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Abstract: To overcome the defects that the traditional ap-
proach for multi-objective programming under uncertain ran-
dom environment (URMOP) neglects the randomness and uncer-
tainty of the problem and the volatility of the results, a new ap-
proach is proposed based on expected value-standard devi-
ation value criterion (Cggp criterion). Firstly, the effective solution
to the URMOP problem is defined; then, by applying sequence
relationship between the uncertain random variables, the UR-
MOP problem is transformed into a single-objective program-
ming (SOP) under uncertain random environment (URSOP),
which are transformed into a deterministic counterpart based on
the Cggp criterion. Then the validity of the new approach is
proved that the optimal solution to the SOP problem is also effi-
cient for the URMOP problem; finally, a numerical example and a
case application are presented to show the effectiveness of the
new approach.
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1. Introduction

The multi-objective programming (MOP) problem is a
discipline developed from the 1970s, which is applied
widely in management science, military science, opera-
tions research and so on. For example, in the construc-
tion of weapons and equipment systems, it is hoped for
the largest combat effectiveness with the lowest cost; in
the flight scheduling problem, it is expected for the
highest mission safety with the shortest flight time. In
these decision problems, the various objectives often con-
tradict each other, which is difficult to find an optimal
solution. Then, we may only weigh and compromise
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among the decision-making objectives, and select the
most satisfactory plan [1-3].

Classical MOP mainly solves the problems in deter-
ministic environment. In practice, we have to make de-
cisions under indeterministic environment. How to solve
MOP with multiple indeterministic factors has important
significance. One of the common indeterministic phe-
nomena is randomness, which can be solved by the prob-
ability theory with probability distributions obtained from
enough samples. A random multi-objective programming
(RMOP) problem is proposed [4—6].

Many events cannot accumulate enough and accurate
data through experiments or other means. When dealing
with such problems, experts in related fields are usually
invited for the belief degree of each event [7]. However,
since the expert’s estimate of the event’s belief degree is
generally higher than the frequency of event in practice
[8,9], if this type of problem is still solved by the proba-
bility theory, the conclusions are probably contrary to the
facts [10]. Therefore, some scholars believed that the
fuzzy theory [11] should be used to deal with the prob-
lem of expert belief, based on which, they studied the
fuzzy multi-objective programming (FMOP) problem in
[12-14]. Although FMOP has been widely used, many
studies have shown that human uncertainty is not fuzzy
[10], for which, applying the fuzzy theory to deal with
uncertainty may lead to unrealistic situations. In order to
overcome these defects, the uncertainty theory was estab-
lished [7] by Liu in 2007 and refined [15] in 2010 to
solve problems with experts’ belief degree. At present, the
uncertainty theory has grown into an important branch
of mathematics dealing with belief degree. In 2009, Liu
proposed the uncertain programing (UP) problem [16],
which was applied in many areas. Then, the multi-object-
ive programming under uncertain environment (UMOP)
was proposed [17].

In reality, randomness and uncertainty often coexist in
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a complex system. In order to handle the problem, Liu
proposed the chance theory, defined the uncertain ran-
dom variable [18], and proposed the uncertain random
programming [19]. Then, the multi-objective program-
ming under uncertain random environment (URMOP)
was proposed in 2014 [20], and the traditional solution
approach was first proposed in this paper, which trans-
formed URMOP into a counterpart under deterministic
environment, which was then solved directly. The tradi-
tional approach solved the problem without considering
uncertainty and randomness. Zheng et al. [21] presented
another approach named linear weighted approach
(LWA) under the expected value criterion (Cy, criterion),
based on which, the URMOP is transformed into a single-
objective programming under uncertain random environ-
ment (URSOP), and then transformed into a counterpart
under deterministic environment. Qi et al. [22] presented
a new ideal point method (IPM) to solve the URMOP
problem under the Cy, criterion.

The equivalent model based on the Cg criterion re-
flects the average level that the objective function can
reach under the influence of uncertain random factors.
Uncertain random objective function, as a complex un-
certain random variable, sometimes needs to investigate
the degree of deviation from the expected value in prac-
tice, in particular, when the degree of deviation between
the objective function and its expected value is very
large, it is difficult to represent the objective function
with the expected value only. It is necessary to describe
the objective function together with the average level and
the degree of deviation, and thus, the expected value-
standard deviation value criterion (Cggy, criterion) is pro-
posed, which can maintain the numerical characteristics
of the first moment with the expected value, and reflect
the deviation degree between the uncertain random ob-
jective function and its expected value.

