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Abstract: In the evolutionary game of the same task for groups,
the changes in game rules, personal interests, the crowd size,
and external supervision cause uncertain effects on individual
decision-making and game results. In the Markov decision
framework, a single-task multi-decision evolutionary game mo-
del based on multi-agent reinforcement learning is proposed to
explore the evolutionary rules in the process of a game. The
model can improve the result of a evolutionary game and facili-
tate the completion of the task. First, based on the multi-agent
theory, to solve the existing problems in the original model, a
negative feedback tax penalty mechanism is proposed to guide
the strategy selection of individuals in the group. In addition, in
order to evaluate the evolutionary game results of the group in
the model, a calculation method of the group intelligence level is
defined. Secondly, the Q-learning algorithm is used to improve
the guiding effect of the negative feedback tax penalty mecha-
nism. In the model, the selection strategy of the Q-learning al-
gorithm is improved and a bounded rationality evolutionary
game strategy is proposed based on the rule of evolutionary
games and the consideration of the bounded rationality of indi-
viduals. Finally, simulation results show that the proposed mo-
del can effectively guide individuals to choose cooperation
strategies which are beneficial to task completion and stability
under different negative feedback factor values and different
group sizes, so as to improve the group intelligence level.

Keywords: multi-agent, reinforcement learning, evolutionary ga-
me, Q-learning.
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1. Introduction

Reinforcement learning is a model of machine learning. It
can actively sense the environment via different behavi-
ors or actions, evaluate the actions and adjust subsequent
actions. It is a learning technology mapping different en-
vironmental states into actions [1]. Reinforcement learn-
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ing mainly aims to choose the optimal action of the
agents when they complete goals. It is widely used in ro-
bot control systems [2,3], intelligent decision-making
[4,5], nonlinear optimal control [6—8] and other fields. A
single agent generally has no proper decision-making
ability or the ability to sense the environment, so it can-
not respond to complex actual problems. Therefore, the
concept of multi-agent was proposed at the end of the
20th century. It is a collection of multiple agents and also
called multi-agent system. It belongs to the forefront of
distributed artificial intelligence and is mainly used to ex-
plore the coordination, cooperation, communication, and
conflicts among agent groups [9].

Reinforcement learning is also applied in multi-agent
learning. In recent years, the combination of multi-agent
learning and reinforcement learning has become a re-
search hotspot [10—12]. One of the prominent achieve-
ments is AlphaGO, the Chinese game of go system based
on reinforcement learning, which has defeated the top hu-
man players in the game and shows a great advantage. It
immediately attracts the attention of all walks of life and
more researchers have participated in the field of multi-
agent reinforcement learning [13].

Game is a theory of action, used to study the strategic
choices driven by multiple interests among multiple indi-
viduals [14]. Due to the development of the game theory,
many research methods have been combined with the ga-
me theory, such as genetic algorithms [15], particle swarm
optimization [16], and multi-agent systems. The idea of
cooperation among agents in a multi-agent system can
well reflect the game process of individuals in social
groups in their work. The multi-agent system has been
gradually introduced into the game field and achieved
better results [17,18]. The game involves not only the ac-
tion of an agent, but also the states of other agents, which
increase the complexity of the system and learning, so the
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convergence rate cannot be guaranteed. The introduction
of reinforcement learning can better guide the process of
the game. Bendor et al. [19] used reinforcement learning
to study the steady-state convergence problem of games.
Jacob et al. [20] improved the reinforcement learning al-
gorithm and solved the poor player strategy selection
problem in two-player tasks. As one of the reinforcement
learning algorithms, the Q-learning algorithm does not re-
quire the dynamic environment and the characteristics
suitable for long-scenario tasks in advance, so it is widely
used in the game field. For example, Littman et al. [4]
proposed the minimax algorithm. This algorithm can well
solve the two-player zero-sum game, but it cannot be ap-
plied in games with more than two players. Jun et al. [21]
proposed a random game Q-learning algorithm to search
for the optimal strategy. In addition, according to the dif-
ferent effects of the reward function in the game task, the
algorithm can be divided into three different types: fully
cooperative, fully competitive, and mixed types [22]. The
reward functions for different agents in the fully cooper-
ative algorithm are the same and can be used in multi-in-
telligence systems with the same goal. The classic al-
gorithms are distributed Q-learning algorithms [23] and
team Q-learning algorithms [24]. The agents in the fully
competitive algorithm are in a state of competition with
each other in order to maximize their own returns while
minimizing others’ returns. Its classic algorithms include
the Minimax-Q learning algorithm [25] and the Nash-Q
learning algorithm [26]. The return function in the hybrid
algorithm is not related to each other and there is no de-
terministic rule. It is suitable for the study on the equilib-
rium solution in the game theory. Its classic algorithms
include the fuzzy Q-learning algorithm [27] and the cor-
related Q-learning algorithm [28].

In the study, through the full consideration of the ad-
vantages of multi-agents and reinforcement learning in
the field of gaming, a single-task multi-decision evolu-
tionary game model is proposed based on multi-agent re-
inforcement learning to explore the evolution of groups.
This model combines the evolutionary game theory to
perform a three-player evolutionary game. A negative
feedback tax penalty mechanism is proposed and an im-
proved Q-learning algorithm is used to optimize the ef-
fect of this mechanism. The algorithm in this paper can
take into account the individual’s incomplete rationality.
In addition, a calculation method of group intelligence
level is defined to evaluate the results of the group evolu-
tionary game. The simulation results show that the intro-
duction of the reinforcement learning algorithm can im-

prove the guiding role of the negative feedback tax pe-
nalty mechanism and promote the evolution of decision-
making group towards the direction of cooperation.

