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Abstract: The maintenance model of simple repairable system
is studied. We assume that there are two types of failure, namely
type | failure (repairable failure) and type Il failure (irrepairable
failure). As long as the type | failure occurs, the system will be re-
paired immediately, which is failure repair (FR). Between the
(n—1)th and the nth FR, the system is supposed to be prevent-
ively repaired (PR) as the consecutive working time of the sys-
tem reaches 1"~'T, where 1 and T are specified values. Further,
we assume that the system will go on working when the repair is
finished and will be replaced at the occurrence of the Nth type |
failure or the occurrence of the first type Il failure, whichever oc-
curs first. In practice, the system will degrade with the increas-
ing number of repairs. That is, the consecutive working time of
the system forms a decreasing generalized geometric process
(GGP) whereas the successive repair time forms an increasing
GGP. A simple bivariate policy (T,N) repairable model is intro-
duced based on GGP. The alternative searching method is used
to minimize the cost rate function C(N,T), and the optimal
(T,N)* is obtained. Finally, numerical cases are applied to
demonstrate the reasonability of this model.
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1. Introduction

Power systems and network systems are closely related to
the modern life. Once these systems fail, people’s lives
and work will be paralyzed. In order to improve the sys-
tem stability, reduce the probability of system failure and
upgrade the operation efficiency, we try to find an optimal
maintenance model and the corresponding optimal policy.

Take the production line of a food processing plant for
example. Once the system fails, the entire plant will stop
running. The downtime loss is very huge. Therefore, how
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to minimize the sudden failure rate of the production line
is an urgent problem we have to consider. If an optimal
model of the production line and its optimal strategy re-
sult in the lowest operation cost or a higher rate of return
of a production circle which starts from the work to the
replacement of the production line, this will have a great
impact on the factory, reducing the production cost. In the
increasingly fierce food processing market, cost reduc-
tion is an effective strategy to gain competitive advan-
tages and compete against others. Therefore, reducing the
cost while maintaining quality and quantity of the
products are the important goals pursued by the factory.

Generally, the perfect maintenance model is fre-
quently studied, in which a failed system after repair will
be as good as new. However, this does not suit all the
systems. Another minimum maintenance model is pro-
posed as well, which means that the system can continue
to work after being repaired but the system performance
will degrade[1,2]. Moreover, for some systems, it is un-
realistic to have a person observe their status for 24
hours. Then, Barlow et al. first came up with a model to
detect the status of the system at some specific time
points [3]. This model can effectively reduce the system’s
sudden failure rate, thus reducing the unit cost of the sys-
tem operation. Nakagawa introduced a model in which
the system is periodically checked to decide whe-
ther it needs to be replaced, and the optimal detection
number that minimizes the system operating cost also is
given [4]. Later on, Vaurio put forward a periodic inspec-
tion model with preventively repaired (PR) actions for
normal operating systems and safety standby systems [5].
Cheng and Li also presented a periodic inspection model
based on the geometric process (GP) for simple repair-
able systems [6]. In their model, the system is supposed
to be repaired when its working time reaches T or en-
counters a failure, and it should be replaced when the
number of failures reaches the fixed times N.

In practice, the accumulation of operation times,
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coupled with the increasing number of failure repair (FR)
and the effect of environment, will cause loss to many
systems. In other words, the consecutive working time of
the system randomly decreases after FR while the repair
time interval increases unexpectedly. The GP was pro-
posed in [7,8] to model these monotonic processes. In
Lam’s study, the system will be replaced when the work-
ing time of the system reaches 7T or the failure number
reaches N (only considering repairable failures). The GP
is theoretically reasonable and it has also been verified in
numerical examples. Lam et al. applied the GP to simu-
late a real data set. By comparing the GP with the homo-
geneous Poisson process and two non-homogeneous
Poisson processes, it is shown that the result based on the
GP is better than the others in the simulation of the data
set [9]. The monotonic process modelled by the GP is
uniformly decreasing, that is, the expectation of the con-
secutive working time of the system is uniformly redu-
cing with the increasing number of failures. However,
that is unreasonable, because there are many factors that
cause the loss of the system to be different each time,
such as the influence of the cumulative effect of the fail-
ures, the degree of each failure and the difference of each
maintenance team, as well as the effect after the repair.
Many researchers have been devoted to improving GP.
The generalized GP (GGP) was proposed in [10,11]. In
GGP, the geometric ratio of every repair is different,
which is more reasonable.