The rest of this paper is organized in the following
manner. In Section 2, some basic definitions are intro-
duced and the basic framework of the new approach is
proposed and the concepts such as Pareto efficient solu-
tion and Cggp criterion are defined. In Section 3 and Sec-
tion 4, several lemmas and theorems are proved to illus-
trate that the optimal solution of the single-objective pro-
gramming (SOP) problem under the deterministic envir-
onment is efficient for the URMOP problem. A numeri-
cal example and a case application are presented to illus-
trate the feasibility of the new approach in Section 5. Fi-
nally, a brief summary and future research work are
stated in Section 6.

2. Preliminaries

In this section, we will introduce several related defini-

tions and theorems as well as the basic framework of UR-
MOP, which is helpful to prove and understand the fol-
lowing.

2.1 Chance theory

Definition 1[18] Chance space

Uncertainty space and probability space are represen-
ted by (I,L,M) and (2,A,Pr), respectively. The product
of them is represented by (I, L, M) X (£,A,Pr), which is
called a chance space.

Definition 2[18] Uncertain random variable

An uncertain random variable is represented by a func-
tion &, which is mapped from (I,L, M) X (£,A,Pr) to the
set of real numbers.

Remark Any Borel set of real numbers is denoted by
B, then, {£ € B} is an event in LXA. A random variable
and an uncertain variable are denoted by 7 and 7, respect-
ively, then, an uncertain random variable is represented
by £(n,7). When & does not change with 7, it would de-
generate to an uncertain variable. When ¢ does not
change with 7, it would degenerate to a random variable.
As a result, a random variable and an uncertain variable
are both special cases of uncertain random variables.

Definition 3[18] Chance distribution

An uncertain random variable is denoted by a function
&. Then, the chance distribution @ (x) for any x € R is de-
noted by @ (x) = Ch{£ < x}.

Definition 4[18] Expected value of uncertain ran-
dom variable

An uncertain random variable is denoted by &, the ex-
pected value of which can be defined as follows:

E[¢] = fom Chi¢> x}dx—fomCh{§< xjdx (1)

where at least one of the two integrals is finite.

Definition 5[18] Variance value of uncertain ran-
dom variable

An uncertain random variable is denoted by &, the vari-
ance value of which is defined as follows:

V[£] = E[(£—e)’] = E[£’] - E[¢] (2)
where the uncertain random variable (£ —e)* is nonnega-
tive, that is, (£ —e)? € [0, +00).

Definition 6 Standard deviation value of uncertain
random variable

An uncertain random variable is denoted by &, the
standard deviation value of which is defined as follows:

olél = VVIE] = \JELE-e)]. 3)

Theorem 1[18] Uncertain random variables on
(I,L,M)x(2,A,Pr) are denoted by &,&,---,&, and a
measurable function is denoted by f. Then, &= f (&,
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&,--+,&,) is also an uncertain random variable which is
determined by £ (,7) = f(6,(n, 7),&(®,7),-++,&,(n, 7)) for
all (n, ) el xQ.

Theorem 2[19] Let n(i=1,2,---,m) be random
variables which are independent and denoted by ¥;, the
probability distribution of 5;. Let 7;(i = 1,2,---,n) be un-
certain variables which are independent and denoted by
7;, the regular uncertainty distribution of 7;. Assume that

f,m, sy T1,T2,+,T,) 1S @ measurable function
which strictly increases with respect to 7,,7,,---,7; and
strictly decreases with respect to 7,1, Tss2, - ,T,. Then
the uncertain random variable
fzf(nl’nZ""97])11’T11T29"'3Tn) (4)

has a chance distribution

D(x) = me Fx:y5,y2,0 3 Ym)
d¥ () d¥ (y2) - d¥, () (5)

where F (x;y1,¥2,++,Yn) 18 the root a of

f(y|7y27”' s Yms TII(Q), ,T;l(a'),
rl(d-a), .7, (1-a)=x (6)

Theorem 3[18] Let & be an uncertain random vari-
able and denoted by @(x), the chance distribution. Then
we arrive at that

Elel= [T a-od- [ swdn (@)