2. Key technical principles of the model

This paper proposes an evolutionary game model based
on multi-agent reinforcement learning to explore the
evolution rules in the game process. The key technical
principles involved in the model are described below.

2.1 Evolutionary game theory

The evolutionary game theory is an extension of the clas-
sical game theory. The significant difference between
them is that individuals in the evolutionary game theory
can be non-rational [29,30]. The main research object of
evolutionary games is the group game, namely, the game
of multiple individuals. In the game, the interactive chara-
cteristics of the group strategy are described below. Firstly,
there is no identity difference among individuals and the
only difference among individuals is the selected strategy.
Secondly, the group has only one strategy set and the
number of strategies is limited. Individuals choose strate-
gies from the strategy set. Individuals adopting the same
strategy have the same rewards and their rewards depend
entirely on the currently selected strategy. Thirdly, the re-
wards of each strategy are related to the number or pro-
portion of the choice of the corresponding strategy.

The evolutionary game model consists of two main
parts: group game and group state update, as shown in
Fig. 1. The group game consists of three parts: the num-
ber of individuals, the set of strategies, and the reward
utility function. Let the total number of individuals in the
group be N, and the strategy set be s ={1,2,---,m} (m is
the total number of strategies); x; is the total number of
individuals who choose strategy i € S. The group state is

x=(x;, %, ,x,), where x;€N and Zx,- =N. The
€S
group’s state set is X= {xlx,» € N,Zx,- = N}. The reward
ieS

of each individual is represented by the reward utility
function U; € X — R, which corresponds to its chosen
strategy. It represents the mapping from the state to the
set of real numbers.

The change of the group state caused by the change of
group time is the core of the evolutionary game. The
group’s decision-making action in the game process can

be analyzed according to the change of the group state
[31].
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Fig. 1 Components of the evolutionary game model

2.2 Framework of game learning

In the evolutionary game, the group state is updated by
adjusting its own strategy according to the game learning
rules, which generally include individual game rules and
information comparison rules with other individual
strategies and rewards. The above process is also called
game learning [32]. In each time step ¢, each individual
v; € v will continuously update its own strategy s;(f) € S;
during the game cycle, where s(f) = (s,(¢), s:(8),- -+, s,,(t)) €
S and s(#) is the current strategies combination of all in-
dividuals. Each individual gets rewards ;(¢f) = U;(s(?)).
Therefore, the discrete-time evolutionary game is defined
as atriple I' = (v,{S|v; € v},{U;|lv; € v}). The framework of
the game learning is shown in Fig. 2.
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Vs 1t
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Fig.2 Framework of game learning

The game learning rules are generally expressed as
1

sit+1) = H,-(]—[sm;]—[s_,-(k);u,»). (M
k=0

k=0
According to (1), all information utilized by each indi-

t

vidual v; € v has its own historical strategies l_[s,-(k),
k=0

t
other individuals’ historical strategies 1_[ s_i(k), its own
k=0

reward function U; and its own historical rewards

l—[m(k). Among them, the individual learning rule H;

can be divided into a deterministic function or a random
function according to the situation. Each individual can
determine the next strategy according to rules s;(r+1) €
S ;. The above learning rules are based on the assumption
that all individuals are completely rational and can obtain
all game information. In reality, individuals may not be
consistent with the above assumptions. Therefore, the
learning rules for bounded rationality and limited inform-
ation acquisition ability are expressed as

si(t+1) = Hi(si(0); s_.(0); Uy). 2

In other words, the memory ability of each individual
is changed from infinite memory ability to limited me-
mory ability, which is closer to the reality.

2.3 Learning framework of evolutionary game
based on multi-agent

Multi-agent is introduced into the evolutionary game and
each individual in the group is treated as an agent. Each
agent can interact with each other and freely choose a
strategy. Their own models, methods, and knowledge
bases form the basic agent structure. When an agent is
learning a game, it is defined as the main decision agent.
Through the agent structure, each agent can extract the
information required for its strategy selection from the
environment and other individuals during game learning
and simultaneously store the information into the know-
ledge base to establish its model library. Finally, based on
the information in the method library and game learning
information, a comprehensive analysis is performed to
complete the strategy selection. The remaining agents are
ordinary agents responsible for providing information to
the main decision agent. The framework of the evolution-
ary game based on multi-agent is shown in Fig. 3.

Interaction Interaction

Interaction - —

Main decision

Agent | == B Agent N
agent

Model Method |[Knowledge
library library library
v

Strategy

Fig.3 Framework of evolutionary game based on multi-agent
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2.4 Evolutionary game flow based on multi-agent
and reinforcement learning

Reinforcement learning is a special branch of machine
learning and shares the features of supervised learning
and unsupervised learning. Its core is the information in-
teraction between agents and the environment [33,34].
The mathematical framework of reinforcement learning is
based on the Markov decision process (MDP). The Mar-
kov process consists of five key parts:

(i) Agent state is X = {x|x,- eN, Z X; = N}.

i€S

(i1) The strategy adopted by the agent for state transfer
18 s(t) = (51(2), $2(2), -+, s.()) €S

(iii) The agent’s transition probability from the state x
to the state x’ according to the strategy s isp? ..

(iv) The probability that the agent who transits from
the state x to the state x’ according to the strategy s can
obtain the reward is R! ..

(v) The discount factor controlling the reward is .

