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Abstract: This  paper  proposes reliability  and maintenance mo-
dels for systems suffering random shocks arriving according to a
non-homogeneous  Poisson  process.  The  system  degradation
process  include two stages:  from the  installation  of  a  new sys-
tem to an initial  point  of  a defect (normal stage),  and then from
that  point  to  failure  (defective  stage),  following  the  delay  time
concept. By employing the virtual age method, the impact of ex-
ternal  shocks  on  the  system degradation  process  is  character-
ized by  random virtual  age increment  in  the  two stages,  result-
ing  in  the  corresponding  two-stage  virtual  age  process.  When
operating in the defective state, the system becomes more sus-
ceptible  to  fatigue  and  suffers  from  a  greater  aging  rate.  Re-
placement is carried out either on failure or on the detection of a
defective state at periodic or opportunistic inspections. This pa-
per evaluates system reliability performance and investigates the
optimal  opportunistic  maintenance  policy.  A  case  study  on  a
cooling system is given to verify the obtained results.

Keywords: reliability  evaluation,  delay-time  model,  virtual  age
process, opportunistic maintenance.
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1. Introduction
Common signals  of  defects  can  be  observed  in  most  in-
dustrial systems. In such cases, three system states are in-
volved  including  normal,  defective  and  failure  states.
Since Christer firstly proposed the delay time concept [1]
to  model  such  two-stage  failure  processes,  numerous
models  have  been  established  to  evaluate  system  failure
risks  and  the  optimal  maintenance  policy  over  the  past
several  decades  [2−8].  The  durations  in  the  normal  and
defective  stages  are  assumed to  be  independent  in  exist-
ing  studies.  However  a  variety  of  industrial  systems  are
required  to  perform  tasks  under  random  environment.
Considering a degrading system in a fixed baseline envi-
ronment, if the same system operates in a more severe en-

vironment  (regime),  the  system lifetime  will  be  stochas-
tically  smaller  than  that  under  the  baseline  environment.
To  establish  a  hazard  rate  correspondence  between  the
systems  in  two  regimes,  the  baseline  environment  is  re-
garded as a reference one [9].

Considering the effect of shocks on system failure be-
havior,  the  random  durations  of  the  two  stages  are  de-
pendent  as  a  result  of  the  same  shock  process  [10,11].
Therefore, it is of both theoretical and practical interest to
propose  a  dependent  two-stage  failure  process  by  consi-
dering the external shock process shared by the two stages.
The methods employed in existing literature to character-
ize the effect of external shocks on the system failure pro-
cess are degradation-based and shot-noise process-based.

For  systems  with  measurable  deterioration  states,  de-
gradation-based  reliability  models  are  studied  the  most
with  a  variety  of  real-world  applications  [12−16].  In  the
case  of  system  degradation,  paths  were  not  evident,  the
dependence  between  system  internal  degradation  and
eternal  shocks was firstly studied via the shot-noise pro-
cess  in  [17],  where  each  shock  resulted  in  random  in-
crease  in  the  failure  rate.  Since  then,  numerous  models
have been established on the basis of the process to study
the  system  reliability  performance  and  maintenance  op-
timization problems [18−25].

This  paper  proposes  a  reliability  evaluation  method
utilizing  the  virtual  age  method  firstly  proposed  by
Kijima  [26]  to  model  imperfect  repair  whose  effect  can
be expressed by a reduction of the system virtual age. The
virtual  age  method  has  spurred  tremendous  increase  in
the  literature  of  imperfect  maintenance  [27−30].  Finkel-
stein [9] proposed two different approaches to define the
virtual age of degrading systems. The first one was based
on the fact that systems aged faster in more severe envi-
ronment  and the  system virtual  age  was  greater  than the
elapsed  time.  The  latter  one  was  based  on  an  observed
level  of  individual  ageing.  Motivated  by  the  first  ap-
proach,  this  paper  characterizes  the  effect  of  external
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shocks  on  the  two-stage  failure  behavior  by  virtual  age
increment.  To be specific,  in  a  baseline  environment  the
virtual age of a system is the elapsed time since it  is put
into operation. Upon the arrival of an external shock, the
system virtual age has a random jump.

As a consequence of the same external shock process,
the  durations  of  the  two  stages  are  dependent.  Further-
more, in our new model, we assume that the system suf-
fers a greater degradation rate in the defective stage [31,
32]. As far as we know, the virtual age method has been
mainly  applied  in  the  maintenance  modelling  and  has
been seldom studied in the evaluation of system reliabil-
ity.  We  make  contributions  by  considering  a  two-stage
virtual age process with accelerating ageing effect in the
defective stage. In this paper, closed-form reliability for-
mulas considering the damage caused by random shocks
are derived by using the two-stage virtual age process.