Considering the maintenance and replacement of the
system, many people have done research on two inspec-
tion models, including periodic inspection and random in-
spection. In [12], Wang considered two types of checks in
the delay time setting. Nakagawa et al. summarized the
strategies for periodic inspection and random inspection
[13]. Chen et al. applied periodic and random inspection
strategies to computer systems [14]. Cheng and Li stu-
died the GP maintenance model proposed by Lam. They
assumed that when the system failed, it can be detected
by inspection [6]. Chen et al. introduced two kinds of
failure competition, which are degradation failure and
sudden failure. The preventive maintenance is carried out
when the system performance level is degraded within a
certain range, the degradation failure repair maintenance
is carried out when the components are completely de-
graded, and the sudden failure repair maintenance is per-
formed when the system performance level is in a certain
range [15]. In those researches, they dealt with only one
failure type. However, it is not enough to consider only
one failure type in real life. Sheu et al. introduced a gen-
eralized replacement model, which attempts to deal with
two failure types. And the system is replaced when the
Nth type I failure or the first type II failure occurs, which-
ever occurs first. And the probability of occurrence of
type II failure is related to the number of type I failure

that has occurred since the last replacement [16,17].

Based on the above research, it can be found that regu-
lar inspection and preventive repair of the running sys-
tem can effectively reduce the system’s sudden failure
rate and extend its life. Therefore, it is a meaningful
measure to consider preventive repair and FR together.
For more information on the application of preventive
maintenance, please refer to [18—21]. Considering the ef-
fects of FR and cumulative operation of the system, the
system is gradually deteriorating. Therefore, the continu-
ous working time of the system decreases randomly and
the continuous repair time increases randomly. Com-
pared with GP and extended GP (EGP), GGP are more
extensive. More applications of GP and EGP can be
found in [22—29]. The GP describes a monotonic process
of uniform deterioration, which is obviously more lim-
ited. The EGP combines the “perfect repair model” and
the deterioration model after repair. Among them, the
monotonic process is described by the GP. This model
considering two situations of repair, which are “repair as
new” and uniform deterioration. While the GGP can de-
scribe the monotonic process that its degree of deteriora-
tion has gradually increased unevenly. The deterioration
process depends on the environment, conditions and ef-
fects of each FR, that is, it is reasonable that the degree of
deterioration is increasing. With the increasing number of
failures, the system becomes worse, and the degree of de-
terioration becomes larger. Therefore, the GGP can be
broader and more reasonable to describe the monotonic
process with different degrees of deterioration. In addi-
tion, considering two replacement modes, the mainten-
ance model of the system is more abundant.

This paper introduces an optimal policy to solve this
problem. We consider the model with two kinds of repair,
which are PR and FR. When the system breaks down be-
fore the due testing time, it is assumed that there are two
types of failure, namely type I and type II. As long as the
type I failure occurs, the system will be FR. Between the
(n—1)th and the nth FR, the system is supposed to be PR
as the consecutive working time of the system reaches
AT, where 2 and T are specified values. That is, the
time interval of inspection is A"~'T, and A is an indicator
meaning that the detection interval is shortened, and 7 is
a parameter. The system will go on working as soon as
the repair is finished and will be replaced at the occur-
rence of the Nth type I failure or the first type II failure,
whichever happens first. In practice, the system will de-
grade with the increasing number of repairs. That is, the
consecutive working time of the system forms a decreas-
ing process, while the time interval of repairs forms an in-
creasing process. The GGP is used to illustrate these two
processes, and a simple bivariate policy repairable model
is introduced based on GGP. The alternative searching
method is used to minimize the cost rate function C(N, T),
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then the optimal (7, N)* is obtained. Finally, the numerical
cases are applied to demonstrate the reasonability of this
model.

Section 2 is devoted to the model establishment. Sec-
tion 3 is devoted to the optimizing of the objective func-
tion, and an algorithm is presented to find the optimal
solution (7,N)*. Section 4 includes the numerical ex-
amples and the conclusions are given in Section 5.