In the process of reinforcement learning, the agent will
get corresponding rewards or rewards after the game
learning is completed. In general, if the strategy is good,
the reward is positive, otherwise it is negative. The agent
always hopes to get the maximum reward. The calcula-
tion formula of the reward is as follows:

Ro=rqtrop+-+rp (3)

where r; is the reward for the agent’s transition from one
state to another state within time step 7. If the task per-
formed is a continuous task without a final state, a dis-
count factor y needs to be introduced to maximize the re-
ward. The discount factor ranges from 0 to 1. Then, the
calculation formula of the rewards can be expressed as

2 k
R =1y +yria+y I’,+3+"'=Z’)/ Vivk+1. €]
k=0

The purpose of reinforcement learning is to find the
optimal strategy that enables each state of the agent to
achieve the correct action. A value function is needed to
represent the optimal degree of the agent in a specific
state under the strategy m. The hypothetical value func-
tion is denoted as V(s), which is the state value under a
certain strategy. The function is expressed as

Vi(x) = E;[R|x, = x]. (5)

Equation (5) represents the expectation of reward un-
der the strategy m and state x. Substituting (4) into (5)

gives
D i = x} : (©6)

k=0

Vi(x) = E,

In order to represent the optimal degree of a particular
action selected by an agent in a particular state under the
strategy , its state-action value function is defined as the
O function as follows:

Q" (x,a) = E;[R/|x, = x,a, = a]. @)

Equation (7) represents the expectation of reward for
the action @ under the strategy 7 and state x. Substituting
(4) into (7) gives

Q”(x,a) =E, Z'}/(rnkﬂ lx, = x,a, = al. (8)
k=0

In the evolutionary game process based on multi-agent
reinforcement learning, when the agent chooses a stra-
tegy, if the environment gives the positive feedback (the
reward value is good), the probability that the agent
chooses the same strategy will increase in the next round,
otherwise it will decrease. Therefore, the decision-mak-
ing agent will acquire knowledge, learn from the ac-
quired knowledge and the feedback given by the environ-
ment, and select a strategy. The flow of the evolutionary
game based on multi-agent reinforcement learning is
shown in Fig. 4.
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Reinforcement
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Evolutionary game flow based on multi-agent reinforce-

Fig. 4
ment learning

3. Original model

In order to better describe the cooperative relationship
and evolution rules in a group, a calculation method of
the group intelligence level is defined. Firstly, it is as-
sumed that each agent in the group has an intelligence
level 7, I € [0,1]. The intelligence level of the group is CI,
which is the sum of the intelligence levels of individual
agents in the group, CI = Z[ . When the individual
agents in the group are playing an evolutionary game, the
intelligence level of the group will be changed. Then, the
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intelligence level of the group is CI = ZI + Al, where
Al is the intelligent variation generated when individual
agents participating in evolutionary games choose differ-
ent strategies. According to this evolutionary game mod-
el, it is assumed that any three individual agents, namely,
Agent i, Agentj and Agent k, respectively, have intelli-
gence levels of I;, I;, and I,. When they choose different
strategies, intelligent variations are generated. The calcu-
lation formulas of intelligent variation for cooperation,
competition and inaction strategies are provided.

The formula for calculating the intelligent variation of
the cooperation strategy is

AI:Ii+1j+Ik+Ii'1j'lk_li_lj_lk=Ii'lj.lk' (9)

The formula for calculating the intelligent variation of
the competition strategy is

A[zmaX(Ii,[j,]k)_I,‘—Ij—[k. (10)

The formula for calculating the intelligent variation of
the inaction strategy is

The intelligence level per capita is defined as the ratio
of the group intelligence level to the total number of
people N . According to (9)—(11), in the evolutionary
game, the group intelligence level C/ may be any value
higher or lower than the sum of individual agent intelli-
gence levels Zl ,CI € (—00,+00). According to the mo-
del and the definition of the intelligence level, when all
the individual agents participating in the task adopt a co-
operation strategy, the intelligence level of the group is
the highest. The group has the lowest level of intelli-
gence when the inaction strategy is adopted. When a
competition strategy is adopted, the group has the medi-
um intelligence level. The significance of defining the
level of group intelligence is to provide an evaluation
method for different results produced by different
strategies adopted by the group in the process of game
evolution. The intelligence level of the group is used as
an indicator to measure the overall performance of the de-
cision-making group when completing a task. Based on
changes of the group intelligence level, the evolutionary
rule of the game and the efficiency of collaboration bet-
ween groups can be quantitatively analyzed. The changes
of the group intelligence level imply that a decision-mak-
ing individual not only applies the strategy in the three-
person game, but also brings it into work and interaction
with other individuals. In other words, an individual stra-
tegy is consistent with the behavior of an individual.