Designing  preventive  maintenance  policies  is  of  cru-
cial  importance to mitigate the system failure risk,  parti-
cularly  from  the  perspective  of  balancing  the  tradeoff
between  the  cost  of  maintenance  and  system  failures
[33,34].  During  system  operation,  preventive  mainten-
ance  can  be  performed  opportunistically  via  unexpected
shutdown  [35−40].  Although  opportunistic  maintenance
actions  of  industrial  systems  are  cheaper  than  periodic
maintenance,  its  execution time is  largely determined by
the  arrival  time  of  unexpected  shutdown.  This  may give
rise  to  the  problem  that  opportunistic  maintenance  may
not  be  able  to  remove  defects  timely,  or  its  execution  is
too frequent to incur excessive maintenance cost. Hence,
scheduling  opportunistic  or  periodic  maintenance  alone
may  be  sub-optimal  from  the  perspective  of  reducing
maintenance  costs.  For  this  reason,  this  article  incorpo-
rates both periodic and opportunistic maintenance to deal
with the two-stage failure process,  which aims to realize
the  better  allocation  of  maintenance  resources.  The  op-
timal  opportunistic  maintenance  policy  is  studied  based
on the dependent two-stage virtual age process. We make
the following scientific contributions:

(i)  Establishing  a  two-stage  degradation  model  in  a
shock environment;

(ii)  Utilizing  the  two-stage  virtual  age  process  to  mo-
del the influence of shocks on system degradation;

(iii)  Deriving  the  system  reliability  function  by  using
the two-stage virtual age process;

(iv)  Studying  the  optimal  opportunistic  maintenance
policy.

The rest of the paper is organized as follows. Section 2
presents the two-stage virtual age process and the oppor-
tunistic maintenance policy. Section 3 derives system re-

liability formulas considering virtual age increments. Sec-
tion 4 evaluates the cost performance and investigates the
optimal  inspection  interval.  Case  study  to  illustrate  the
theoretical  results  is  given in  Section 5.  Conclusions  are
presented in Section 6. 

2. Model formulation
 

2.1    Two-stage virtual age process

{N(t), t ⩾ 0}
µ(t)

X Y
RX(t) RY(t)

V(t)

The considered system is  working in shock environment
where shocks arrive stochastically according to a non-ho-
mogenous  Poisson  process  (NHPP)  whose
intensity function is . The system experiences the nor-
mal  and  defective  stages.  Let  and   with  reliability
functions  and   be  the  duration  of  the  normal
and  defective  stages  respectively.  In  a  baseline  environ-
ment, the system virtual age is the elapsed time since it is
put  into  operation  and  the  corresponding  ageing  rate
equals  1.  In  the  presence  of  random  shocks,  the  system
virtual age  during the normal state is given as

V(t) = t+
N(0,t)∑

i=1

Zi (1)

Zi

N(0, t)
(0, t)

where  is the virtual age increment caused by the ith ex-
ternal  shock  and  denotes  the  number  of  exter-
nal impacts in .

X̃

1+β β

X̃

Denote the defect arrival time by  in the random en-
vironment. Upon the arrival of a defective state, the aging
rate  increases  from 1 to ,  where  denotes  the con-
stant ageing rate increment. Note that the normal and de-
fective stages suffer the same external shock process, the
random virtual age in the defective stage is related to the
defect arrival time  and is given as

V(t) = t+
N(0,t)∑
i=1

Zi+

N(X̃,t)∑
i=1

β(t−S i) (2)

S i(i = 1,2, · · · )
N(X̃, t)

(X̃, t)

where  is the arrival time of the ith shock in
the defective state and  is the number of shocks in

. Combining the two cases in (1) and (2), the system
virtual age can be given as

V(t) =


t+

N(0,t)∑
i=1

Zi, t < X̃

t+
N(0,t)∑
i=1

Zi+

N(X̃,t)∑
i=1

β(t−S i), X̃ ⩽ t < X̃+ Ỹ

. (3)

 

2.2    Maintenance strategy

To detect the defect timely, periodic inspections are typi-
cal  maintenance  actions.  However,  periodic  inspections
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can only be performed when the system is shut down and
occupies  the  production  time,  which  may  cause  high
downtime  cost.  On  the  other  hand,  unscheduled  shut-
down  provides  additional  opportunities  for  maintenance
such  as  inspections  and  replacements.  A  combination  of
periodic and opportunistic inspections helps to reduce the
maintenance cost significantly.

