to this nice property
that unifies the tasks of (robust) controller design and op-
timal detection system design, we will not address the lat-
ter specifically and go directly over to FTC, which also
performs an online optimisation of the controller and so
leads to the improved fault detectability of the fault detec-
tion system. We would like to mention that an applica-
tion of the proposed detection scheme to a case study on
rolling mill processes as well as handling of fault isola-
tion issues in the unified framework have been respecti-
vely reported in [25,26].

||ro||2=H(I+[—AN AM][_;J D_l[‘AN AM][AA“V

This demands for a specific monitoring scheme dedica-
ted to monitoring b(K). On the assumptions that the refer-
ence signal v satisfies the persistently excitation condi-

ro(z) = PA(2)v(2), Pa = —(I+ [ -Ay

According to the analogue form of (81) [24], it holds

b(K)
Pullo € —— &5
1Pl < = (89)
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3.3.3 Stability margin monitoring and fault diagnosis

System stability is an essential requirement on any feed-
back controllers. In the sequel, a short analysis of stabil-
ity degradation caused by Ay, and Ay will be performed,
and based on it, a fault diagnosis scheme towards stabil-
ity margin monitoring will be introduced.

It is evident that (Ag,A;;) affects the system stability,
and, analogue to (78), the system is stable if

w2

N, V
For our purpose, we introduce the concept of fault-to-
lerant margin b(K) as a function of the control law K,

o[ s s | 2 2]

The fault-tolerant margin b(K) is an indicator that
characterises the performance degradation w.r.t. the sta-
bility caused by (Ay,Agz). To be specific, a higher fault-
tolerant margin is achieved by a smaller b(K), and if
b(K) is approaching to one, the system is close to the sta-
bility margin. Hence, a good fault-tolerant controller
should ensure b(K) < 1. It is worth noting that b(K) is
closely related to the known stability margin concept in
[23,27-29]. In fact, a lower b(K) leads to a higher value
of the loop stability margin. It is of remarkable practical
interest to monitor the change of b(K) online and to re-
lease an alarm timely as critical operations are ap-
proached. It is obvious that the fault detection scheme
proposed in the previous sub-section cannot meet this re-
quirement, since even for

a5

<1.

(84)

there exists no guarantee that

> J, = alarm.

2

tion, and the measurements u(k) and y(k) are avail-
able, the following monitoring scheme based on the estima-
tion of the lower bound of b(K) can work efficiently. Let

s VT s

2
BK) > IIPAIIOO2 _

L +[[P4lls,

Thus, a lower bound of b(K) can be estimated as long
as || Pyl is estimated by using the (online) available pro-
cess data. To this end, the well-established algorithm of
H., norm estimation by using measurement data can be
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applied [11]. For details, the reader is referred to [24].

In comparison with the existing fault detection me-
thods, the advantages of the proposed approach mainly
consists in data-driven and real-time detecting/estimating
the fault-tolerant margin and indicating how far the sta-
bility margin is approached.

3.3.4 FTC schemes

Recall that F, L, as high-priority parameters, and Q(z), as
a low-priority parameter, are available in the residual
centred FTC configuration for different functionalities.
Below, we focus on designing and tuning the low-prior-
ity parameter Q. To this end, we briefly introduce two
schemes: (i) a passive FTC (P-FTC) scheme and (ii) an
active FTC scheme (A-FTC).

The basic idea behind the P-FTC scheme is to reduce
b(K) based on the relation

_r _a. R M, —yo—MOQ
b(K) = [ Ax Ay ][ N Z-N.O }”
by solving
. . M, -Y,-M,Q
Q" =arg inf [ No X-Ng@ || (86)

when no additional constraint is to be satisfied. This is a
model matching problem (MMP) and can be solved off-
line (design) by using the existing algorithms [30].

The A-FTC scheme consists of numerous steps and al-
gorithms. If a fault alarm is released by the detection logic,
Or, is first plugged in to recover the stability margin by
online reducing

[% &%)
Ny X-NQ ||

using the existing optimisation algorithms and without re-
configuring the operational controller [24]. Because it is
not always in the situation that the degradation can be re-
covered by plugging in Q, it can become necessary to re-
configure the operational controller to maintain the sys-
tem performance. Considering the fault-tolerant issue in
this light, the following performance degradation recover-
ing (PDR) strategy is proposed: for a given threshold Jy,,
if b(K) =: J(K) > Jy, the controller Q(z) = Q*(z) is first
implemented to accommodate the performance degrada-
tion. This action is labeled as PDR phase I. If for
. :[ - M0’ }
Xo-No@Q" |

it holds further J(K*) > J, the controller is re-construc-
ted aiming at recovering the stability performance. This
scheme is rated as PDR phase II.