Theorem 4[19] Let n(i=1,2,---,m) be random
variables which are independent and denoted by ¥, the
probability distribution of 7,, and let 7,,7,,---,7, be un-
certain variables. Assume that f is a measurable function.
Then we arrive at that the uncertain random variable
&= fm,m, s 0w, T1,Ta,- -+ ,T,) has an expected value

E[é:] = fR’“ E[f()’l»)’z»' s Yms T, T2, »Tn)]'
d¥? (yNd?(y2) - --d¥,(yn) (®)

where E[f()’| 3 V2 s Yms T, T2, 5Tn)] isthe eXpectedValue
of the uncertain variable f(y;,v2, V> T1,T2,- - ,T) fOr
any real numbers y;,y,, -+ V-

2.2 Model of URMOP

If the objective function fi(x,&)(@=1,2,---,p) contains
different uncertain random variables, it is an independent
multi-objective programming under uncertain random en-
vironment (I-URMOP) which is shown as below:

minF (x,§) =
xeR”

F(fl(x’fl)’fZ(x»fZ)"“a.ﬁ?(x»fp)) (9)

5. t.
d;(x,6)<0,i=1,2,---,m

where the symbols and assumptions used are as follows:

(i) x is a decision variable vector defined on R”; and
&= ( e ,’,) is a continuous uncertain random vector
which is defined on the chance space, whose components
are independent and uncertainty distribution of which are
known.

(i) f;(x,€;) is a measurable function which is defined
on R"XR". It can be seen from Theorem 1, that
fi(x.€) (j=1,---,p) are also uncertain random vari-
ables. The objective function F (x,£) is a convex vector
function with respect to x.

(i) The feasible solution set satisfies the following
conditions: nonempty, compactness, convexity.

Definition 7  Cggp criterion

Two uncertain random variables are denoted by &, and
&>, the domain of which are (I,L,M)Xx (Q,A,Pr). Then,
if and only if E[£,] < E[&] and o[€,] < o[&,], we arrive
at that & <= §&,, where E[-] and o] stand for the expec-
ted value and the standard deviation value of these uncer-
tain random variables, respectively.

Definition8 Cyg-Pareto efficient solution of URMOP

For the [-URMOP problem, the feasible solution is de-
noted by x*, the condition of which is there is no feasible
solution X satisfying the condition that f;(x,&;) <=
fi(x",€) (j=1,2,---,p), besides, there exists at least one
indicator j, € [1, p] satisfying f; (x,&;,) < f;,(x*,€;,), where
x* is an efficient solution to the problem.

Once we obtain the Cggp-Pareto efficient solution, as
needed, we can improve any one of the objective func-
tions in a compromise way only by sacrificing one or
more other objective functions.

The I-URMOP problem can be transformed into a
URSOP problem in the following:

minU[F (x,£)] =
U(fl(x"fl)sﬁ(x’gZ),'“7fp(x’§p)) (10)

s. t.

Chid;(x,£) <0} > a;, i=1,2,--- ,q

where U represents a measurable function. Therefore, ac-
cording to Theorem 1, we can arrive at that U[F (x,§)] is
an uncertain random variable and a convex vector func-
tion.

Thus, we can get a deterministic SOP problem under
the Cggp criterion, which is shown in the following:

minE{U[f (x, )1} + o ULf (x.6)]} =

E[F(fi(x,£1), £(x,&2), -+, [o(x,6,) ]+
O-[F(fl(x’fl)’fZ(x’§2)"” ’f})(xsfp))] (11)

S. t.
Chldi(x,)<0}>2a;,i=12,--- q
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3. Proof of related lemmas

Several related lemmas are presented in the following,
which play important roles in proving the validity of the
new approach for the -URMOP problem under the Cggp,
criterion.