2. Model analysis

2.1 Definitions

We give the definitions of stochastic order, GP and GGP.
Definition 1 Given two random variables X and Y, if
for all ¢, there is

PXz2nH>P(Y>1),

then X is said to be stochastically larger than Y, which is
denoted as X>,Y or X<,Y [30].

Definition 2  Given a random process {M,, k=
1, 2,---}, for all n, there is

Mk <st(>st)]‘4k+1 .

Then, {M,, k=1, 2,---} is called the randomly increas-
ing (decreasing) process.

Definition 3 A sequence of non-negative random
variables {M,,k > 1} is said to be a GP with ratio a > 0, if

(i) the random variables are mutually independent;

(ii) for all integers k > 1, the cumulative distribution
function (CDF) of M;is Q.(®)=Q(d*'t)and Q,(1)=
().

When a>1, {M;,k>1} is a decreasing GP; When
a<l1, {M,k>1} is an increasing GP; When a=1,
{M,,k > 1} degenerates to a renewal process.

The ratio a is a positive constant, in the maintenance
model, which means that the system uniformly deterior-
ates after FR. In fact, the loss rate of the system varies
with the increasing number of FR and other factors.

Definition 4 A sequence of non-negative random
variables {M,,k > 1} is called the GGP with ratios a;,
-, if

(i) the random variables are mutually independent;

(ii) for all integers k > 1, a; > 0;

(iii) for all integers k > 1, the CDF of M, is Qi(?) =
O(At), and Oy (=01, Ay =ay-a,-a,--ay, ay = 1.

As defined above, for all integers k > 1, a; > 0. When
a; > 1, {M,k > 1} is a decreasing GGP, a typical assump-
tion is that 1 =ay < a, <a, <---, that is, the loss rate of
the system after each FR is increment; when a; <1,
{M,,k > 1} is an increasing GGP, the assumption is that,
l=ay>a, >a,>---, implies that the system deterio-
rates more and more rapidly with the increasing number

of FR; specially, when a;, =a, =---=a,_, = a, then the
GGP degenerates into a GP.

2.2 Model assumptions

The maintenance model of the system is based on the fol-
lowing assumptions.

Assumption 1 A new system is installed at r=0.
The process for a system from being newly installed to
being replaced is called a cycle. The process from the
new installation to the completion of the first FR is called
the first period of a cycle. The process from the comple-
tion of the (n—1)th FR to the completion of the nth FR is
called the nth period in a cycle, and the process from the
completion of the nth FR to the replacement is called the
Nth period in a cycle .

Assumption 2 In the first period of a cycle, the in-
spection interval of the system after FR is 7. Because the
successive working time is a decrease process with the
period index, we assume that the inspection interval of
the nth period is 2! T, where 0 <A< 1. In a period, after
PR, the system is “good as it is before PR”. In any period
of a cycle, when the consecutive working time of the sys-
tem reaches A"~'T, the worker will detect the system and
perform PR. When the consecutive working time of the
system is less than A"7'T, a failure occurs, the worker
will carry out FR to the system, and the system enters the
next period.

Assumption 3 The system is replaced by an identi-
cal new one at the occurrence of the Nth type I failure or
the first type II failure, whichever occurs first. Type II
failure may occur in any period of a cycle. As shown in
Fig. | and Fig. 2.

The Ist period of a cycle

1 2
— : Up time; ««=: FR time;

: Inspection;

e o PR time;

4 : Repairable failure;
+ : Replacement time; w : Unrepairable failure.

Fig.1 System replaced when the number of type I failure reaches N
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The 1st period of a cycle
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The kth period of a cycle
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LI LY G808~ —— 0000
1 2 M, 1
—:Uptime; e e:PRtime; --~:FRtime;
4 : Repairable failure; .~ : Inspection;

+ : Replacement time; + : Unrepairable failure.