In Fig. 6, the overall PDR strategy is illustrated schema-

tically. For the detailed algorithms, we refer the reader to
[24].

Yes

PDR phase I

u l y
) No
Rccursive

SKR

Yes

PDR phase I1

Fig. 6 Performance degradation recovering strategy
3.4 LPD monitoring and recovery

Loop transfer recovery (LTR) is a classic topic of control
theory [11,31]. Roughly speaking, LTR deals with mini-
mising the control performance loss caused by the use of
an output feedback instead of a full state feedback. In this
regard, LTR can be viewed as performance degradation
recovery. This concept is extended to the assessment and
monitoring of system performance degradation in a more
general context.

3.4.1 LPD assessment and model

First, an ideal (reference) system performance model is
defined. Consider (2)—(3) and write it as

Xigeat (K + 1) = AXigea (k) + Btigeq (K), (87)

Yideal (k) = CXigea (k) + Dtige (k). (83)

Decoupled from any uncertainty, X, (k) and yigea(k)
denote the ideal state and output variables, respectively.
Moreover,

Uigeal(K) := FXigeq (k) +v(k) (89)

is defined. In order to have a comparable basis for assess-
ing the effect of use of an observer, it is assumed that
either the reference signal v(k) given in (89) is generated
by .

v(k) = (Xo(2) - Q@No(2)) vo(2)

or the output controller is realised in the observer-based
form and the control signal is parameterised by

u(z) = Fx(2) - Q(ry(2) +v(2).

Remember that Fx(z)—Q(2)ro(z) is an estimate for
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Fxigea(2). Thus,
€.(2) = Uigea(2) —u(2) =
Fe.(2) + Q(2)ro(2), €:(2) = Xigea(2) — X(2),
specifies the (performance) loss in # due to the use of the
estimate of x. Similarly, let the difference
€,(2) = Yideat(2) = ¥(2) = Yideal(2) = F(2) —10(2) =
(C+DF)e.(2)+ DQ(2)r(z) — ro(2)
indicate the loss in the output. Using the model (54)—(57)
yields

e.(2) = (- Ap)" (BQ()-L)r(z),Ap = A+ BF,
€.(2) = F(zI - Ap)" (BQ(z) - L) r(z) + Q(2)r(2),
e,(2)=(C+DF)(zl- Ap)" (BO(z)- L)r()+
DQ(2)r(z) - r(2),

which can be further written as

| e@ |_[ Yo@+Mo(2QG)
=] 06 |=[ iMoo [ o0

System (90) is called LPD model (LPDM) with r, and
erpp as input and output, respectively. Correspondingly,
e pp can be interpreted as the difference between the SIR
of the ideal state feedback control case and the SIR of the
real control system. As a result, tuning the controller di-
rectly reduces the (control) LPD.

3.4.2 Assessment and monitoring of control perform-
ance degradation

Now, epp and LPDM (90) are adopted for the assess-
ment of LPD. Suppose that the ideal system and F are
given. As a reference system

x(k+1) = Ax(k) + Bu(k) + w(k), 1)

y(k) = Cx(k) + Du(k) + (k) 92)

is considered, where w(k) and n(k) are process and mea-
surement noise vectors as described in (58)—(59). Corres-
ponding to it, the (steady) Kalman filter (60) is assumed
to be applied for generating the residual and estimating
the state vector used in

u(k) = F2(k) +v(k). (93)
The state space model of LPDM (90) is
e.(k+1)=(A+BF)e.(k)— Lgro(k), 94)

{ e.(k) = Fe,(k)

e,(k)=(C+DF)e.(k)—rok) ° ©3)

We now introduce the following index as a reference
for loop performance degradation assessment:

Jien(i) = & )7 (e} (0@, e,(k) + e} () Qe (),

0,>0,0,>0,0<y<1. (96)
Straightforward computations lead to
tr(QX, +X,

Jiep (D) = (Qlfxy)’ 97

Q=(C+DF)'Q,(C+DF)+F'Q,F,
X, =(A+BF)X, (A+BF)" + L%, L}.