T

{Λ(t), t >
0} λ

In  this  paper,  inspections  provided  for  the  system  are
block-based,  i.e.,  periodic  inspection  is  equally  spaced
with interval  according to the calendar  time.  As assu-
med  in  most  literature,  unexpected  shutdown arrives  ac-
cording to a homogenous Poisson process (HPP) 

 with intensity . The system is replaced upon a failure
or  the  detection  of  the  defective  state.  System  renewal
may occur at a failure and inspection. Three possible re-
newal cases are illustrated in Fig. 1.
  

iT

(a) Renewal due to failure

(b) Renewal due to periodic inspection

(c) Renewal due to opportunistic inspection

Defect detection

Defect detection

iT

iT

: Periodic inspection; :Opportunistic inspection;

:Defect initialization.

Failure occurrence 

CR

PR

PR

(i+1) T

(i+1) T

(i+1) T

Fig. 1    Three renewal cases of the system
 

From Fig. 1 (a), we can see that the system fails before
any opportunistic  inspection  and is  correctively  replaced
(CR).

From Fig.  1  (b),  we can see  that  the  defective  state  is
identified at periodic inspection and a preventive replace-
ment (PR) is performed.

From Fig.  1  (c),  we can  see  that  the  defective  state  is
detected via an opportunistic inspection and a PR is car-
ried out. 

3. System reliability analysis
Incorporating the periodic inspection complicates the sys-
tem reliability  analysis  since  the  system can  be  prevent-
ively  replaced  at  inspections.  This  section  firstly  studies

fX(x)
X Rs(t)

the system reliability function without considering the ef-
fect  of  maintenance  actions.  Let  be  the  density
function of .  Then  can be obtained by condition-
ing on the defect arrival time as

Rs(t) = P(X̃+ Ỹ > t) =

RX̃(t)+
w t

0
P(Ỹ > t− x|X = x) fX̃(x)dx =

RX̃(t)+
w t

0
RỸ(t, x) fX̃(x)dx. (4)

X̃
According  to  the  virtual  age  process  in  the  normal

stage  defined  in  (3),  the  reliability  function  of  can  be
derived as

RX̃(t) = P

X > t+
N(0,t)∑

i=1

Zi

 =
∞∑

n=0

P

X > t+
N(0,t)∑

i=1

Zi|N(0, t) = n

P (N(0, t) = n) =

P (X > t) P (N(0, t) = 0)+

∞∑
n=1

P

X > t+
n∑

i=1

Zi

P (N(0, t) = n). (5)

(x, t) N(x, x+ t)w t

x
µ(x)dx

N(0, t)

The number of external impacts in , , fol-
lows Poisson distribution with parameter ,  then
the probability mass function of  can be given as

P(N(0, t) = n) =

(w t

0
µ(x)dx

)n
exp
(
−

w t

0
µ(x)dx

)
n!

. (6)

f <n>(z) Z
RX̃(t)

Denote  as  the n -fold  convolution  of .  Utiliz-
ing (6), then  is given as

RX̃(t) = RX(t)exp
(
−

w t

0
µ(x)dx

)
+

∞∑
n=1

w ∞
0

RX(t+ z) f (n)
Z (z)dz

(w t

0
µ(x)dx

)n
exp
(
−

w t

0
µ(x)dx

)
n!

.

(7)

RỸ(t, x) RỸ(t, x)Then we derive  in (4).  can be obtained
by conditioning on the number of arrived shocks as

RỸ(t, x) =
∞∑

n=0

P

Y > t− x+
N(x,t)∑
i=1

Zi+β(t−S i),N(x, t) = n|X = x

.
(8)

Equation (8) can be further derived as
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P

Y > t− x+
N(x,t)∑
i=1

Zi+β(t−S i),N(x, t) = n|X = x

 =
w t

x
· · ·

w s2

x
P

Y > t− x+
N(x,t)∑
i=1

Zi+β(t−S i)|X = x,N(x, t) = n,S 1 = s1, · · · ,S n = sn

︸                                                                                      ︷︷                                                                                      ︸
P1

·

f (s1, · · · , sn|N(x, t) = n)︸                       ︷︷                       ︸
P2

P(N(x, t) = n)︸           ︷︷           ︸
P3

ds1ds2 · · ·dsn. (9)

t− x
The first part in (9) denotes the probability that the dur-

ation of the defective stage is greater than  given that
n (x, t) shocks arrive in . By (2), we have
 