Fig.2 System replaced at the occurrence of type II failure

Assumption 4 X means the ith consecutive work-
ing time in the nth period of a cycle, Y\’ means the jth
PR time in the nth period of a cycle, in a period, after the
PR, the system is “good as it is before PR ”, that is,
(X9, i=1,2,---,M,+1} is a sequence of independent
and identically distributed random variables; due to the
same reason, {Y,Ej),jz 1,2,--- ,Mn} is also a sequence of
independent and identically distributed random variables.
M, is the number of detection in the nth period.

Assumption 5 X,, Y, and Z, denote the total work-
ing time, the total PR time and the FR time in the nth

M,+1
period of system, respectively. X, = ZXL") and Y, =
M, i=1

DX X(=1,2+), Y(n=12), and Z(n=
j=1

1,2,---) all are mutually independent series. And X,,, Y,,,
Z, as well as the replacement time W, are also mutually
independent.

Assumption 6 C,, is the cost of one inspection. r is
the reward of the system working per unit time. C, is the
cost of PR per unit time. C, is the cost of FR per unit
time. d is the fixed cost of replacement. C, is the cost per
unit time of replacement.

Assumption 7 The CDF of X,, Y, and Z, can be for-
mulated as below respectively:

F,(1)=F (A0,
H, ()= H(B,1),

G,()=G(C,p),
where F,(t) = F(t), H,(t) = H(t) and

A= ]an B =] [bnC=] e

n-1 n—1 n—1
i=1 i=1 i=1
where a; denotes the geometric ratio of the ith FR about
consecutive working time; b; denotes the geometric ratio
of the ith FR about consecutive PR time; ¢; denotes the
geometric ratio of the ith FR about the consecutive FR
time. a; > 1,0 < b;,c; <1 and b; < ¢;, because the impact
of system degradation on PR is less than the impact on

FR. E(X,) = 4, E(Y)) =HMp, E(Z)) =HMy.
2.3 Model analysis

The system has two replacement modes. In the first one,
the system is replaced at occurrence of the Nth type 1
failure, and in the second one, the system is replaced at
the occurrence of the first type II failure. Let L be the
total number of failures (including type II failure) until
the type II failure occurs. Let P, = P(L < k) denote the
probability that the first k occurred failures are type 1
failures, where 1 = Py > P, > P, > ---, further

P(L=k)=P(L>k-1)-P(L>k) =

Pey-Po=Py (1 - _P—k).
k-1

Therefore, when the kth failure occurs, it is classified
into either a type 1 failure with probability n, = P,/P;_,
or a type II failure with probability 6, =1-17;. And
P(L > N) is the probability of the first replacement mode;
P(L=k),k<N is the probability of the second replace-
ment mode.

The objective function of the maintenance model is the
long-run average cost per unit of operating time C(N,T),
according to the updated reward theorem, the long-run
average cost per unit of operating time is the average cost
per unit time of a cycle. Hence, only consider one cycle.
Thus

total expected costs in a renewal cycle

C(N,T)= — :
expected operating time in a renewal cycle

Let W be the operating time in one cycle, W; be the
operating time in the first replacement mode, and Wy be
the operating time in the second replacement mode. Let R
be the cost of the system in one cycle, R; be the cost in
the first replacement mode, and Ry be the cost in the
second replacement mode. From Fig. 1 and Fig. 2, it is
easy to obtain

N N M, N-1
b= Sy S S,
n=1 n=1

n=1 j=1

Wy = Zk“x +Zk:§“yy>+§z,, + W,
n=1 n=1

n=1 j=1
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According to the full probability formula, the total ope-
rating time of the system in a cycle is

N
W =Wl .x+ Z Wil .

k=1

The expectation of W is

N
E(W) = EW)Py+ )" B(Wy) Py - P) =

k=1

N N M,
Z ZZ (/>+ZZ + Wy | Py+
N l:1= kn=1Mjn=l k*nll
X+ D S0+ N 7, 4wy P). (1)
k= =1 n=1j=1 n

The cost of system operating is

R =C ZZY”MC ZZ,,+
n=1 j=1
rZXn,
n=1
k M,

Ry = CPZZY,Y) +C,»ZZ,,+

n=1 j=1

C,HZMn+d+C,W0—

n=1

k

CmZMn+d+CTWO—rZXn.

