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Abstract: This paper proposes a time-varying sliding mode con-
trol method to address nonlinear missile body kinematics based
on the suboptimal control theory. The analytical solution of sub-
optimal time-varying sliding surface and the corresponding sub-
optimal control law are obtained by solving the state-dependent
Riccati equation analytically. Then, the Lyapunov method is used
to analyze the motion trend in sliding surface and the asympto-
tic stability of the closed-loop system is validated. The subopti-
mal  control  law is  transformed to  the  form of  pseudo-angle-of-
attack feedback. The simulation results indicate that the satisfac-
tory performance can be obtained and the control law can over-
come the influence of parameter errors.
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1. Introduction
The  optimal  control  method  is  a  well-known  method  in
the design of the linear time-invariant system. The optimal
solution can be obtained by designing the target function
and  solving  the  corresponding  Riccati  equation  [1−5].
The  traditional  design  of  the  nonlinear  control  system is
to  select  the  specific  operating  points  and  linearize  the
original system, and then design the control law based on
the approximate linear system [6,7]. The suboptimal con-
trol method which evolved from traditional optimal con-
trol has been widely used in the nonlinear control system
design  [8−14].  The  application  of  suboptimal  control  is
based on the pseudo-linear structure constructed from the
original  system  model.  The  crux  of  system  design  and
analysis  is  the  stability  analysis  of  the  closed-loop  sys-
tem in the operational range [15].

The  traditional  way  of  getting  the  suboptimal  control
law  is  based  on  the  numerical  solution  of  the  state-de-

pendent Riccati equation, which hinders the stability ana-
lysis and prompts researchers to find the analytical solu-
tion  of  Riccati  equation.  In  [16,17],  the  analytical  solu-
tion  of  Riccati  equation  in  the  specific  form  has  been
used to design and analyze the nonlinear system with the
particular structure. In [18], the analytical solution of the
two-dimensional  state-dependent  Riccati  equation  was
proposed  to  design  the  suboptimal  control  law  and  ana-
lyze  the  stability  of  the  closed-loop  system.  The  subop-
timal  control  law  proposed  in  [18]  is  composed  of  the
feedback of acceleration and the pitch rate, ensuring good
performance  under  the  nominal  model.  However,  when
the  actual  value  of  the  model  parameters  deviates  from
the nominal value, the control effect will quickly deterio-
rate. It is known that in actual application, it is hard to get
the accurate model, indicating that the model bias always
exists [19]. Hence, for the design of missile autopilot, the
robustness of the control system must be considered.

Sliding  mode  control  is  a  nonlinear  control  method
widely  used in  engineering design [20−24].  This  control
method shows good robustness by designing appropriate
sliding  surface,  ensuring  satisfactory  response  perform-
ance  in  the  presence  of  model  parameter  deviation  [25].
To obtain better control effect, the traditional linear time-
invariant  sliding  surface  has  been  improved  to  the  time-
varying sliding surface [26−28]. In [29], a kind of sliding
mode  control  method  based  on  state  transition  was  pro-
posed aimed at the multivariable system, which was com-
bined with the optimization of the indicator function.

In  actual  engineering,  we  often  encounter  time-vary-
ing  systems in  which  the  model  parameters  change  with
states,  and  the  design  of  time-invariant  sliding  surfaces
may not guarantee the control effect under different sys-
tem states. By using the measurable system state informa-
tion  to  adjust  the  parameters  of  the  sliding  surface,  the
design of the time-varying sliding surface can ensure that
the control effect will not change significantly under dif-
ferent conditions. In [27] and [28], the time-varying slid-
ing mode control law was designed for the inverted pen-
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dulum  and  the  robotic  manipulator,  and  achieved  good
control  effects.  In  [30],  the  design  using  time-varying
sliding surface overcame the influence caused by the non-
linear aerodynamic parameters.

Aimed  at  the  nonlinear  system,  designing  sliding  sur-
face  with  the  suboptimal  theory  is  an  approach  to  im-
prove  sliding  mode  control.  In  [30],  the  linear  approxi-
mate  approach  was  used  to  acquire  the  suboptimal  slid-
ing mode control law based on the missile nonlinear mo-
del. However, it is difficult to analyze the stability in the
sliding mode designed in [30],  because only the numeri-
cal  solution  of  the  sliding  surface  can  be  obtained.  Al-
though  the  suboptimal  sliding  mode  control  method  has
good  robustness,  further  study  is  needed  to  analyze  the
stability in the nonlinear sliding surface.