Lemma 1 The independent random variable is de-

noted by n;(i=1,2,---,m) with probability distribution
Y,(i=1,2,--- ,m) and probability density function (i =
1,2,---,m), respectively, and the uncertain variable is de-
noted by 7;(i = 1,2,--- ,m) with regular uncertain distribu-
tion 1; (i =1,2,---,m), respectively. Assume &; = g,(n;, ;)
is a measurable function which strictly increases with re-
spect to 7,,T,,--- ,7; and strictly decreases with respect to
Tists Thans o »Twe If & <= &, then for A€ R*, we have

A <= A&,
Proof Since & <= &,, according to the Cggp, criterion,
we get

Elg:(m,7)] < Elg2(12, 2)], (12)

olgi(m, )] < 0820172, 72)]. (13)

Furthermore, we get

me J: g1, 7'1_1 (@))dad¥?,(y) <
1
me L &:(y2, Y’;‘(a))dad%(y)_ (14)
We obtain
J;w fol 1L 17 (@) (y)dady <
me LI 8002, 15 (@) (y)dady. (15)
For 1€ R*, we get
1
z ij fo 2101, 77 (@) (v)dady <
A f - fol (0, 15 (@) (y)dady. (16)
Furthermore, we get
IR,,, _[0] A8, 17 (@) (y)dady <

Jo [ g0 5 @hadady. (17)

Then, we get

E[Ag1(m1,71)] < E[182(72,T2)]. (18)
Since A € R*, according to (13), we get

Ao[g (1, )] < Ao[g2(172, T2)]. (19)

According to Definition 6, we can get

o1Ag (1,701 = B2 001, 7) — ey, ] =

/l\/Ez[gl(Uth)—eg.] = Ao[gi(n1,71)] - (20)

Similarly, we get

0[182(m2, 1)1 = A0 [82(172, T2)]. (21)
Then, we get
o[Ag1(1, )] < 0[Ag2(172, T2)]. (22)
According to the Cggp, criterion, we get
A&y <= 26 (23)
The lemma is proved. O

Lemma 2 Let 7(i=1,2,---,m) be an independent
random variable with the probability distribution ¥;(i =
1,2,---,m) and the probability density function ¢,(i=
1,2,---,m), respectively, and let 7;(i=1,2,---,m) be an
uncertain variable with regular uncertain distribution 7’
(i=1,2,---,m), respectively. Assume & =g;(1;,7;) 1S a
measurable function which strictly increases with respect
to Ty,7T,,---,7, and strictly decreases with respect to
Tists Thszs T I 6 <&, & <=, 01 & <=6, & <&,
then we get &, +&, <& +&,.

Proof Without loss of generality, let & <&, and
&3 <= &, hold, according to the Cggp, criterion, we can get

Elgi(m1,71)] <El[g2(172, T2)], (24)

Elg:(m3,73)] < Elg4 (14, 74)], (25)

olgi(m, )] < o820, 72)], (26)

018313, 73)1 < 07[84 (M4, T4) . (27)

Furthermore, we get

ij Ll g0, T (@) (y)dady <
1
LL (0, 13 (@) (y)dady, (28)

me LI 803, T3 (@)3(y)dady <
1
meL 84()/4,7';1(a));//4(y)dady. (29)

Then, we arrive at
1
fw, fo [g1(v, 17 (@)1 + g3(v3, T35 (@)s]dady <

[ [ 1820 75 @ + 84000, T (@)ildady. - (30)

That is,
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Elgi1(71,71) + &3(3,73)] <
Elg:(172,72) + 84(104,74)]. (€29)]

Since 0’[€] = V[¢] = E[¢*] - E[¢], we get

VI82(172,72) + 844, 7)1 = Vg1 (1, 71) + 83(173, T3)] =
E[(82072,72) + 8414, 74))* = (8171, T1) + 8313, 73))° 1 -
(El82(m2,72) + 84(14, 7)1 + E[g1 (171, 71) + 83(03, T3)])-
(Elg2(172,72) + 844 7)1 — E[g1 (1, 71) + 83(173,73)]) =

[ [ 18205 @+ 20 77 @i
SO T (@W + 80, T35 (@)
(82002, 15 (@)Wrs + 84 (s, T (@)rs—
g1, Tl_l(l —a)i —g(ys, 7';1(1 —a@)W;]dady—
[ a0, 75" @+ 24, 77 (@t
&1, ‘YTI(Q/))% + g5y, T;I(a’))lﬂa]dady
Jo g 75 @+ 400 T @)
G100 17 (1 =) = g3, T3 (1 — ) ldady.