n=1 n=1

According to the full probability formula, the total cost

PM, =k)=

P(X" > ' T)P(X? > 1'T)- -

P(XD > 27T, XD > 21T, . XW

of the system in a cycle is

N
R=R; .+ ZRIIIL:k~

k=1

The expectation of R is

E(R) = E(R)Py + ZE(RII)(Pk—l _pk> =

k=1

E[cpiiyyucfﬁz +C,NZM +d+C.Wo—
n=1 j=1 n=1 n=1

M,

J
riX,,J v Z [ Zk:ZYU>+C Zz+
n=1 j=1 n=1
C,Y M,+d+C, Wo—rzk:X) Pk I—Pk)

n=1 n=1

2

Hence, the long-run average cost per unit of operating
time is
ER)
N, T 3
CN.T) = . 3
Based on the definition of PR, in the nth period of a
cycle, when the system continuously working time rea-
ches 2"'T, detect the system. Let M, be the number of
detection that is the number of variables whose lifetime is

[1 —-F, (/lnilT)]an (/1”717‘) = qln{pn

=F,(A"'T) and ¢, = 1
ation of M, is

where p, —F,(A""'T), the expect-

E(M,) = qunp = (4)

k=0 n

Let X, be the total working time in the nth period of a
cycle,

X, =MA'T+X)"".
Then, the expectation of X, is
E(X,) = A"'TEM,) +EX)"*"). (5)
Next given the CDF of XM+!,

F, (1)

Fn XM,,+1 =p XM"+1 <IXM”+1 _
( n ) ( n | n Fn(/lnflT)

<A7T) =

greater than A"'T in series {XV,i=1,2,---,M,}, M,
obeys a geometric distribution
/ln lT X(k+1) <ﬂ" IT)
P(Xstk) > ﬂn_lT)P(X;kH) < /l"_lT) —
The expectation of X! is
F, ()
EB(XxM+! 6
= (len) ©)

According to the double expectation formula, the mean
of ¥\ is

M,
M qn
E Y“) =E(M )E(YV g U 7
[Z ] (M)E(Y)) =32 ()
Jj=1
The mean of Z, and W, is
o)
E(Z,) = gf E(W,) = .. (8)

n

According to (3)—(8), we obtain
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3. Optimization

3.1 Replacement policy

Lam researched two kinds of univariate replacement
policies [7,8]. One is policy T, where the system is re-
placed when its operating time reaches 7. The other is

;A(k, T)Pi+ Z‘iq—k

N
Z_fpk-i'/d'r
= G

k=

C(N,T).

First, for any fixed T, > 0, we can find N, that makes
C(N,T,) the smallest, N is a countable discrete variable,
N, satisfies the following formula:

C(N+1,T)>C(N,T) & C(N,T) < C(N-1,T) &

policy N, where the system is replaced when its failure LIN.T) > d+Coptc& LN = 1,T) <d + Copty (10)
number reaches N. Zhang introduced a bivariate policy  where
(N,T), in which the system is replaced at the operating
age T or at the time of the Nth type II failure occurs, L(N,T) = Coli+CrLa+Couls — 1Ly
whenever occurs first [30]. It is showed that the policy AN+1,T)Py+ Hp dne Py+ g_f Py
(N,T) is better than both policy T and policy N. This N+t PN N
paper aims to find the optimal (7,N)* by minimizing  where
N
_ Fo G He Hp G Hy
Li= 3t pNHPN(kZ:/l(k )P, .+Z Pk+,uT) Z By P ](/l(N+1 )Pyt o PN)
N N u q N-1 /J u q
L,=-LP AP+ Y 2P+ |-Y 2 (/l(N+1 T)Py+ —2~ N—“P)
C N[; . ,Zl: By px S py Cy " N+1 PN+1 N
H O H O H H H
L= p, Z/l(k T)P,, + —pﬁﬁkﬁ D Pt |~y P (AN + 1,T)Py+ 2T py —fPN)
PN+ = ‘1 Dk Pk o Lk o Gk N+1 PN+ Cy
N u N-1 u N u
L= AN+ LT 3 2L p 3 2By, —Zﬂ(k,T)Pk_l( p v p oy —PN)
‘= Dk P = Cx =y By Dyt Cy

N, found in the above formula satisfies
C(N,,Ty) = m}\}nC(N, Ty).