P

Y > t− x+
N(x,t)∑
i=1

Zi+β(t−S i)|X = x,N(x, t) = n,S 1 = s1, · · · ,S n = sn

 =
w ∞

0
RY

t− x+
n∑

i=1

β(t− si)+ z

 f (n)
Z (z)dz. (10)

n (x, t)

µ(t)

The second part denotes the joint probability density of
 shock  arrival  times  given  that  they  occur  in .  As

the  intensity  function  of  the  arrival  process  of  shocks  is
, then the joint probability density function in (9) can

be given as

f (s1, s2, · · · , sn|N(x, t) = n) =

n!
n∏

i=1

µ(si)(w t

x
µ(x)dx

)n . (11)

N(x, t)w t

x
µ(x)dx

Note  that  follows  Poisson  distribution  with
parameter , then the third term in (9) can be gi-

ven as

P(N(x, t) = n) =

(w t

x
η(x)dx

)n
exp
(
−

w t

x
µ(x)dx

)
n!

. (12)

By (10)−(12), the joint distribution in (9) is given as

P

Y > t− x+
N(x,t)∑
i=1

Zi+β(t−S i),N(x, t) = n|X = x

 =
w t

x
· · ·

w s2

x

w ∞
0

exp
(
−

w t

x
µ(x)dx

)
RY

t− x+
n∑

i=1

β(t− si)+ z

 f (n)
Z (z)dz

n∏
i=1

µ(si)ds1ds2 · · ·dsn. (13)

If the duration in the defective state in a baseline envi-
ronment  follows  exponential  distribution  with  a  failure

ηrate ,  then  by  substituting  (11)−(13)  into  (10),  we  can
obtain that

P

Y > t− x+
N(x,t)∑
i=1

Zi+β(t−S i),N(x, t) = n|X = x

 =
w t

x
· · ·

w s2

x

w ∞
0

exp
(
−

w t

x
µ(x)dx

)
exp

−ηt− x+
n∑

i=1

β(t− si)+ z

 f (n)
Z (z)dz

n∏
i=1

µ(si)ds1ds2 · · ·dsn =

w t

x
· · ·

w s2

x

w ∞
0

exp
(
−

w t

x
µ(x)dx−η(t− x)

)
exp

−η n∑
i=1

β(t− si)+ z

 f (n)
Z (z)dz

n∏
i=1

µ(si)ds1ds2 · · ·dsn =

w t

x
· · ·

w s2

x

w ∞
0

exp
(
−

w t

x
µ(x)dx−η(t− x)

)
exp(−ηz) f (n)

Z (z)dz
n∏

i=1

µ(si)exp(−η (β(t− si)))ds1ds2 · · ·dsn. (14)

By the property of integral, (14) can be further simplified as

714 Journal of Systems Engineering and Electronics Vol. 32, No. 3, June 2021



P

Y > t− x+
N(x,t)∑
i=1

Zi+β(t−S i),N(x, t) = n|X = x

 = exp
(
−

w t

x
µ(x)dx−η(t− x)

)
·

w t

x
· · ·

w t

x

w ∞
0

exp(−z) f (n)
Z (z)dzIs1<s2<···<sn

n∏
i=1

µ(si)exp(−η (β(t− si)))ds1ds2 · · ·dsn] =

exp
(
−

w t

x
µ(x)dx−η(t− x)

)
·

w ∞
0

exp(−ηz) f (n)
Z (z)dz

(w t

x
µ(s)exp(−η (β(t− s)))ds

)n
n!

=

exp
(
−

w t

x
µ(x)dx−η(t− x)

)
·

(w t

x

w ∞
0
µ(s)exp(−η (β(t− s)))exp(−ηz) fZ(z)dzds

)n
n!

=

exp
(
−

w t

x
µ(x)dx−η(t− x)

)
·

(w t

x
µ(s)exp(−η (β(t− s))) M(η)ds

)n
n!

.

n RỸ(t, x)Summing all possible values of ,  can be given as

RỸ(t, x) =
∞∑

n=0

P

Y > t− x+
N(x,t)∑
i=1

Zi+β(t−S i),N(x, t) = n|X = x

 = exp
(
−

w t

x
µ(x)dx−η(t− x)

)
·

∞∑
n=0

(w t

x
µ(s)exp(−η (β(t− s))) M(η)ds

)n
n!