In this paper, aimed at the missile nonlinear model, the
state  transition  is  utilized  to  design  the  suboptimal  slid-
ing  surface,  and  its  analytical  expression  is  solved  to
design the control law. On the basis of analytical solution,
the stability in the nonlinear time-varying sliding surface
can  be  acquired,  and  the  control  law  can  be  adjusted  to
the form of pseudo-angle-of-attack feedback. 

2. Missile model
In this paper, the object of study is the missile longitudi-
nal model, and the coordinate system is shown in Fig.1 [18].
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Fig. 1    Missile longitudinal model
 

Consider the following model:
α̇ = ωy+

qS
mV

(CZαα+CZδδ)

ω̇y =
qS d

Iy
(CMαα+CMδδ+CMωy

ωy)

(1)

α,ωy, δ

Ω

α α ∈ Ω q,S ,m,d, Iy,V

CZα,CZδ,CMα,

CMδ,CMωy

CZα,CZδ,CMδ,CMωy

CMα

CMα

CMα

where  represent the angle of attack, the pitch rate
and the fin deflection angle, respectively.  is the opera-
tional range of , i.e., .  represent the
dynamic  pressure,  the  characteristic  area,  the  mass,  the
characteristic  length,  the  moment  of  inertia  about  the
pitch axis and the total velocity, respectively. 

 are aerodynamic coefficients. In this coordinate
system,  are  negative,  and  the  sign  of

 is dependent on the static stability of the missile, i.e.,
when  the  missile  is  statically  stable,  has  a  negative
value, otherwise  is positive.

CZα,CMα

α CZδ,CMδ,CMωy
,m,V

Assumption 1 　  are functions of angle of at-
tack ,  and  the  values  of  are  con-
stants.

α ∈ ΩRemark  1　For  ,  Assumption  1  is  reasonable
because  of  the  approximation  of  the  trigonometric  func-
tion,  and  the  application  of  the  sliding  mode  can  com-
pensate the error from the approximation.

azThe  output  of  the  system  is  acceleration ,  and  the
output equation is given as

az =
qS
m

(CZαα+CZδδ). (2)

Define dynamic coefficients as follows:

a1 =
qS
mV

CZα

a2 =
qS d

Iy
CMα

a3 =
qS d

Iy
CMωy

b1 =
qS
mV

CZδ

b2 =
qS d

Iy
CMδ

. (3)

e = az−ac E =
w

e acDefine , ,  where  is  acceleration
command.  Above-mentioned  equations  can  be  rewritten
as follows:
α̇

ω̇y

Ė

 =


a1 1 0

a2 a3 0

a1V 0 0



α

ωy

E

+


b1

b2

b1V

δ+


0

0

−ac

 .
(4)

x =[
α ωy E

]T
The  states  of  the  system  is  denoted  by 

.  To facilitate  analysis,  redefine  the  state
variables as follows:

z1 = α−
b1

b2
ωy

z2 = ωy−
b2

b1V
E

z3 = E

. (5)

z =
[

z1 z2 z3

]T

z(t) = Lx(t)
Define , and (5) can be denoted by

a matrix form , where

L =



1 −b1

b2
0

0 1 − b2

b1V

0 0 1


.
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b1, b2Because  are constants, (4) can be represented as follows:


ż1

ż2

ż3

 =


a1−
b1

b2
a2

b1

b2
a1−

b2
1

b2
2

a2+1− b1

b2
a3

a1

V
− b1

b2V
a2+

b2

b1V
− a3

V

a2−
b2

b1
a1

b1

b2
a2−a1+a3

a2

V
− b2

b1V
a1+

b2

b1V
a3

a1V
b1

b2
a1V a1


·


z1

z2

z3

+


0

0

b1V

δ+


0

b2

b1V
ac

−ac

 . (6)

A(α)
ai j (i = 1, 2, 3, j = 1, 2, 3)

The  system  matrix  of  (6)  is  denoted  as ,  and
 represents  the  element  of  the

matrix. 