Suppose that the dynamics of the real control system is
described by the residual centred model (54)—(57) corrup-
ted with uncertainties, including possible faults. Using the
system models and measurement data, ry(k), 2(k), Xigea(k),
k=1i,i+1,---, can be computed online and used to con-
struct

XY, = LS k) —x(k k) — &(k))"
“ =% kz (Figea (6) = £K)) (Eigea (k) = )",
N+i

.1
£=5 Zro(k)rg(k).

k=i

The (online) performance degradation can then be es-
timated as

tr (Qﬁex + )i,)
1-y
Definition 1 Given Jippz(i) and Jipp(i) defined in
(97) and (98) respectively, the value

Jipp (i) = (98)

. Jrpp (D)
Prpp(i) =1 Tiro(D) (99)
is called the degree of LPD (DLPD) [21].

DLPD measures the difference between the ideal sys-
tem input and output values and the real operating ones.
When DLPD is larger than a given threshold,
Pipp(i) > Jy1pp, an alarm is released that indicates unac-
ceptable loop performance degradation.

343 LPD recovery

In the light of the LPDM (90), the LPD recovering issues
can be dealt with in various ways. The first and also the
easier way is to reduce the influence of the uncertainties
(including faults), expressed in terms of the residual sig-
nal ry, on e;pp that indicates the loop performance de-
gradation. It follows from (90) that this can be achieved
by minimising the norm of the transfer function matrix

Y(2) + My(2)Q(2)
—Xo(2) + No(2)Q(2)

which is also the SIR of the controller. At this point, we
call the reader’s attention to the study in Section 3.3, in
which we have revealed that reducing the #, norm of
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the controller SIR (as given above) (i) improves the sys-
tem stability performance and (ii) enhances the fault de-
tectability. In this context, we can now claim that redu-
cing the H,, norm of the controller SIR unifiedly results
in the increase of the loop stability margin, the increase of
fault detectability and the enhancement of the ability of
recovering LPD.

This is a fundamental result achieved in the unified
framework of control and detection. An immediate ap-
plication of this result is that the P-FTC and A-FTC
schemes proposed in Section 3.3 can be fully adopted for
the purpose of recovering performance degradation.

Recall that for Q = 0, the LPDM (90) becomes

e.(k+1)=(A+BF)e.(k)—Lry(k), (100)

(101)

eLpD(k>=[ . ex(k)—[ ; ]m(/«).

It is evident that minimisation of the cost function

Jipp(i) = Z’ykiieEpD(k)QLDPeLPD(kL
k=i
Owpr 20, O0<y<1,

with respect to F, L, which leads to minimisation of the
performance degradation, is in fact an HH, optimisation
problem. In [21], a data-driven approach has been pro-
posed to solve such an optimisation problem.

4. Future perspectives

In the previous section, we have illustrated and demon-
strated that the proposed unified framework is helpful to
gain deeper insight into intimate relations between con-
trol loop performance and fault detection, and can be effi-
ciently applied for (i) detecting multiplicative faults in
feedback control loops, (ii) detecting system perform-
ance degradation, and (iii) recovering the LPD. Some of
the developed methods and algorithms have been suc-
cessfully tested on real industrial and laboratory automa-
tic control systems [19,32—35]. These achieved results
have demonstrated that the proposed unified framework
can be applied in major industrial sectors like automotive
and process industries or in mechatronic and robotic sys-
tems and vision-based control systems.

In conclusion, we would like to introduce the follow-
ing topics for the future research perspectives.

(1) Extensions of the unified framework to further
classes of feedback control systems. The unified frame-
work of control and detection introduced in this work has
been established on the basis of Youla parameterisation
for LTI systems. Recently, results of extending this work
to singular and (general) nonlinear control systems have
been reported [36,37]. It is expected that a further exten-
sion to time-varying systems would considerably expand
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the application domains of this framework. As demon-
strated in some recent investigations, time-varying sys-
tem models and the associated FDI methods can be, for
instance, applied to dealing with FDI in switched sys-
tems and linear parameter varying (LPV) control systems
[21] or event-triggered systems [38]. On the basis of such
an extension, it is possible to study, for instance, fault and
cyber-attack detection and diagnosis as well as perform-
ance degradation recovering issues in the unified frame-
work for networked control systems and industrial cyber-
physical systems. Our current works demonstrate the first
promising results.