= exp
(
−

w t

x
µ(x)dx−η(t− x)+

w t

x
µ(s)exp(−η (β(t− s))) M(η)ds

)
. (15)

Rs(t) Rl
s(t) Ru

s(t)
(Zi =∞, β =∞) (Zi =

0, β = 0)

Remark　 Since  a  larger  value  of  virtual  age  incre-
ment  corresponds  to  a  lower  reliability  performance,  the
upper and lower bounds of ,  and , can be
respectively obtained by setting  and 

, as shown below:
Ru

s(t)=RX(t)+
w t

0
RY(t−x) fX(t)dt

Rl
s(t)=RX(t)exp

(
−
w t

0
µ(x)dx

)
+
w t

0
RY(t−x+βt) fX(x)dx

.

(16)
 

4. Optimal inspection policy
This  section  establishes  the  cost  model  under  the  pro-

posed  maintenance  policy.  Different  renewal  scenarios
are analyzed and the cost performance is evaluated. 

4.1    Probabilities of the three renewal scenarios

Considering  the  proposed  maintenance  policy,  the  sys-
tem may  be  replaced  upon  a  failure  and  inspection  both
periodically  and  opportunistically.  The  occurrence  prob-
abilities of these three renewal cases are given below.
Case 1　The system is renewed correctively.
The system fails  and no production waits  occur in the

defective state (see Fig. 1 (a)). The probability of such a
renewal can be given as
 

Pa(i,T ) = P(iT < X,X+Y < (i+1)T,Λ(X,X+Y) = 0) =
w (i+1)T

iT
P(Y < (i+1)T − x,Λ(x, x+Y) = 0|X = x) fX(x)dx =

w (i+1)T

iT

w (i+1)T

x
P(Λ(x, x+ y) = 0|X = x)dFY(y, x) fX(x)dx =

w (i+1)T

iT

w (i+1)T

x
exp(−λy)dFY(y, x) fX(x)dx.

(17)

FY(y, x)Here  is obtained from (15) and given as

FY(y, x) = P(Y ⩽ y− x|X = x) = 1−RY(y, x). (18)

iT +u (0 < u < T )
Based  on  (17),  the  probability  density  of  a  failure  re-

newal at time  is calculated as

fa(i,T,u)=
w iT+u

iT
exp(−λ(iT+u−x)) fY(iT+u+x, x) fX(x)dx.

(19)

Case 2　The system is renewed by a periodic inspec-
tion.

The  defect  is  inspected  by  a  periodic  inspection  and
then removed by PR (see Fig. 1 (b)). The probability can
be given as

Pb(i,T ) =
P(iT < X < (i+1)T,X+Y > (i+1)T,Λ(X, (i+1)T ) = 0) =

QIU Qingan et al.: Reliability modelling based on dependent two-stage virtual age processes 715



w (i+1)T

iT
P(Y > (i+1)T−x,Λ(x, (i+1)T ) = 0|X = x) fX(x)dx =w (i+1)T

iT

w (i+1)T

x
P(Λ(x, (i+1)T ) = 0|X = x)dFY(y, x) fX(x)dx =w (i+1)T

iT

w ∞
(i+1)T

exp(−λ((i+1)T−x))dFY(y, x) fX(x)dx.

(20)

Case 3　The system is renewed opportunistically.
In  this  scenario,  the  defective  state  is  found  and  re-

moved  by  a  preventive  replacement  at  an  opportunistic
inspection (see Fig. 1 (c)).

NI

NP
I NO

I E (NI)

The number of inspections in a renewal cycle  is the
sum  of  periodic  and  opportunistic  inspections  respect-
ively denoted by  and .  can be given as

E (NI) = E
(
NP

I

)
+E
(
NO

I

)
=

∞∑
i=0

i (Pa(i,T )+Pb(i,T ))+ (i+1)Pc(i,T )+E
(
NO

I

)
. (21)

E
(
NO

I

)The expectation of the number of opportunistic inspec-
tions  in  a  renewal  cycle  is  derived  by  condition-
ing on the three renewal scenarios, as shown below:

E(NO
I ) =

w (i+1)T

iT

w (i+1)T

x
E(Λ(0, x+ y)|Λ(x, x+ y) = 0)exp(−λy)dFY(y, x) fX(x)dx︸                                                                                     ︷︷                                                                                     ︸

a

+

w (i+1)T

iT

w ∞
(i+1)T

E(Λ(0, x+ iT )|Λ(x, iT ) = 0)exp(−λy)dFY(y, x) fX(x)dx︸                                                                                   ︷︷                                                                                   ︸
b

+

w (i+1)T

iT

w (i+1)T

x
E(Λ(0, s)|Λ(x, s) = 1)RY(s, x)λexp(−λs) fX(x)dxds︸                                                                              ︷︷                                                                              ︸

c

+

∞∑
n=1

w (i+1)T

iT

w (i+1)T

x

E(Λ(0, s)|Λ(x, s) = 1)λn+1 sn

n!