3. Suboptimal sliding mode control law design
To facilitate the design of the control law, assume that the
acceleration command is 0, i.e., the last term of (6) can be
neglected, and the system response will tend to be 0.
Remark  2 　The  assumption  that  acceleration  com-

mand is 0 is based on the transition from the reachability
problem  to  the  controllability  problem.  Although  reach-
ability  is  not  equivalent  to  controllability  for  the  nonli-
near  system,  the  approximate  treatment  is  reasonable  in
the engineering design.

δNoting that input control term  only exists in the third
line of the matrix of (6), the sliding surface can be defined as

σ(z, t) = c1(t)z1+ c2(t)z2+ z3. (7)

u = δ
u

σ(z, t) = 0

Under  sliding  mode  control,  the  system  motion  state
can  be  divided  into  two  parts:  the  state  variables  move
from  outside  the  sliding  surface  to  inside  and  then  con-
verge  to  origin  in  the  sliding  surface.  Define .  The
control  term  only  directly  acts  on  the  third  line  of  the
matrix  of  (6)  to  prompt  the  system states  to  converge to
the  sliding  surface.  When  states  arrive, ,  and
the following equation holds:

z3 = −c1(t)z1− c2(t)z2. (8)

z3At the moment,  works as a control term for the first
two lines of the matrix of (6).

u

σ

First,  design sliding mode control  law  to realize the
state movement in the first part. Take the derivative of the
sliding mode variable  and obtain the following equation:

σ̇ = ċ1z1+ c1ż1+ ċ2z2+ c2ż2+ ż3 =

(c1a11+ c2a21+a31+ ċ1)z1+ (c1a12+ c2a22+

a32+ ċ2)z2+ (c1a13+ c2a23+a33)z3+b1Vu. (9)

The control law can be designed as

u = − 1
b1V
{[(c1a11+ c2a21+a31+ ċ1)z1+

(c1a12+ c2a22+a32+ ċ2)z2+ (c1a13+

c2a23+a33)z3]+ kσ} (10)

k > 0where  is  a  constant  parameter  designed.  Substitut-
ing (10) into (9), the following equation can be obtained:

σ̇ = −kσ. (11)

After the states arrive at the sliding surface, the system
can be denoted as[

ż1

ż2

]
=

[
a11 a12

a21 a22

] [
z1

z2

]
+

[
a13

a23

]
z3. (12)

A′11 =

 a11 a12

a21 a22

 A′12 =

[
a13

a23

]
Define , .  Design the

quadratic cost function as follows:

J =
1
2

w ∞
0

xTQxdt (13)

Q Q′ =

(L−1)TQL−1 =

[
Q′11 Q′12

Q′21 Q′22

]
z1,2 =

[
z1 z2

]T
Q′11 ∈

R2×2

where  is  the  positive  definite  matrix.  Define 

, , 

, and the indicator function can be rewritten as

J =
1
2

w ∞
0

zTQ′ zdt =

1
2

w ∞
0

(
zT

1,2Q′11 z1,2+2zT
1,2Q′12 z3+Q′22 z2

3

)
dt. (14)

u

u

Remark  3 　 In  the  indicator  function  of  this  paper,
control  term  is  not  considered,  because  the  design  of
the suboptimal sliding surface is based on (12) that does
not contain .

Construct the Hamilton function as follows:

H =
1
2

(
zT

1,2Q′11 z1,2+2zT
1,2Q′12 z3+Q′22 z2

3

)
+

λT(A′11 z1,2+ A′12 z3) (15)

λ
∂H
∂z3
= 0where  is  the  Lagrange  vector.  According  to ,

the following equation is obtained:

z3 = −Q′22
−1(Q′12

T z1,2+ A′12
Tλ). (16)

λ = Pz1,2

λ̇ = − ∂H
∂z1,2

Assuming that ,  and neglecting the derivative

of P, according to , the Riccati equation can be

derived as follows:
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PA′11+ A′11
T P+Q′11−

(PA′12+Q′12)Q′22
−1(Q′12

T
+ A′12

T P) = 0. (17)

Â′11 = A′11− A′12Q′22
−1Q′12

T Q̂′11 = Q′11−
Q′12Q′22

−1Q′12
T

Defining , 
, (17) can be rewritten as

PÂ′11+ Â′
T

11 P+ Q̂′11− PA′12Q′22
−1 A′12

T P = 0. (18)

P
The key to obtain the analytical expression of the sub-

optimal sliding surface is to solve matrix  by the analy-
tic method.