In order to explore the evolution rule of individual de-
cision in a group, a simple original evolutionary game
model is constructed. The original model is designed for
an extreme situation and can more intuitively reflect the
influences of key parameters in the model on the selec-
tion of the individual strategy and the evolution of the
group intelligence level. The model assumes that a group
completes a task together. The total number of individu-
als in the group is N and each individual is regarded as an
agent. The cost of completing the task is C and the re-
ward is R, where R>C. Each individual agent in the group
can freely choose its own strategy during the evolution-
ary game and obtain the right to participate in the task by
playing the game through the selected strategy. The set of
strategies can be divided into three types: cooperation
strategies (those who adopt the strategies are called co-
operator, referred to as Co), competition strategies (those
who adopt the strategies are called defender, referred to
as D), and inaction strategies (those who adopt the
strategies are called loner, referred to as L). After the in-
dividual agents determine their own strategies, the group
will sequentially perform a non-repeating three-person
random game and the winners in the game will jointly
complete the task. The judgment results of game rules are
shown in Table 1. The combination order is not con-
sidered in strategy combinations. For example, the com-
binations Co Co D, Co D Co, and D Co Co use the same
game rules. The game rule is extended from the two-per-
son game decision rule (when the strategy combination is
Co Co, both win; when the strategy combination is Co D,
D wins; when Co L, Co wins, when the strategy combina-
tion is D D, a random one wins; when the strategy com-
bination is D L, D wins; when the strategy combination is
L L, no one wins) and stipulates that two of the three are
randomly selected to play the two-person game. The win-
ner and the remaining person continue to play the game
to select the final three-person game winner. The indi-
vidual agent that chooses a competitive strategy can only
win once, and the two of the three who choose the same
strategy have the priority to play the game. For example,
when a three-person game is played, two persons choose
a cooperative strategy and one person chooses a competi-
tive strategy. The two persons who choose a cooperative
strategy will play the game first. Both of them will win,
and then play a game with the remaining agent who
chooses a competitive strategy. The agent will arbitrarily
choose because we only care the number of the final win-
ners. Whoever wins does not affect the number of the fi-
nal winners. In the end, the winners of the three-person
game are one of the agents that chooses the cooperative
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strategy and the one that chooses the competitive stra-
tegy. In summary, this rule ensures that the final result of
the strategy combination is not affected by the sequence
of the combination. For example, the winners of the com-
binations of Co Co D, Co D Co, and D Co Co are all Co
D (any one of Co).

Table 1 Game rules decision tables
Combinat@on of Winner Combinat@on of Winner

strategies strategies

Co Co Co Co Co Co CoDL D

Co CoD  Co D (any one of Co) DDD D (any one of D)
CoColL Co Co DLL D
CoDD D (any one of D) DDL D (any one of D)
CoLL Co LLL none

In the model, it is assumed that the cost of completing
the task is borne by all the agents participating in the task,
whereas the rewards of the task are shared equally by all
individual agents in the group. In other words, a “free-
rider” action that an individual agent who does not parti-
cipate in the task shares the reward is allowed. If the
number of individual agent participating in the task is a,
at time ¢, the rewards that can be obtained by the indi-
vidual agent participating in the task are expressed as

R C
H=——-—. 12
OB (12)
The rewards obtained by an individual agent who does

not participate in the task can be expressed as
R
1H=—. 13
)= (13)

The evolutionary game learning process is described as
follows. After one round of the game is completed, each
agent will randomly select a certain number of subgroups
for strategic comparison learning. The individual learn-
ing agent is also the main decision-making agent. If its
own reward is less than the minimum value of the sub-
group, the individual agent will copy the strategy of the
individual agent with the largest reward in the subgroup.
When all individual agents have completed the game
learning, they will start the next round of the game and
continue to advance the evolutionary game process until
the game ends.

According to the model settings, the key parameters
that affect the reward and game learning process include
task cost C and task reward R. In order to facilitate the
description of the relationship between rewards and cost,
a simulation experiment is performed on the evolution-
ary game model with the reward-cost ratio R/C. In real

life, the individual’s ability to interact with other indi-
viduals is limited, so the number of subgroups is set to 4.
The total number of individual agents N in the group is
set to be 500 and the evolutionary game involves 100
rounds. The experiment is repeated 300 times. In the
evolutionary game process, the proportions of individual
agents choosing different strategies in the group and the
group intelligence level under different reward-cost ra-
tios are shown in Fig. 5 (for a clearer display of the
changes in different reward-cost ratios, enlarged parts are
added).
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Fig. 5 Proportions of different strategies and the intelligence level
of the group in the evolutionary game

Fig. 5(a)—Fig. 5(c) show the changing trend of the pro-
portions of individuals choosing different strategies in
groups with different reward-cost ratios. In the evolution-
ary game, under different reward-cost ratios, the propor-
tion of choosing cooperation and competition strategies
shows an obvious downward trend, whereas the propor-
tion of choosing the inaction strategy shows an obvious
upward trend. For the cooperation strategy, when the re-
ward-cost ratios are at a small or intermediate value
(R/C=1.5, R/C=2 or R/C=2.5), the proportion of the co-
operation strategy in the population is suppressed. When
the reward-cost ratio R/C is large (R/C=3), the proportion
of the cooperation strategy in the population has an ad-
vantage. The smaller the selected proportion of the co-
operation strategy in the group is, the larger the selected
proportions of the inaction strategy and the competitive
strategy in the group are. When the evolution is stable,
the intelligence level of the group with different reward-
cost ratios shows a significant decline (see Fig. 5(d)).
When the reward-cost ratio is 3, the intelligence level of
the group is the highest and the group collaboration ef-
fect is also the best.

In summary, due to the acquiescence of the “free-rider”
action, the task income is unfairly distributed and the in-
dividual agents in the group are always prone to choose
the inaction strategy regardless of the change in the re-
ward-cost ratio, so as to ensure their own rewards. How-
ever, the task participation rate remains to be at a low
level. Due to the sharp decline in the proportion of choos-
ing cooperation strategies, the group intelligence level
will be greatly reduced, thus negatively affecting the
completion of tasks. In the setting of the original model,
when all individuals choose a cooperation strategy, the
group has the highest intelligence level and the best task
completion effect, and the “free-rider” action does not

promote the group to evolve towards the cooperation di-
rection. Therefore, the model needs to be improved in
such a way that it can guide the evolutionary game direc-
tion of the group to the ideal situation and reduce the pro-
portion of choosing the inaction strategy.