(32)
Suppose that
M(y,@) = 8202, 13" (@) + 83, 7 @)+
gL T (@) + 805, 15 (@), (33)

n(y,@) = &, 15 (@) + g4, 17 (@)—
gL T (1-)- g0 7' (1-@).  (34)

Since both m(y,a) and n(y,a) are strictly monotonic-
ally increasing as « increases, thus, according to Theo-

rem 6, we get

VIg2(172,72) + 84(M4, T4)]—
VIgi(mi,71) +83(113,73)] =

j - Ll m(y, a)n(y,@)dad ¥ (y)—
Lm L LGy, @)dad ¥ (y) L Ll n(y,@)dad¥(y).  (35)

Assume that

G(x)=x me jox m(y,@)n(y,@)dad ¥ (y)—
[ [ 'm0 a)dad () [ nr.0)dad¥).  (36)

Then, we get

G'(x) = fR L m(y, a)n(y, @)dad¥(y)+
oy, )y, 0 =0 [y, @)dad () -
.0 [ [ n(r.0)ded¥ () =
Jo. ]} 1y, = m(y, DGy, - n(y, 0ldad ¥(). (37)

Since G(0) = 0 andG’(0) > O(x € [0, 1], except x = 0, @),
then G(1) > 0.
Then, we get

VIgi(ni,71) + g3(n3,73)] <
VIg2(12,72) + 84(14,74)]. (38)

Furthermore, we get

olgi(m,71) +g3(m3,73)] <
02012, 72) + g4(14, T4)]. (39

According to the Cggp, criterion, we get

E1+6H <&+ (40)

The lemma is proved. O

Lemma 3 Let 7(i=1,2,---,m) be an independent
random variable with the probability distribution
Y(i=1,2,---,m) and the probability density function
vi(i=1,2,---,m), respectively, and let 7,(i=1,2,---,m)
be an uncertain variable with regular uncertain distribu-
tion 1; (i =1,2,---,m), respectively. Assume &; = g;(1;,7;)
is a measurable function which strictly increases with re-
spect to 7, T,,--- ,7; and strictly decreases with respect to
Tie1> The2s**+ »Tp. Then, for & <=¢&, and the lower bound
of &, & exists. Thus, we have (¢ —&)* <=(&—-&)%,
&= min(é?,ﬁl

Proof Since & <=&,, according to the Cggy, criterion,
we have

Elgi (1, 7)] < Elg2(172,12)], (41)

olgi(m, )] < olg2(n2, 7)1 (42)

Furthermore, we can get that

jR,,, Ll g1 17 (@) (y)dady <
IR,,, jol (2, 15 (@)(y)dady. (43)

Since & is the lower bound of the & and & =
min(¢%,&)), & -&>0and & —-& >0 hold, that is,
g1, T (@) =& >0 and g,(y,, 15" (@) =& > 0 hold, we

can get
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ij J;)l (gl (}’1 N Tl_l (G,’)) _f())llll (y)da/dy <
f - Ll (82002, 1, (@) = & o (y)dady. (44)

Furthermore, we get

_[Rm fol (81015 T;l(a)) _50)2% (y)dady <
ij fol (8202 15" (@)) = &) ¥a(y)dady. (45)

(&1, =&’ and  (g2(3,72)—&)* are increasing
with regard to g,(y,,7,) and g,(y,,7,), respectively, and
the inverse distributions of those are (g,(y;, 77" (@) —&))*
and (g,(0, 15" (@) — &)?, respectively. Then, we get

E[(gi(1,71) —fo)z] =
fR,,, fol (81001, T7(@)) — &) ¥ (v)dady, (46)

E[(8:(32,72) —€0)*] =
Jo ] @0 75 @) &) pn)dady.  @7)

Then, we arrive at

El(gi(v1, 1) —&)] <
E[(g:(2,72) _fo)z]' (43)

Since o?[£] = V[£] = E[¢€*] - E[£]?, we can get

VI(g2(y2,72) — fo)z] - VI, 1) - fo)z] =
(E[(g2y2,72) —50)4] -E[(g:(y1,71) —50)4])—
(Ez[(gz(yz,Tz) _fo)z] - Ez[(gl(ylv‘rl) _‘fo)z]) =
E[(g2(y2,72) —fo)4 - (&1, 71) —50)4]—
(E[(g2(02,72) = &)’ 1+ El(g1(01, 1) = &) )-
(E[(g232,72) —fo)z] -E[(g:(1,71) —50)2]) =
E{[(8:(y2,2) — &) + (811, 71) — &)
[(82(32,72) —fo)2 - (&:,71) —fo)z]}—
E[(82(2,72) = 0)* + (€101, 71) = &)’
E[(g2(y2,72) —é:o)z - (&7 —fo)z] =