Choose

Q =



k1 −b1

b2
k1 0

−b1

b2
k1

b2
1

b2
2

k1+ k2 − b2

b1V
k2

0 − b2

b1V
k2

b2
2

b2
1V2

k2+ k3


k1, k2, k3

Q′ = diag[k1, k2, k3] Q′11 = diag[k1, k2]
Q′22 = k3 Q′12 = 0 Q′21 = 0

where  are  non-negative  constants  designed.
Then ,  i.e., ,

, , .  Equations  (18)  and (16)  de-
grade into the following equations:

PA′11+ A′11
T P+Q′11− PA′12Q′22

−1 A′12
T P = 0, (19)

z3 = −Q′22
−1 A′12

T Pz1,2. (20)

P
Ω

Lemma 1　[18] The two-dimensional state dependent
Riccati  equation  has  a  positive  definite  stabilizing  solu-
tion  and  the  analytic  solution  can  be  obtained,  if  the
following three conditions are satisfied on :
Condition 1　All matrices in (19) are continuous mat-

rix-valued functions.
Q′11 G

G =A′12Q′22
−1 A′12

T
Condition  2　  and   are  positive  semidefinite,

where .
(A′11, Ĝ)
(A′11, Q′11)

G = ĜĜT

Condition 3　The matrix  pair  is  pointwise
controllable,  and  the  matrix  pair  is  point-
wise observable, where .

More details about the analytic method of solving (19)
can be found in [18], and there is no more tautology here.

b1

b2
a2−a1+

3
4

a3 ΩAssumption 2 　  is negative on .
Remark 4 　Note the following equation:

b1

b2
a2−a1+

3
4

a3 =

qS
mV

(
CZδ

CMδ
CMα−CZα+

3dmV
4Iy

CMωy

)
. (21)

dmV
Iy

Because  has a much larger value, the sign of the

third  term  in  parentheses  plays  a  dominant  role  in  most
cases. Then it is reasonable to make Assumption 2.

k1 > 0 k2 = 0 k3 > 0Theorem  1 　Choosing  , , ,  under

the  indicator  function  (14),  the  analytical  expression  of
sliding surface (7) can be represented as follows:

σ =
1

a13

(√
d+a11+a23

a11a22−a12a21

a21a13−a11a23

)
z1+(

a12a21−a11a22

a21a13−a11a23
+

a12

a13

)
z2+ z3 (22)

d = (a11−a22)2+4a12a21+a2
13

k1

k3
where .
Proof 　Obviously, the Riccati equation (19) satisfies

Condition 1 and Condition 2 in Lemma 1. Verify Condi-
tion 3 as follows.

The controllability matrix is as follows:

Mc =

 a13 a11a13+a12a23

a23 a21a13+a22a23

 . (23)

a13a22−a12a23 = 0 McNoting  that ,  the  determinant  of 
can be derived as follows:

Det(Mc) = a21a2
13+a22a13a23−a11a23a13−a12a2

23 =

a13(a21a13−a11a23). (24)

a3 < 0 a13 > 0 xc f ,

xcp, xcg

Because ,  under  Assumption  2, . 
 represent the distances from the nose of the mis-

sile to the aerodynamic center, the center of pressure and
the center of gravity, as shown in Fig.1. Then the follow-
ing equations hold [18]:

CMα=CZα
xcp− xcg

d
, (25)

CMδ=CZδ
xc f − xcg

d
. (26)

xcp < xc f

In  this  paper,  we  only  study  the  missile  with  normal
configuration, i.e., . Using (25) and (26), the fol-
lowing relations hold:

a2−
b2

b1
a1 =

qS d
Iy

(
CMα−

CMδ

CZδ
CZα

)
=

qS
Iy

CZα(xcp− xc f ) > 0, (27)

a21a13−a11a23 =
b2

b1V

(
a2−

b2

b1
a1

)
> 0. (28)

(A′11, Ĝ)Hence, the matrix-pair  is pointwise controllable.
The observability matrix is as follows:

Mo =


k1 0

0 k2

k1a11 k1a12

k2a21 k2a22


. (29)

a3 < 0 b1 < 0 b2 < 0Because ,  and , under Assumption 2,
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a12 > 0 Mo

(A′11, Q′11)
 and  is  a column full  rank matrix.  Hence,  the

matrix-pair  is pointwise observable.