4. Improved model based on the negative
feedback tax penalty mechanism

The simulation results of the original model indicate that
it is necessary to restrict the “free-rider” action in the
group. Therefore, we optimize the reward rules of indi-
vidual agents, increase taxes to appropriately reduce the
rewards of individuals who do not participate in the task,
and reward the taxes to the individual agents who parti-
cipate in the task. In this way, the group is guided to
evolve towards the cooperation direction and the group
intelligence level is improved. In reality, the formulator
of the reward rules may be the leaders of enterprises, in-
stitutions and government departments. According to (12)
and (13), individuals who have not participated in the
task can obtain rewards without any cost. In order to pu-
nish the individual agents who do not participate in the
task, the model increases the tax rate 7 (0 <7<1) to tax
the individuals who do not participate in the task and
transfer the tax equally to the individuals who participate
in the task. In this way, the secondary distribution of the
rewards is realized. The smaller the value of T is, the
lighter the punishment effect on the “free-riding” action
is. Therefore, the rewards of individuals who are not in-
volved in the task are higher than the rewards of indivi-
duals who participate in the task and the number of agents
participating in the task decreases. This process is a ne-
gative feedback process. The purpose of introducing a ne-
gative feedback tax rate 7 is to reduce the “free-riding”
action through the evolutionary game learning process
from others and increase the task participation rate. Then,
the group evolves towards the cooperative direction. If
the punishment is too large, it brings out higher costs and
is not conducive to the evolution stability of the group.
Therefore, the value of the tax rate 7 depends on the re-
sult of the evolutionary game. If the number of indivi-
duals participating in the task is a, at time ¢, the rewards of
the individuals participating in the task are expressed as

R _C RT(N-a) 14)

H=—
() N a aN

The rewards of individuals who have not participated

in the task are expressed as
R(1-T)
H=———.
(1) N
The model proposes a tax rate penalty mechanism with

negative feedback characteristics as follows:

(15)
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af
T=1-— 16
N (16)

where N is the total number of people in the group; a is
the number of people participating in the task and related
to the result of each round of evolutionary games; S is a
negative feedback factor, a preset parameter of external
forces (its value is about 1 based on the consideration of
the actual tax rate). Fig. 6 shows the variation of the tax
rate T with the number of participants under N = 30 and
B=1,0.5and 1.1.
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Fig. 6 Variation of the tax rate T with the number of participants

As shown in Fig. 6, when 8 =1, the tax rate T is the
standard negative feedback and its value decreases as the
participation rate increases. When S < 1, the penalty ef-
fect of the tax rate T is gradually weakened. With the de-
crease in the number of people participating in the task
decreases, the value of 7' decreases and the decreasing
rate of T also decreases. When 8 > 1, the penalty effect of
the tax rate T is gradually increased. The value of T de-
creases significantly with the increase in the number of
participants, and the decreasing rate of 7 gradually in-
creases. When ¢ is 0, the model under the negative feed-
back tax penalty mechanism becomes the original model
and the original model can be regarded as a special case.

The simulation is performed with the improved model
under the negative feedback tax penalty mechanism. The
value of § is about 1, so the six values of B are respect-
ively set as: 0.96, 0.98, 1, 1.02, 1.04, and 1.06. Accord-
ing to the analysis results of the original model, the re-
ward-cost ratio of 3 is more conducive to the guidance of
the cooperation strategy. Therefore, the reward-cost ratio
is set as 3. The number of individual agents N in the
group is 500. The evolutionary game involves 100
rounds. The evolution of the proportions of individual
agents choosing different strategies in the groups under
different B values and the group intelligence level are
shown in Fig. 7.
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Fig. 7(a)-Fig. 7(f) show the changing trend of the pro-
portions of individual agents choosing various strategies
in groups under different reward-cost ratios. When the
negative feedback factor 8 = 1.06, the proportion of indi-
vidual agents choosing a cooperation strategy is increas-
ing significantly and eventually stabilized at a higher
level. When the negative feedback factor g is 0.96, 0.98,
1, 1.02, and 1.04, the proportion of individual agents
choosing a cooperation strategy firstly shows a tempor-
ary upward trend, then significantly declines and is fi-
nally remained at a lower level. When S = 1.06, the best
guidance effect on the cooperation strategy is realized
and the proportion of individual agents choosing a co-
operation strategy is greatly increased. When other § va-
lues are set, during the learning process, the individual
agent gradually finds that the rewards of inaction strate-
gies in the task are more advantageous than the rewards
of other strategies, and turns to other strategies that are
more beneficial to the rewards. When the evolution is
stable, cooperation strategies are rarely used. The chan-
ging trend of the proportion of the competitive strategy is
opposite to that of the cooperation strategy. When =
1.06, the competitive strategy is almost not adopted.
When other B values are taken, the competitive strategy
is the main strategy adopted by individual agents. The in-
action strategy has the least probability to be adopted un-
der the new game learning rules.

As shown in Fig. 7(g) and Fig. 7(h), when the evolu-
tion is stable, under different 8 values except S = 1.06,
the group intelligence level firstly increases significantly
and then remains stable. The group intelligence level un-
der other 3 values decreases significantly. The change of
the intelligence level is related to the trend of the propor-
tions of cooperation strategies. If the proportion of indi-
vidual agents choosing a competition strategy shows an
upward trend, the group intelligence level also shows an
upward trend.