1− n−1∑
k=0

(λx)k exp(−λx)
k!

RY(s, x)exp(−λs) fX(x)dxds︸                                                                                                                            ︷︷                                                                                                                            ︸
c

. (22)

Equation (22) can be simplified as

E(NO
I ) =

w (i+1)T

iT

w ∞
x
λxexp(−λy)dFY(y, x) fX(x)dx+

w (i+1)T

iT

w (i+1)T

x
(λs+1)RY(s, x)γexp(−λs) fX(x)dxds+

∞∑
n=1

w (i+1)T

iT

w (i+1)T

x

(λs+1)RY(s, x)λn+1sn exp(−λs)
n!

1− n−1∑
k=0

(λx)k exp(−λx)
k!

 fX(x)dxds.

The expected number of inspections in a renewal cycle can be given as

E (NI)=
∞∑

i=0

i (Pa(i,T )+Pb(i,T ))+ (i+1)Pc(i,T )+

∞∑
i=0

w (i+1)T

iT

w ∞
x
λxexp(−λy)dFY(y, x) fX(x)dx+

∞∑
i=0

w (i+1)T

iT

w (i+1)T

x
(λs+1)RY(s, x)λexp(−λs) fX(x)dxds+

∞∑
i=0

∞∑
n=1

w (i+1)T

iT

w (i+1)T

x

(λs+1)RY(s, x)λn+1sn exp(−λs)
n!

1− n−1∑
k=0

(λx)k exp(−λx)
k!

 fX(x)dxds.

iT +u (0 < u < T )The probability density of a failure renewal at time  is calculated as

fc(i,T,u) =
w iT+u

iT
RY(iT +u, x)λexp(−λ(iT +u)) fX(x)dx+

∞∑
n=1

w iT+u

iT

RY(iT +u, x)λn+1(iT +u)n exp(−λ(iT +u))
n!

1− n−1∑
k=0

(λx)k exp(−λx)
k!

 fX(x)dx.
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4.2    Average long-run cost rate

To  assess  the  performance  of  the  proposed  maintenance
policy, the average cost rate is evaluated as

w(T ) =
E(C)
E(L)

. (23)

E(C) E(L)
E(L)

where  and   are  the  expectations  of  the  total
cost  and  the  length  of  a  renewal  cycle.  can  be  ob-
tained based on (19), (20) and (22):

E(L) =
∞∑

i=0

w T

0
(iT + s) ( fa(i,T, s)+ fc(i,T, s))ds+ (i+1)T Pb(i,T ).

(24)

E(CL)

The cost incurred in a renewal cycle includes the eco-
nomic  loss  in  defective  state  and  maintenance  cost.  The
expected economic loss  can then be given as

E(CL) = cl(E(L)−E(X)). (25)

The maintenance cost is caused by periodic and oppor-
tunistic  inspections  and  replacement.  The  expected  re-
placement cost can be calculated as

E(CR) = cC E(NC)+ cPE(NP) =
∞∑

i=0

cC Pa(i,T )+ cP (Pb(i,T )+Pc(i,T )). (26)

The expected number of inspections in a renewal cycle
can be given as

E (NI)=
∞∑

i=0

i (Pa(i,T )+Pb(i,T ))+ (i+1)Pc(i,T )+
∞∑

i=0

w (i+1)T

iT

w ∞
x
λxexp(−λy)dFY(y, x) fX(x)dx+

∞∑
i=0

w (i+1)T

iT

w (i+1)T

x
(λs+1)RY(s, x)λexp(−λs) fX(x)dxds+

∞∑
i=0

∞∑
n=1

w (i+1)T

iT

w (i+1)T

x

(λs+1)RY(s, x)λn+1sn exp(−γs)
n!