P =
[

p11 p12

p12 p22

]
P

Define . Using the analytical solution

of Riccati equation in Lemma 1, the matrix  in (19) can
be represented as follows:

p11 =
k3

(Det(Mc))2

{
[2a23(a12a21−a11a22)(a11a23−a13a21)+

a11(a11a23−a13a21)2+a2
23a22(a11a22−a12a21)+

a12a21a23(a11a23−a13a21)]+
√

d[(a11a23−a13a21)2+

a2
23(a12a21−a11a22)]

}
,

(30)

p12 =
k3

(Det(Mc))2

{
[a13(a12a21−a11a22)(a13a21−

a23a11)−a13(a11a22−a12a21)(a23a22+a13a21)]+

√
d[−a13a23(a12a21−a11a22)]

}
, (31)

p22 =
k3

(Det(Mc))2

{
[a2

13a11(a11a22−a12a21)+

a2
12a23(a11a23−a21a13)]+

√
d[a2

13(a12a21−a11a22)]
}
. (32)

a13a22−a12a23 = 0Substituting  the  relation  into  (20),
the following equations can be obtained:

c1 =
1
k3

(a13 p11+a23 p12) =

1
a13

(√
d+a11+a23

a11a22−a12a21

a21a13−a11a23

)
, (33)

c2 =
1
k3

(a13 p12+a23 p22) =
a12a21−a11a22

a21a13−a11a23
+

a12

a13
. (34)

The proof of Theorem 1 is completed. □
k2 = 0

k1, k2, k3

k1, k2

k3 > 0

Remark 5 　In this  paper,  choosing  is  to sim-
plify  calculation.  The  choice  of  only  needs  to
satisfy the conditions that at least one of  is positive
and . 

4. Analysis of stability in sliding surface
Substituting  (33)  and  (34)  into  (8)  and  (12),  the  follow-
ing relations hold: ż1

ż2

 =
 A′c11 A′c12

A′c21 A′c22


 z1

z2

 , (35)

A′c11 =
b1

b2
a2−a1+a3−

√
d, (36)

A′c12 = −
b1

b2
a1+

b2
1

b2
2

a2−1+
b1

b2
a3, (37)

A′c21 =
b2

b1
·

(
a1−

b1

b2
a2−a3

)2

+
b2

b1

(
b1

b2
a2−a1

)
a1−

b1

b2
a2−a3+

b2

b1

−

a2−
b2

b1
a1+

b2

b1
a3

a1−
b1

b2
a2+

b2

b1
−a3

√
d, (38)

A′c22 = −
(

b1

b2
a2−a1+a3

)
. (39)

A′c11 < 0 A′c12 < 0 A′c21 > 0 A′c22 > 0
Under  Assumption  2,  using  (27),  the  following  rela-

tions can be obtained: , , , .(
b1

b2
a2−a1+a3

)2

−
(
a2−

b2

b1
a1

)
Ω

Assumption 3　  is nega-

tive on .
ΩRemark 6 　The following equation holds on :

(
b1

b2
a2−a1+a3

)2

−
(
a2−

b2

b1
a1

)
=

( qS
mV

)2 ( CZδ

CMδ
CMα−

CZα+
dmV

Iy
CMωy

)2

− qS d
Iy

(
CMα−

CMδ

CZδ
CZα

)
.

(40)

V
qS d

Iy
≫

( qS
mV

)2

(
CZδ

CMδ
CMα−CZα+

dmV
Iy

CMωy

)2

(
CMα−

CMδ

CZδ
CZα

)
Ω

qS d
Iy

Because  has a large value,  holds in most

cases. Although the value of 

is  greater  than  that  of , Assumption  3

usually holds on  because of the amplification of .

−3a3+
k1

k3

a2
13

a3
−4

(
b1

b2
a2−a1

)
Ω

Assumption 4 　  is positi-

ve on .

k3 > k1 V

k1

k3

a2
13

a3

Remark  7 　To  keep  the  tracking  error  as  small  as
possible,  we  choose  that .  Considering  has  a

large value,  has a small value. Under Assumption 2,

Assumption 4 usually holds.