Second, let N = N;, we can find T, that makes C(N,,T)
the smallest. T is a continuous random variable, and

N / N
(Z /;__Pk 1] +C”’[Zlq7 k- 1]
k= k=1

’

—}{Z Ak, T)Pkl)
-

C(N,,T) is differentiated with respect to 7', then T satis-

fies the following formula:
OC(N,T)/OT =0 & K(N,T)=d+ C.u, (11)

where

where (-)’ denotes the operator d(-)' /0T .
Differentiating C(N,,T) with respect to T twice, we
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(C,P"+C,M"—rA")(A+P+F 1) - (C,P+C ,M+CF—rA+d+u,C)(P"+A")(A+P+F+u,)—

8*C(N,T) 2(C,P' +C,M' = rA')(P' + A)(A+P+F +p.)+2(C,P+C,M+C;F—rA+d+u,C.) (P +A')
or> (A+P+F+pu,)
(12)
where algorithm for solving the optimal strategy is summarized
N as Algorithm 1. In practice, Algorithm 1 can always find
P= Z 'ﬁﬁl_’kq, the optimal solution to the model, (N, T)" = (N,,T}). In
k Dk

N
A=) AP
k=1

(-) and (-)” denote the operator d(-)/dT and &*(-)/OT*>
respectively.

When 8*C(N,T)/0T >0, it can prove that the exist-
ence of T, makes C(N,,T)) =mTinC(N1,T). If T,=T,,
then (N,,T)) is the optimal solution to the model. Let
(N, T)" = (N, T)).

Otherwise, let T =T, and repeat the above steps to
find an N, that satisfies (10). Then, let N = N, and find a
T, that satisfies (11), if 7, =T, then, (N,,T5) is the op-
timal solution to the model. Let (N, T)" = (N,,T5).

Otherwise, continue to repeat the above steps. Until the
alternately updated sequence (N, T;) stops or the amount
of update reaches the set threshold. The alternative search

N
2 hn,

n=1

N-1
My
YO
C(N,T) = o=l

summary, (N, T)" is the optimal solution to C(N,T), that
is, the optimal replacement strategy [29].

C((N, T)") = min m}én [C(N,TH] ,mTin [C(N*,T)]
(13)
Algorithm 1
Imput C,,C,,C;,Co,r,d, A, A,y fys iy 4, k, @
Step 1 Let a,=1+0.05(k—1), b, =1-0.05(k—-1),
¢ =1-0.07(k—-1).
Step2 Letk=1.

Step3 Let T =T,, put it into (10), obtain N,.
Step4 Let N =N, putitinto (11), obtain T;.
Step 5 If 7, =T, ,, then go to Step 6; otherwise, let

k=k+1, and go to Step 3.

Step 6 (N*, T*) = (N, Ty).
Output (N*,T*) and C(N*,T").
Stop

3.2 Special cases

Casel If P,=1(k=0,1,2,---), that is, the probabi-
lity of the occurrence of type II failure is zero, hence, the
system will be replaced only at the time of the Nth type I
failure, then we obtain the following result:

N
+sz

n=1

N
L@+ Cop-ry a1
DPn n=1

N N N-1
;ﬂ(n,T)+;%lq7:+;’g—i+yr

Case 2 If the time of PR, FR and replacement are
negligible, the fixed cost separately are C,,C;, andd,

N
Co Z

k=1

then the model degenerates into

N-1 N N
ﬂpk,l +C12Pk+cmz ﬂpk,l-i—d—rZ/l(k,T)Pk,l
Pk k=1 =1 P k=1

C(N,T)=

N
DA TP,
k=1

Case3 If N — oo, then Py — 0, that is, the system is
replaced only at the time of the occurrence of the first

type II failure, then the model degenerates into
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k=1

g SN SN o )
C — =P, +C —P.+C, — P +d+Cu,—r ) Ak, TP,
pZkak k=1 f;Ck k ;Pk k-1 Z k-1

k=1

C(e0,T) = lim C(N,T) =

Case 4
Only when the system fails, perform FR for the system.