1− n−1∑
k=0

(λx)k exp(−λx)
k!

 fX(x)dxds. (27)

Then the expected total cost incurred in a renewal cycle can be expressed as

E(C) =
∞∑

i=0

cC Pa(i,T )+ cP (Pb(i,T )+Pc(i,T ))+

cl

 ∞∑
i=0

w T

0
(iT + s) ( fa(i,T, s)+ fc(i,T, s))ds+ (i+1)T Pb(i,T )−E(X)

+
cI

 ∞∑
i=0

i (Pa(i,T )+Pb(i,T ))+ (i+1)Pc(i,T )+
∞∑

i=0

w (i+1)T

iT

w ∞
x
λxexp(−λy)dFY(y, x) fX(x)dx+

∞∑
i=0

w (i+1)T

iT

w (i+1)T

x
(λs+1)RY(s, x)λexp(−λs) fX(x)dsdx+

∞∑
i=0

∞∑
n=1

w (i+1)T

iT

w (i+1)T

x

(λs+1)RY(s, x)λn+1sn exp(−λs)
n!

1− n−1∑
k=0

(λx)k exp(−λx)
k!

 fX(x)dsdx

 . (28)

The  expected  cost  rate  can  then  be  obtained  by  using
(24)  and  (28).  The  analytical  optimization  of  inspection
interval is intractable due to the involvement of the com-
plex failure process. The following modified artificial bee
colony  algorithm  is  developed  for  the  maintenance  cost
optimization.

Z,S ,β
cC ,cP,cl, cI

Step  1　 Input  the  distribution  parameters  related  to
random  variables  as  well  as  the  cost  parameters

.
N̂Step 2　Initialize the maximal iteration number , the

M N = 1population size ; set the initial iteration number .
Tm (m = 1, · · · ,

M/2)
Step 3　Generate the initial population  

.
w(Tm)

T ∗

N

Step 4　  Calculate the cost  rate of the system ;
search the optimal inspection interval  and calculate its
fitness under the current iterative number .

N < N̂
x∗ N = N +1

Step 5　If the current iteration number , update
population  using  the  Deb’s rule,  then  set 
and go back to Step 4; otherwise go to Step 6.

w (T ∗)Step 6　Output the minimum maintenance cost 
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T ∗and the corresponding solution . 

5. A case study on cooling system
 

5.1    Background

In  this  section,  numerical  illustrations  are  presented  to
verify  the  proposed  two-stage  degradation  model.  The
cooling system is  commonly used to adjust  the tempera-
ture of the overheated engine within an appropriate range.
Since  safety-critical  systems  require  a  large  amount  of
energy to complete the various tasks, the reliability model-
ling is crucial to cooling systems. The temperature of the
engine will rise sharply due to frictions or other reasons,
which results in irreversible damage. The cooling system
can disperse redundant heat attached to the cylinder and it
works by controlling the outflow of the coolant, which is
widely used in industrial systems. Reliability analysis and
maintenance optimization of the cooling systems play im-
portant  roles  in  the  operations  management  of  the  nuc-
lear plant. Cooling systems are subject to corrosion due to
the impact of wind, thunder and humidity. In addition to
internal  deterioration,  external  shocks  can  accelerate  the
failure process of cooling systems. According to the age-
ing rate, the failure process of cooling systems can often
be divided into normal and defective stages. To this end,
we model the degradation process of cooling systems by
a two-stage accelerated virtual age process.

λX(t) = 1.3t0.3 λY(t) = 1.5t0.5

λX(t) λY(t)
δ = 0.3 γ = 0.5

η(t) = ρt(ρ = 0.1)

In  this  numerical  study,  the  time to  defective  stage  of
cooling systems without external shocks follows Weibull
distributions.  That  is,  and  .
The failure  rate  increments  of  and  caused by
external shocks are respectively  and . Ex-
ternal  shocks are  modelled by an NHPP whose intensity
function is . In the following section, re-
liability  evaluation  and  maintenance  policy  optimization
are investigated for the considered cooling systems. 

5.2    Reliability prediction

[0,0.5] 0.5

Using (15) and (16), one can obtain the system reliability
function and its upper and lower bounds. We can observe
in Fig.  2 that  the  system  reliability  changes  slowly  in

, but decreases sharply after the time exceeds .
A  possible  source  for  this  variation  is  a  smaller  arrival
rate  of  external  shocks  at  the  early  stage  of  operation.
When the time is larger than 0.5, the cooling system suf-
fers  more  frequent  shocks,  resulting  in  the  fast  decrease
of  system  reliability. Fig.  3 indicates  that  (16)  provides
relatively precise upper and lower bounds of system reli-
ability. In the following, we test the variation of the reli-
ability function with respect to several degradation para-
meters.
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Fig.  2      System  reliability  function  with  corresponding  lower  and
upper bounds
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R (t) ρFig. 3    Variation of   on 
 

ρ = 0

ρ

In Fig. 3, the variation of the system reliability as a con-
sequence of the arrival rate of shocks is illustrated. When
external  shocks  arrive  more  frequently,  the  cooling  sys-
tem suffers  more  severe  damage,  resulting  in  lower  sys-
tem  reliability.  When ,  the  system  is  operated  in  a
baseline environment and achieves the highest reliability.
We can observe that the influence of  on system failure
risk  increases  at  the  early  stage  and  decreases  when  the
operation  time  is  large.  The  external  damage  is  slight  at
the  beginning  of  operation,  thus  corresponds  to  a  small
impact on system reliability. As the ageing of the system,
external  impacts  are more frequent  and a higher damage
is caused, lowering system reliability more obviously.