Ω

κ

Theorem 2 　Under Assumptions 2 and 4, the system
(35) is asymptotically stable on , if there exists a posi-
tive constant  satisfying the following relations:
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sup
α∈Ω


−A′c11+A′c22+2∆

1
4
M −

√
(A′c11−A′c22−2∆

1
4
M)

2

+8A′c21A′c12

4A′c21

 < κ <

inf
α∈Ω

 min

−
A′c11

A′c21
, − A′c12

2A′c22
,
−A′c11+A′c22+2∆

1
4
M +

√
(A′c11−A′c22−2∆

1
4
M)

2

+8A′c21A′c12

4A′c21


 (41)

∆M = (a11a22−a12a21)2where .
Proof  Consider  the  following  Lyapunov  candidate

function:
 

VL =
1
2

(z1+ κz2)2+
κ2

2
z2

2. (42)

VL

VL

Obviously,  is positive and bounded. Take the deri-
vative of  and the following equation can be obtained:

V̇L = (z1+ κz2)(ż1+ κż2)+ κ2z2ż2 =
[

z1 z2

] [
(A′c11+ κA′c21+ κA′c11+A′c12+2κ2A′c21+

κA′c22+ κA′c11+A′c12+2κ2A′c21+ κA′c22+ κA′c12+2κ2A′c22)/2
] [ z1

z2

]
= zT

1, 2Aκz1, 2. (43)

AκThe characteristic polynomial of  is as follows:

λ2− (A′c11+ κA′c21+ κA′c12+2κ2A′c22)λ+
(A′c11+ κA′c21)(κA′c12+2κ2A′c22)−

(κA′c11+A′c12+2κ2A′c21+ κA′c22)2

4
= 0.

(44)

V̇LIf  is  negative  definite,  the  following  inequalities
should be satisfied:

A′c11+ κA
′
c21 < 0, (45)

κA′c12+2κ2A′c22 < 0, (46)

(A′c11+ κA′c21)(κA′c12+2κ2A′c22)−
(κA′c11+A′c12+2κ2A′c21+ κA′c22)

2

4
> 0. (47)

κ <min
(
−A′c11

A′c21
, − A′c12

2A′c22

)

A′c11A′c22−A′c12A′c21 = ∆
1
2
M

When ,  (45)  and  (46)  hold.

Then, analyze the condition for the establishment of (47).
Noting the relation , the left-hand
side of (47) can be rewritten as follows:

(A′c11+ κA′c21)(κA′c12+2κ2A′c22)−

(κA′c11+A′c12+2κ2A′c21+ κA′c22)2

4
=

1
4

[
2κ∆

1
4
M +2κ2A′c21−A′c12+ κ(A′c11−A′c22)

]
·

[
2κ∆

1
4
M −2κ2A′c21+A′c12− κ(A′c11−A′c22)

]
. (48)

d = a2
3+4

(
a2−

b2

b1
a1

)
+

k1

k3
a2

13Noting  that ,  the  follow-

ing equation can be obtained:(
A′c11−A′c22+2∆

1
4
M

)2

+8A′c12A′c21 =

(A′c11+A′c22)2+4A′c12A′c21+4(A′c11−A′c22)∆
1
4
M =

d+4
(

b1

b2
a2−a1+a3

) √
d−4

(
a2−

b2

b1
a1

)
−

4
(

b1

b2
a2−a1+a3

)2

+4
[
2
(

b1

b2
a2−a1+a3

)
−
√

d
]
∆

1
4
M =

a2
3+

k1

k3
a2

13+4
(

b1

b2
a2−a1+a3

) √
d−

4
(

b1

b2
a2−a1+a3

)2

+4
[
2
(

b1

b2
a2−a1+a3

)
−
√

d
]
∆

1
4
M.
(49)

−4
(

b1

b2
a2−a1+a3

)2

4
[
2
(

b1

b2
·

a2−a1+a3)−
√

d
]
∆

1
4
M

√
d > −a3

Under Assumption 2,  and 

 are negative. Noting that ,

under Assumption 4, the following equation holds:

a2
3+

k1

k3
a2

13+4
(

b1

b2
a2−a1+a3

) √
d <

a2
3+

k1

k3
a2

13−4
(

b1

b2
a2−a1+a3

)
a3 =

a3

[
a3+

k1

k3

a2
13

a3
−4

(
b1

b2
a2−a1+a3

)]
< 0. (50)