If T — o0, then there is no inspection and PR.
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4. Numerical example g= Py
. _ k
Assume that the CDF of operating time X for any i is =
N N _ A gkt
. . & - B o i
exponential, that is, o= Z Lp - Z P, —.
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Then, Now, let a, =1+0.05(n—1),b,=1-0.05(n—1), ¢, =
. 1-0.07(n—1)1=0.93, 4,=300, p1,=2, y1; =4, p, =30
— k-1 S I H > Mp ’ s s
pi= BT =1 et C,=80, r=400, C,=100, C,;=200, d=3000,
Q=€ C, = 150, specially, P, = ¢*', shown in Table 1.
Table 1 Optimal value (x10*) of C(N,T) on different g and «
a=0.5 a=1
1 N* T C(N*,T%) N* T C(N*,T%)
q=0.1 6 22 -1.5700 1 2 -0.5119
q=0.2 7 26 -0.8441 3 18 -1.2321
¢=0.3 2 7 -0.9706 2 7 -0.9706
q=0.4 3 10 —7.8686 4 21 —6.0050
q=0.5 5 19 -5.9212 4 19 -1.6152
q=0.6 5 18 —3.4665 14 20 -1.2975
q=0.7 7 31 -5.3722 6 30 —2.4538
q=0.8 4 11 -9.0739 5 19 —20.7206
¢=0.9 8 37 —54.464 8 3 7 —57.3538
q=1 4 10 -7.8596 4 10 =7.8596

We can see the influence of different g and @ on
C(N,T). @ =1 means that the probability of the occur-

rence of type I does not depend on the number of fail-

ures since the last replacement. When g = 1, then P, =1,



MA Ning et al.: A generalized geometric process based repairable system model with bivariate policy

that is, Case 1 in the last section.

Set ¢ =0.8 and @ =0.5, shown as Fig. 3 and Table 2,
we can find when (N,T)"=(4,11). The optimal value
C(N*,T*) is —9.0739, which means that the system
should be replaced when the time interval of inspection in
the first period of a cycle is 11 and the times of FR
reaches 4. Then the optimal expected net cost rate is
-9.0739x10* per unit time, that is the net profit is
9.073 9x 10* per unit time. Fig. 4 and Fig. 5 are the cases
that 7 and N take different values. And the situations in
Figs. 3—5 where there is a sharp decrease in the value of
C(N,T) may be because of parameter values of the exam-

ple or the properties of this model.
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Fig.3 Plotof C(N,T), N = [0,5,15], T = [0,10,50]

Table 2 Some results of C(N,T) with ¢ =0.8, @ = 0.5
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T

N
5 7 9 1 13 20 30 40 50
1 ~0.0633 -0.0525 ~0.0477 ~0.0450 ~0.0432 ~0.0402 ~0.0384 ~0.0376 ~0.0371
2 ~0.2951 -0.1053 ~0.0750 ~0.0626 ~0.0559 ~0.0457 ~0.0409 ~0.0387 -0.0375
3 0.1188 23626 ~0.2624 -0.1137 ~0.0856 ~0.0559 ~0.0451 ~0.0408 ~0.0385
4 0.0488 0.0878 0.2070 -9.0739 -0.2520 0.0970 ~0.0524 ~0.044 1 ~0.0401
5 0.0305 0.0427 0.0618 0.0962 0.1759 -0.1781 ~0.0682 ~0.0501 -0.0426
6 0.0223 0.0277 0.0346 0.0440 0.0573 0.2652 -0.1193 ~0.0621 ~0.0466
7 0.0178 0.0205 0.0236 0.0275 0.0322 0.0630 29528 ~0.0935 -0.0528
8 0.0151 0.0164 0.0180 0.0197 0.0217 0.0326 0.0834 -0.2612 ~0.0576
9 0.0133 0.0139 0.0146 0.0153 0.0162 0.0205 0.0366 0.4738 ~0.0355
10 0.0119 0.0120 0.0121 0.0122 0.0123 0.0130 0.0163 ~0.0014 0.0078
11 0.0104 0.0099 0.0092 0.0083 0.0072 -0.0025 0.0449 0.0239 0.0205
12 0.0072 0.0041 -0.0015 -0.0142 -0.0732 0.0353 0.0246 0.0222 0.0211
13 ~0.0524 0.0554 0.0337 0.0283 0.0259 0.0227 0.0213 0.0208 0.0205
14 0.0241 0.0225 0.0217 0.0213 0.0211 0.0206 0.0203 0.0202 0.0201
15 0.0205 0.0203 0.0202 0.0202 0.0201 0.0201 0.0200 0.0200 0.0200
x10° «<10°