In a word, the game learning rules of the negative feed-
back tax penalty mechanism play a more significant role
in limiting the adoption of inaction strategies. Regardless
of the value of B, the proportion of individual agents
choosing an inaction strategy is almost 0, because the
secondary distribution of rewards is not good for agents
who are not involved in the task. Under the majority of 8
values, the dominant strategy is the competition strategy.
Compared with the original model, the improved model
increases the number of people participating in the task,
but it has a certain inhibitory effect on the intelligence
level of the group. When S = 1.06, the dominant strategy
is the cooperation strategy. The effect of guiding the
group to evolve towards the cooperation mode is the best
and the group intelligence level is also improved. When
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the value of B is less than 1.06, the penalty effect is
weakened. Although the group has a tendency to choose a
cooperation strategy in the initial stage of the evolution, it
is eventually replaced by a competition strategy, which
limits the number of people who actually participate in
the task and is not conducive to the improvement of the
group intelligence level. It can be seen that although the
negative feedback tax punishment mechanism increases
the number of people participating in the task and has a
certain chance to change the group evolution towards the
cooperation direction, the dominant strategy is still the
competition strategy. In other word, the negative feed-
backtaxpunishmentmechanismcannotalwaysguidetheevo-
lutionary game direction of the group towards the ideal
situation. In reality, the formulators of the reward rule
need to reasonably formulate the relevant parameters in
the negative feedback tax penalty mechanism in order to
better guide the group.

5. Improved model based on reinforcement
learning algorithms

In the evolutionary game of individual agents in the
group, an agent continuously exchanges information with
other agents and makes decisions. The agent has a cer-
tain ability of autonomous learning. If the model is im-
proved by combining the evolutionary game process with
reinforcement learning, it can better guide the direction of
the evolutionary game and realize a more ideal evolution-
ary situation. In the original model, all individual agents
are assumed to be fully rational individuals. In reality,
game individuals may not always be completely rational.
Players sometimes do not follow the rules of game learn-
ing when choosing strategies. Therefore, in the improved
model based on reinforcement learning, the bounded ra-
tionality of individuals will be reflected to some degree.
The original model is built in the Markov decision
framework and recorded as the Markov process in a dis-
crete finite state, < S,A,r, p >, where S and 4 are respect-
ively discrete state space and action space, r is the re-
ward function of the agent individual. When the indivi-
dual participates in the task, » is determined by (14).
When the individual is not involved in the task, » is de-
termined by (15). p is a transition function determining
the transition from one state to another when an indivi-
dual chooses a certain strategy. However, in the evolu-
tionary game process, the transfer function of the model
is unknown, so a special reinforcement learning method,
Q-learning algorithm, is required. It can learn without the
known transfer function and be suitable for the combina-
tion with evolutionary games. In the Q-learning al-
gorithm, the state value is not considered, but the value of

the state-action pair Q(s,a ), namely, the role of selecting
the action « in a certain state s, should be considered. The
O value is updated from time 1. At time ¢, the O value of
time #—1 is updated according to the following formula:

O(si-1,a,.1) = Q(8-1, a1+
a(r+ymax Q(s,,a,) — O(s.1,a,1)) (17)

where « €[0,1] is the learning rate; y is the discount
factor; s, and a, are the states and behaviors at time z.
Based on the model setting, the values of s, and q, are
taken from corresponding state space S and behavior set
A according to the above rules. The Q-learning algorithm
generally uses & greedy strategy to update strategy selec-
tion. In order to combine the Q-learning algorithm with
the evolutionary game model, based on the consideration
of the bounded rationality states of different individuals,
the traditional & greedy strategy is improved to obtain a
bounded rationality evolutionary game strategy. The prin-
ciple is shown in Fig. 8.

Randomly
selected action

Random
number (7) r=e

max (O (Srandomis Frandom1)s O (Srandom2> Frandom2)s
O (Standoms> Frandom)s @ (Srandomds Frandoma))

Fig. 8 Bounded rationality evolutionary game strategy

Under this strategy, all behaviors are selected with a
non-zero probability €. Due to the bounded rationality of
an individual agent, it does not always learn from other
individuals through the comparison of O value in the se-
lection of strategies. Therefore, in the evolutionary game
strategy of bounded rationality, the individual randomly
chooses the strategy in the next round of game with the
probability of & and compares the O value with that of
other four random agents with the probability of 1 —¢. Fi-
nally, the strategy with the largest O value is chosen as
the strategy in the next round of game.

In the single-task and multi-decision evolutionary game
model based on multi-agent and reinforcement learning,
an individual agent selects the strategy used in each round
of the game through the Q-learning algorithm. According
to the evolutionary game rules, the state of the reinforce-
ment learning algorithm is set as a three-person strategy
combination. According to Table 1, the action set or
strategy set is A={<Co Co Co>, <Co Co D>, <Co Co L>,
<Co D D>,<Co L L>,<Co D L>,<Co Co Co>,<D D D>,
<DL L> <D D L>, <L L L>}, ten types in total. There is
no difference of the order among strategy combinations.
For example, the game rules used by CoCoD, CoDCo,



652 Journal of Systems Engineering and Electronics Vol. 32, No. 3, June 2021

and DCoCoare the same. The state spaceis S = {0.96,0.98,
1.1,1.02,1.04,1.06}, six types in total. The state space
refers to the different values of 8. The reward is deter-
mined by (14) and (15). The steps of the evolutionary
game process are provided as follows:

Step 1 Initialize the O value table.

Step 2 Play a non-repeating three-person random
game.

Step 3 Calculate the rewards of all individual agents
according to (14) and (15).