(
A′c11−A′c22+2∆

1
4
M

)2

+8A′c12A′c21 < 0Then, . The first term

in the right-hand side of (48) is positive.
Analyze the second term in the right-hand side of (48),

and the following relation holds:
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(
A′c11−A′c22−2∆

1
4
M

)2

+8A′c12A′c21 =

(A′c11−A′c22)2+4∆
1
2
M −4(A′c11−A′c22)∆

1
4
M +8A′c12A′c21 =[

(A′c11−A′c22)2
+4∆

1
2
M +4A′c12A′c21

]
+[

−4(A′c11−A′c22)∆
1
4
M +4A′c12A′c21

]
.

(51)

Analyze  the  first  term  in  the  right-hand  side  of  (51),
and the following equation can be derived:

(A′c11−A′c22)2+4∆
1
2
M +4A′c12A′c21 =

(A′c11+A′c22)2 = d > 0. (52)

Analyze the second term in the right-hand side of (51),
and the following relation can be acquired:

(A′c12A′c21)2− (A′c11−A′c22)2∆
1
2
M =

(A′c11A′c22−∆
1
2
M)2− (A′c11−A′c22)2∆

1
2
M =

(A′c11A′c22)2+∆M − (A′211+A′222)∆
1
2
M =(b1

b2
a2−a1+a3−

√
d
)2

−
(
a2−

b2

b1
a1

) ·(b1

b2
a2−a1+a3

)2

−
(
a2−

b2

b1
a1

) . (53)

Noting the first term in the right-hand side of (53), the
following inequality holds:

(
b1

b2
a2−a1+a3−

√
d
)2

−
(
a2−

b2

b1
a1

)
>

d−
(
a2−

b2

b1
a1

)
> 0. (54)(

b1

b2
a2−a1+a3

)2

−
(
a2−

b2

b1
a1

)
−4(A′c11−A′c22)∆

1
4
M +4A′c12A′c21 > 0(

A′c11−A′c22−2∆
1
4
M

)2

+8A′c12A′c21 > 0

Under  Assumption  3,  is

negative.  Then,  and

.  The  solutions  of  the

following equation:

2κ∆
1
4
M −2κ2A′c21+A′c12− κ(A′c11−A′c22) = 0 (55)

can be represented as

−A′c11+A′c22+2∆
1
4
M ±

√(
A′c11−A′c22−2∆

1
4
M

)2

+8A′c21A′c12

4A′c21

V̇Land  they  are  positive.  Then,  is  negative  definite  and
bounded.

κ

Ω

Therefore,  if  there  exists  satisfying  inequality  (41),
the system (35) is asymptotically stable on . □ 

5. Control law in the form of pseudo-angle-of-
attack feedback

In the third section, the suboptimal control law has been
designed.  In  this  section,  the  control  law  (10)  will  be
transformed into the form of pseudo-angle-of-attack feed-
back as shown in Fig. 2.

 
 

Missile dynamics

az
u

s

−

+

+

+

+

+

ac

K1

K3+
K4

K2

ωy

α

Fig. 2    Closed-loop system with pseudo-angle-of-attack feedback control law
 

Theorem  3 　 Under  Assumption  1,  the  control  law
(10) can be rewritten as follows:

u = K1α+K2ωy+K3e+K4E (56)

where

K1 = −
1

3b1V
(c1a11+a31+ ċ1+ kc1+ c2a2), (57)

K2 = −
1

3b1V

[
−b1

b2
(c1a11+a31+ ċ1+ kc1)+

(c1a12+a32+ kc2)+ c2a3

]
, (58)

K3 =
2

3b1V
, (59)

K4 = −
1

3b1V

[
− b2

b1V
(c1a12+a32+ kc2)+

(c1a13+a33+ k)
]
. (60)

Proof 　Using (5) and (10), the following equation can
be obtained:

u = − 1
b1V

{
[(c1a11+a31+ ċ1)z1+

(c1a12+a32+ ċ2)z2+ (c1a13+a33)z3+
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c2(a21z1+a22z2+a23z3)]+ kσ
}
=

− 1
b1V

{
[(c1a11+a31+ ċ1)z1+ (c1a12+a32+ ċ2)z2+

(c1a13+a33)z3+ c2ż2]+ kσ
}
=

− 1
b1V

{[
(c1a11+a31+ ċ1)z1+ (c1a12+a32+ ċ2)z2+

(c1a13+a33)z3+ c2

(
a2α+a3ωy+b2u− b2

b1V
e
)]
+ kσ

}
.