(i1) Data-driven realisation and implementation of the
unified framework. In the era of industry 4.0 and big data,
data-driven handling receives considerably increasing at-
tention. Although our framework is based on system
models and model-based controller and observer design,
it is possible and realistic to implement this framework in
the data-driven fashion. Such efforts are of significant
practical interests. Remember that the theoretical basis of
the framework is the LCF and RCF of dynamic systems
(including both plant and controller under consideration).
In some early works [20,39], the data-driven forms of
LCF and RCF have been proposed and, based on them,
applied for the FDI and FTC purposes [20,21,40], also for
nonlinear systems [41]. This inspires and motivates data-
driven realisation and implementation of the unified
framework. In fact, a part of this framework has been
adopted in the works reported in [21,40]. A further aspect
of the data-driven realisation of the unified framework is
that it enables an online optimisation of the control and
(observer-based) detection system under consideration.
This also establishes the basis for combining controller
optimisation and machine learning methods towards on-
line system optimisation by (data-driven) learning.

(iii) The unified framework based monitoring and re-
covering of system performance degradation. In the pre-
vious section, we have demonstrated that the proposed
unified framework builds the fundament for monitoring
and recovering of certain specified control system per-
formance like stability margin or the LPD. FDI and FTC
in the context of control performance degradation moni-
toring and recovering are attracting intensive attention in
research and practical applications [32—35]. Some of the
reported results have been inspired and supported by the
algorithms and methods closely associated with the con-
trol and detection framework. We would like to call the
reader’s attention to the residual centered model (54)—
(57) that provides us with an alternative possibility to
model and deal with uncertainties including faults and
hence allows us to assess the system performance and
performance degradation efficiently. In fact, the applica-
tion of the residual centred model (54)—(57) to LPD moni-
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toring presented in the previous section demonstrates the
potential of this effort. A successful application has been
reported in [21].

A further application of the proposed unified frame-
work is to approach predictive performance monitoring of
feedback control systems, as reported in [21,33]. Predic-
tion of control performance degradation is a basis for a
reliable online control and control system optimisation as
well as learning-based performance degradation recover-
ing [21]. In this context, two major tasks are to be ad-
dressed, predictive detection of performance degradation
and performance degradation prediction. This study could
be, moreover, extended to predictive economic perform-
ance monitoring, in which not only the control perform-
ance but also some economic performance indicators
could be included. This work would be of remarkable
practical interests.

(iv) Multi-layer digital twin based predictive mainten-
ance and product life-cycle management. In the recent
decade, digital twin becomes a fashionable concept [42]
and a powerful tool in many industrial sectors towards
predictive maintenance and optimal production life-cycle
management. In our previous work, a residual centred

model has been introduced. It delivers sufficient informa-
tion for feedback control, diagnosis, and performance
monitoring. Based on the residual centred model, control-
lers, diagnostic and performance monitoring systems can
be modularly built. For industrial applications, such a
model should be of the ability of being adaptive to varia-
tions in system operating conditions and to uncertainties.
In this context, we propose constructing a multi-layer di-
gital twin for the life-cycle of an industrial automatic con-
trol system. The core of such a digital twin is the base
layer consisting of the residual centred model that serves
both as the process model and the system observer. In the
second layer, control and diagnosis modules are integ-
rated. In a further layer, the performance monitoring, pre-
diction and recovery units are implemented. The learning
and system optimisation algorithms are realised in the
highest layer, which allow online updating of the residual
centred model and control, diagnosis and performance
prediction, monitoring and recovering modules to match
varying operating conditions, variations due to uncertain-
ties and even system component ageing. In Fig. 7, the
structure of such a multi-layer digital twin is schemati-
cally sketched.

Intra- & Internet ‘
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! [ Machine learning and system optimisation algorithms ‘

@ AN

| Performance degradation recovery |

Diagnosis

<:/ | Performance degradation prediction |

Controller

| Performance degradation detection |
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U U

Residual centered model: state observer and observer-based residual generator
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‘ Plant with sensors and actuators

Fig. 7 Structure of a multi-layer digital twin
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