Step 4 Select the strategy for the next round of
games based on the bounded rationality evolutionary
game strategy.

Step 5 Update Q table according to (17).

Step 6 Repeat Steps 2—5. Continue to play a new
round of games until the specified number of rounds and
then stop the game process.

The simulation is performed with the improved model
under the reinforcement learning algorithm. Six values of
B (0.96, 0.98, 1, 1.02, 1.04 and 1.06) are simulated re-
spectively. The number of individual agents in the group
is 500 and the reward-cost ratio is 3. The evolutionary
game involves 1000 rounds and the simulation is re-
peated 300 times.

The error of O value under different 8 values can con-
verge. In one simulation, the change of O value error un-
der the 8 value of 1 is shown in Fig. 9.
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It can be seen from Fig. 9 that the O value error firstly
fluctuates greatly, then gradually decreases and finally
becomes stable with the increase in the rounds of the
evolutionary game.

In a simulation of the evolutionary game under the 8
value of 0.96, Fig. 10 shows the proportions of indivi-
dual agents choosing different strategies in the group. It
can be seen that in the evolutionary game process, the
proportions of individual agents choosing each strategy
fluctuate slightly. The proportion of cooperation strate-

gies shows a clear upward trend, whereas the proportions
of competition and inaction strategies show significant
downward trends. The strategy with the highest propor-
tion is the cooperation strategy and the strategy with the
lowest proportion is the inaction strategy. The above re-
sults show that the introduction of reinforcement learn-
ing algorithms can effectively guide the group to evolve
towards the direction of cooperation. In order to clearly
show the proportion of individual agents choosing each
strategy in the stable evolutionary game process under
different values of negative feedback factor S, the aver-
age of the proportion of individual agents choosing each
strategy in the last 100 rounds of the evolutionary game is
used as the final evolutionary game stability result.
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tegies in the evolutionary game

Proportions of individual agents choosing different stra-

The proportions of individual agents choosing each stra-
tegy is shown in Fig. 11. It can be seen from Fig. 11(a)
and Fig. 11(b) that under different 8 values, the propor-
tion of individual agents choosing the cooperation stra-
tegy is significantly higher than those of individual agents
choosing the competition and inaction strategies when the
evolutionary game is stable. Moreover, the stable results
of the proportions of individual agents choosing different
strategies are not significantly different. The differences
among the proportions of the same strategy under differ-
ent S values are smaller after the reinforcement learning
algorithm is introduced. The proportion of individual
agents choosing the competition strategy tends to de-
crease as the value of B increases. When the evolutionary
game is stable and S is 0.96, the proportion of individual
agents choosing the competition strategy is the highest.
When S is 0.96, the improved model allows the best
guiding effect on the group evolutionary game. When 8
is 1.06, the proportion of individual agents choosing the
competition strategy is the lowest.
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When the value of 8 is 0.96, the evolutionary game ef-
fect of the model is the best. The evolutionary game re-
sults under the fixed selection value are compared with
those based on the Nash-Q learning algorithm, the Monte
Carlo method and the genetic algorithm. All the algori-
thms have 1000 rounds of evolutionary games and are re-
peated 300 times. Among them, the genetic algorithm
takes every 100 rounds as a generation, and the game
learning at the end of each generation adopts the classic
uniform crossover operation of the genetic algorithm. Wh-
en the evolutionary game of different methods is stable,
the proportion of each strategy is obtained (see Table 2).

Table 2 Percentage of each strategy

Proportion of Proportion of Proportion of

Algorithm cooperation  competition inaction
strategies strategies strategies
Algorithm of this article 0.54 0.23 0.23
Nash-Q learni
ash-Q learning 0.51 0.25 024
algorithm
Monte Carlo method 0.47 0.27 0.26
Genetic algorithm 0.45 0.26 0.29

It can be seen from Table 2 that the algorithm pro-
posed in this paper has the best effect on the evolutionary

game of the model since its cooperation strategy ac-
counts for the highest proportion.

According to the previous analysis, the trend of the in-
telligence level of the group is related to the trend of the
proportion of individual agents choosing the competition
strategy. In the evolutionary game under the same S
value, the proportion of individual agents choosing the
competition strategy shows the increasing trend, so the
group intelligence level also increases. In order to clearly
show the changes in the group intelligence level under
different B values, the group intelligence level in the ini-
tial stage of the evolution is compared with that in the fi-
nal stable stage. The average value of the group intelli-
gence level in the first 100 rounds is taken as the result of
the starting stage and the average value of the last 100
rounds is taken as the final stable result. The group intel-
ligence level is shown in Fig. 12.
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Fig. 12 Group intelligence level in the initial stage and end of the
evolutionary game under different values of

It can be seen from Fig. 12 that under different 8 va-
lues, the group intelligence level in the stable stage of the
evolutionary game is significantly higher than that in the
initial stage of the evolutionary game. The group intelli-
gence level is the highest under the 8 value of 0.96 and
the lowest under the S8 value of 1.06.

The simulation results show that the single-task multi-
decision evolutionary game model based on multi-agent
and reinforcement learning can effectively guide the
group’s evolutionary game direction to evolve towards
the ideal situation under the different effects of the nega-
tive feedback tax penalty mechanism. The improved mo-
del improves the group intelligence level and promotes
the completion of the task. In reality, if the group per-
forms an evolutionary game according to this model, the
formulator of the income rules may not pay too much at-
tention to relevant parameters in the negative feedback
tax penalty mechanism, which can effectively guide the
evolutionary game effect of the group. When the task
completion requirements are high, relevant parameters in
the negative feedback tax penalty mechanism should be
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considered in the formulation of reward rules.