(61)

c2
2b1V

b2
c2 ċ2 = 0

Using (34),  is equal to . Under Assumption 1,
 is a constant, i.e., . Equation (56) can be rewrit-

ten as follows:

u = − 1
3b1V

{[
(c1a11+a31+ ċ1)z1+ (c1a12+a32)z2+

(c1a13+a33)z3+ c2

(
a2α+a3ωy−

b2

b1V
e
)]
+ kσ

}
=

− 1
3b1V

{
(c1a11+a31+ ċ1+ kc1)z1+ (c1a12+a32+ kc2)z2+

(c1a13+a33+ k)z3+ c2

(
a2α+a3ωy−

b2

b1V
e
)}
=

− 1
3b1V

{
α(c1a11+a31+ ċ1+ kc1+ c2a2)+

ωy

[
−b1

b2
(c1a11+a31+ ċ1+ kc1)+ (c1a12+a32+ kc2)+ c2a3

]
+

E
[
− b2

b1V
(c1a12+a32+ kc2)+ (c1a13+a33+ k)

]
+ e

(
−c2b2

b1V

)}
(62)

The proof of Theorem 3 is completed. □ 

6. Simulation results
The model of the missile at the altitude of 6 000 m is as
follows:

a1 = 0.021 Ma[19.373α2−31.023 |α|−
12.956(1.5−0.25Ma)]

a2 = 1.237 5 M2
a[40.440α2−64.015 |α|−

4.870(4.2−1.6Ma)]
a3 = 1.237 5 M2

a(−1.719)
b1 = 0.021 Ma(−1.948)
b2 = 1.237 5 M2

a(−11.803)

(63)

Ma Ω = {α ∈ R|π/3 < α <
π/3}

2Ma 3Ma

2Ma

where  is the mach number and 
.  In  this  section,  the  simulation  results  for  the  mis-

sile at (static stable) and (static unstable) are gi-
ven. At , the following relation holds:

0.013 9 < κ < 0.044 1. (64)
3MaAt , the following relation holds:

0.009 5 < κ < 0.024 3. (65)
The parameter deviation is as follows:

a′1 = 1.2a1

a′2 = 0.9a2

a′3 = 1.1a1 .
b′1 = 0.85b1

b′2 = 1.12b2

(66)

To avoid the overlarge rudder deflection angle, step in-
puts are processed with the transition function.

2Ma

3Ma

The  simulation  results  at  are  shown  in Fig.  3−
Fig. 6. The simulation results at  are shown in Fig. 7−
Fig. 10. As shown in Fig. 3 and Fig. 7, the control laws in
[18]  and  this  paper  all  have  good  performance  under
nominal models. However, as shown in Fig. 5 and Fig. 8,
under  real  models  with  parameter  deviation,  the  control
law in  [18]  will  result  in  steady  state  error  and  the  con-
trol  law proposed  in  this  paper  still  keeps  good  tracking
performance.  Hence,  the  suboptimal  sliding  mode  con-
trol law is more robust. 
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7. Conclusions
In  this  paper,  the  analytical  solution  of  the  suboptimal
sliding surface has been proposed and the stability in the
sliding  surface  has  been  proved.  The  suboptimal  sliding
mode control law shows good performance and can over-
come the effect of parameter error.

The  control  law designed  in  this  paper  can  be  written
in the form of pseudo-angle-of-attack feedback, and each
parameter in the control  law is  the function of the dyna-
mic coefficient. Given the speed and altitude, the parame-
ters  are  mainly  determined  by  the  angle  of  attack.  The
purpose of designing this control law is to overcome the
influence of aerodynamic nonlinearity by using the angle
of attack information, and to provide the functional rela-
tionship  of  the  control  parameters  with  the  angle  of  at-
tack  (dynamic  coefficient).  In  practical  applications,  the
control  parameters  can  be  calculated  by  substituting  the
information of speed, altitude and angle of attack into the
corresponding functions, and the control law in the form
of  the  continuous  function  replaces  the  original  control
law in the form of the interpolation table.
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