δ

δ

δ

γ

δ

γ

Fig.  4 depicts  the influence of  on system reliability.
System reliability is a decreasing function of  because a
larger  value  of  corresponds  to  a  higher  external  da-
mage. Comparison of Fig. 4 and Fig. 5 reveals that  has
a smaller  impact  on system reliability due to the follow-
ing  reasons:  (i)  Parameter  is  related  to  the  two  stages
and  can only affect the defective stage; (ii) The ageing
rate in the defective stage is accelerated.
 

718 Journal of Systems Engineering and Electronics Vol. 32, No. 3, June 2021



0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

0.2

0.4

0.6

0.8

1.0

t

R
s 
(t

)

: δ=0.3; : δ=0.5; : δ=0.7; : δ=0.9.

R (t) δFig. 4    Sensitivity analysis of   on 
 

 
 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

0.2

0.4

0.6

0.8

1.0

t

R
s 
(t

)

: γ=0.3; : γ=0.5; : γ=0.7; : γ=0.9.

R (t) γFig. 5    Sensitivity analysis of   on 
  

5.3    Optimal inspection strategy

cs = 2 000 cC = 2 500
cP = 1 000 cI = 300

λ = 0.5

1.2

The cost  parameters  are  given as , ,
 and . The intensity of the arrival pro-

cess of production waits is . Fig. 6 shows the ave-
rage long-run cost rate when the inspection varies. It can
be  seen  in Fig.  6 that  it  is  optimal  to  inspect  the  system
every  time units with the minimal cost rate of 1 794.
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T

w
 (
T

)

Fig. 6    Cost performance evaluation
λ

λ = 0
Then, the variation of the cost rate regarding  is  stu-

died.  When ,  opportunistic  inspection  is  not  con-
sidered,  leading to  a  higher  penalty  cost  in  the  defective
stage.  The  optimal  inspection  interval  should  be  identi-

fied  to  balance  the  tradeoff  between  the  cost  of  the  in-
spection and that incurred by the defective state. It can be
observed  in Fig.  7 that  the  optimal  inspection  frequency
decreases  when  the  production  waits  arrive  more  fre-
quently  as  a  consequence  of  the  increased  opportunistic
inspections.
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λFig. 7    Sensitivity analysis of the optimal policy on 
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cC

To  demonstrate  the  applicability  of  the  considered
maintenance  strategy,  sensitivity  analysis  on  the  cost  of
corrective replacement  is conducted as shown in Fig. 8.
We can observe that when  increases from 1 500 to 5 000
with step size 500, the minimal cost rate increases signi-
ficantly, indicating that the cost rate is sensitive to . In
contrast,  the  optimal  inspection  interval  decreases  since
more  timely  detection  of  failures  is  required  when  the
cost of failures increases.
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6. Conclusions and discussions
This paper proposes a  two-stage degradation process us-
ing  the  virtual  age  process,  where  the  failure  rate  incre-
ment  caused  by  external  shocks  is  considered.  The  sys-
tem failure process includes normal  and defective stages
and its ageing rate accelerates in the defective stage. Seve-
ral  reliability indices are derived by using the nonhomo-
geneous Poisson process and maintenance policies are de-
signed  to  calculate  the  minimal  cost  rate  under  different
renewal  scenarios.  Finally,  numerical  illustrations  are
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presented to verify the proposed model.
A number of extensions of the current study are worth

investigating.  First,  it  is  assumed  that  time  based  main-
tenance  is  utilized,  and  one  extension  of  the  study  is  to
consider  condition-based  maintenance  [41−44].  Second,
it  would  be  beneficial  to  apply  the  proposed  reliability
prediction  method  and  the  maintenance  policy  for  mis-
sion critical systems, which gives rise to a joint optimiza-
tion problem where the policies of stopping of a mission
and  the  system  maintenance  should  be  identified  simul-
taneously [45−51].
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