The above simulation results are based on a group
composed of a fixed number of people. In order to study
the effect of the size of the group on the simulation re-
sults under different feedback factor values, 1 000 rounds
of evolutionary game simulation experiments in the range
of [100,500] are performed and repeated 500 times. Nega-
tive feedback factor S is respectively set to be 0.96, 0.98,
1, 1.02, 1.04, and 1.06 and the reward-cost ratio is 3. The
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average of the last 100 evolutionary game results is used
as the stable evolution result and 500 repeated experi-
mental results are averaged. Fig. 13 shows the changes in
the proportion of individual agents choosing each strategy
as well as the average individual intelligence level in the
stable evolution under different values of the feedback
factor 5. In order to more clearly display the changes un-
der different reward-cost ratios, partial enlarged views are
added in Fig. 13(b), Fig. 13(d), Fig. 13(f), and Fig. 13(h).
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Fig. 13  Variations of the proportions of individual agents choosing each strategy and the average individual intelligence level with group

size under different S values

Fig. 13(a)-Fig. 13(f) show that under different 8 val-
ues, the proportion of individual agents choosing the co-
operation strategy in the stable evolution increases slig-
htly as the group size increases. The proportions of indi-
vidual agents choosing the competition strategy and the
inaction strategy show downward trends. With the in-
crease in the group size, the increasing or decreasing
trend of the proportion of each strategy increases and the
advantages of cooperation strategies become more signi-
ficant. When the group size increases to 300 or more, the
proportions of individual agents choosing different stra-
tegies remain stable. The further increase in the number
of the individual agents will no longer affect the final
proportion of each strategy. The dominant strategies un-
der different 8 values are cooperation strategies and the
strategies with the smallest proportion are inaction stra-
tegies. As the value of S increases, the proportion of co-
operation strategies decreases, whereas the proportions of
competition and inaction strategies increase. When the
evolutionary game is stable and S is 0.96, individual
agents choosing the cooperation strategy accounts for the
largest proportion. When g is 0.96, the improved model
shows the best guiding performance in the group evolu-
tion game. When g is 1.06, the proportion of individual
agents choosing the cooperation strategy is the lowest. It
can be seen from Fig. 13(g) and Fig. 13(h) that when the
evolution is stable, with the increase in the group size, the
average individual intelligence level increases slightly
and remains stable. When the group size increases to
above 300, the average individual intelligence level is no
longer affected by the group size. When the evolutionary
game is stable and the value of 8 is 0.96, the individual
intelligence level is the highest and the rules of the game
at this time have the best effect on the group’s coopera-
tion and guidance.

Fig. 14 shows the variations of the penalty tax rate in
the evolutionary game process with the group size in the
stable evolution under different B values.
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Fig. 14 Variation of tax rate levels with group size under different
B values

As shown in Fig. 14, as the value of § increases, the
penalty tax rate also increases and its value slightly de-
creases with the increase in the group size. If more people
actually participate in the task, the value of the penalty
tax rate decreases, but the effect of the decrease is relat-
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ively weak.

As shown in Fig. 13 and Fig. 14, the increase in the
penalty tax rate increases the proportion of individual
agents choosing the cooperation strategies and the aver-
age individual intelligence level, and the change in the
group size has a limited impact on the level of the pen-
alty tax rate and the proportion of individual agents choos-
ing each strategy. With the increase of the group size, the
evolutionary game direction of the group can be better
guided towards the ideal situation, but the guiding effect
reaches its limit when the group size increases to a cer-
tain degree.

6. Conclusions

In this paper, a multi-decision evolutionary game task is
constructed to study the evolution rules of groups in the
game process. After introducing the concept of multi-
agents into the evolutionary game process, a tax rate pe-
nalty mechanism with negative feedback characteristics is
proposed to guide the selection of individual strategies in
the group. In addition, a calculation method of the group
intelligence level is defined to evaluate the result of the
group evolution game. The simulation results show that
the value of the negative feedback factor determines the
strategy selection result of individual agents to a certain
degree. When the value of the negative feedback factor 8
is 1.06, it can effectively increase the proportion of indi-
vidual agents choosing cooperation strategies as well as
the group intelligence level and guide the group to evolve
towards the ideal evolution direction. The tax rate punish-
ment mechanism has limited guidance in the evolution-
ary game process. Most of the values of negative feed-
back factor 8 cannot effectively improve the evolution-
ary game results of the group. To solve this problem, this
paper proposes a single-task multi-decision evolutionary
game model based on multi-agent and reinforcement
learning. The model combines multi-agents with Q-learn-
ing algorithms in the process of evolutionary games, im-
proves the selection strategy of Q-learning, and proposes
a bounded rationality evolutionary game strategy. This
learning strategy not only reflects the rules of evolution-
ary games, but also takes into account the bounded ra-
tionality of individual agents. The simulation results of
the model show that in the stable stage of the evolution-
ary game, different values of the negative feedback factor
B can guide the evolutionary game to evolve towards the
cooperation direction and improve the group intelligence
level. The simulation results also confirm the impact of
the group size on the model. The increase in the group
size can increase the proportion of individual agents
choosing cooperation strategies as well as the group intel-
ligence level to a certain degree. However, when it in-

creases to a certain scale, it will no longer affect the re-
sults of evolutionary games.

In summary, the model proposed in this paper can ef-
fectively guide the evolution direction of the group in the
single-task multi-decision game and explores the penalty
tax rate and the group size in the evolutionary game.
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