C(T,N)
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Fig.4 Plot of C(N,T), N =[0,5,20], T = [0,10,50]
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Fig.5 Plot of C(N,T), N =[0,5,20], T =[0,20,100]
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When g =1, this model is degenerated into the model
of special case 1. Shown as Fig. 6 and Table 3, we can
find when (N, T)* = (4,10), the optimal value C(N*,T*) is
—7.859 6. Other special cases have similar results.

Form Table 4 we can see that the mean of X, is ran-
domly decreasing with the number of PR. While the
means of Y, and Z, are randomly increasing with the
number of PR. And it is clear that E(X,) is less than
E(Z,), when the number of PR is greater than or equal to
9. Hence, there is no need to repair the system when the
number of PR is greater than 9.
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Fig. 6 Plot of C(N,T) with ¢ =1, N =[0,5,15], T =[0,10,50]

Table 3 Some results of C(N,T) with g =1

T
N 5 9 10 11 21 31 41 50
1 —0.0633 —0.0477 —0.0462 —0.0450 -0.0399 —0.0383 -0.0375 —0.0371
2 -0.1998 -0.0706 —0.0646 -0.0603 —0.0451 —0.0411 -0.0392 —0.0382
3 0.1717 -0.1516 —0.1179 —0.0991 -0.0534 ~0.0450 —0.0415 —0.0397
4 0.0581 0.4344 -7.8596 —0.4463 -0.0704 -0.0515 —0.0448 —0.0416
5 0.0343 0.0777 0.1001 0.1347 -0.1228 —0.0644 —0.0504 —0.0446
6 0.0241 0.0398 0.0455 0.0523 12.8052 -0.0995 —0.0612 -0.0494
7 0.0187 0.0258 0.0281 0.0306 0.0909 -0.4099 —0.0864 —0.0568
8 0.0154 0.0189 0.0199 0.0210 0.0400 0.1291 —0.1704 —0.0630
9 0.0133 0.0148 0.0153 0.0158 0.0233 0.0478 -0.3597 -0.0390
10 0.0117 0.0119 0.0120 0.0121 0.0133 0.0203 0.0026 0.0073
11 0.0100 0.0084 0.0079 0.0073 -0.0189 0.0326 0.0226 0.0203
12 0.0060 -0.0072 -0.0165 -0.0366 0.0300 0.0237 0.0218 0.0210
13 —0.4664 0.0307 0.0284 0.0269 0.0222 0.0211 0.0207 0.0204
14 0.0237 0.0216 0.0214 0.0212 0.0205 0.0203 0.0202 0.0201
15 0.0205 0.0202 0.0202 0.0202 0.0201 0.0200 0.0200 0.0200
Table 4 Random change of the means of X,,, Y, and Z,
n
Expectation
1 2 3 4 6 8 9 10

E(X,) 300.0000 285.7143 259.7403 225.8611 150.5471 85.7972 61.2837 42.2646

E(T,) 2.0000 2.1503 2.3392 27520 45866 10.0805 16.8006 30.5470

E(Z,) 4.0000 43011 5.0013 6.3307 13.5271 457307 103.933 3 280.9090

5. Conclusions

This paper studies the maintenance model of a simple re-
pairable system with two failure modes with PR, and
models the consecutive working time and the consecu-
tive repair time of the system based on the GGP, aiming at
the minimum expected cost per unit time of the long-term
operation of the system. We can find the optimal value by
the alternative searching method. Then numerical exam-

ples are given. For the production line of a food proces-
sing plant we have mentioned, this model can effectively
improve its stability, raise economic efficiency, as well as
decrease the costs. It can be widely used in cold standby
systems, power systems, network systems, etc.
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