Jo a0, 75 @) = €07 + 1001, 77 (@)~ €07

(80, 15 (@) — &)~
g1 17 (@) — &) W yrdady—

[ [ teatn 75 @) -0+

&0 17 (@) — &)’ ¥ dady-

Jo a0, 75" @) - 07~

&1L T (@) — &) Wyadady. (49)

Assume that

P(y, Q’) = gz(}’z, TZ_l(a')) _50)2"'
81()’1,7'1_](0))_50)2, (50)

q(y,@) = g2, 15 (@) — &)’ —
gL T (@) - &) (51)

Then, we get
VI(8:02.72) — €)1 VI(&1 (31, 71) — £0)*] =
1
f . fo PG, a)q(y, ) yrdady—-
! 1
fR"’ J;) P(y, Q)Wll/’zda'dy \I.Rm J;) q(y, a)dm,bzda'dy (52)

Since both (50) and (51) are strictly monotonically in-
creasing as « increases, according to (36)—(38), we get
0'[(81()’1»T1)—§0)2] < 0'[(82()’2,7'2)—-’;0)2} (53)

According to the Cggp, criterion, we have

(& —50)2 <=(& —fo)z- (54)
The lemma is proved. O
Lemma 4 Let 7(i=1,2,---,m) be an independent
random variable with the probability distribution ¥;(i =
1,2,---,m) and the probability density function ¢,(i =
1,2,---,m), and let 7,(i = 1,2,--- ,m) be an uncertain vari-
able with the regular uncertain distribution 7’ (i=1,
2,---,m). Assume &; = gi(n;,7;) is a measurable function
which strictly increases with respect to 7,,7,,---,7; and
strictly decreases with respect to 7y, T2, ,7,. Then,
for & <= &, V& and &, exist. Thus, we have V& <=
VE.

Proof Since & <=&,, according to the Cggy, criterion,
we have

Elgi (1, 7)] < Elg2(172,12)], (55)

olgin,7)] < o812, 12)]. (56)

Furthermore, we can get that

Ln, fol g1, 17 (@) (y)dady <
1
JRL &0, 17" (@) (y)dady. (57)
Since V& and /& exist, we get

IR”’ jol \/mlﬁl@)dady <
me jol \/MWZ()I)dady. (58)

Thus, we get

E[ Vg1, )] <E[ V&0, T2)]. (59)

Then, we get
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VI ng(ﬂzaTz)] -V 81(771,71)] = E[gz(’h,‘fz)]—
Elgi(71,7)] - E*[ Vg2 002, 1)1 + E* [ Vg, (71, 71)] =

me fol[\/gz(yz,‘fgl(a))+ \/gl(yl,'fl"(a))]-
[\/gZ(yZ’TEI(CV)) - \/81@1,7';1(1 — )|y 1yrdady—
Joo S5 12075 @)+ o100, 77 @) Wadady

Jo [ a0 15 @) = g0, 77 (1 = )l wadady.
(60)

Assume that

U(y.0) = 8005 @)+ &0 T @), (6D)

V0,) = &0 5 @) = 2100 7T —a)). (62)

Since both (61) and (62) are strictly monotonically in-
creasing as « increases, according to (36)—(38), we get

0'[ V81(771,7'1)] < 0'[ ng(nz’Tz)]o (63)

According to the Cggp, criterion, we get

VE <= &, (64)

The lemma is proved. O
4. Efficient solution

In this section, we introduce two approachs, which are the
LWA and the IPM. These are used to transform the I-UR-
MOP problem into an [-URSOP problem under the Cggp,
criterion.

4.1 LWA

LWA is appropriate for the conditions where the de-
cision makers can easily distinguish the objectives and
their importance. By assigning corresponding weights to
each objective function and linearly weighted summation
according to the importance of objectives, LWA converts
the -URMCOP problem (9) into an equivalent uncertain
single-objective problem as follows:

p
minU[f(x.£)] = Zlﬂ,-fi(x,f,-)

S. t.
Ch{di(x9§i) < 0} > a;, i= 1,23"' »q

(65)

P
where 1 € /l:(/ll,/lz,-n,/lp)l/l,-<O,Z/li:1 .

Theorem 5 The optimal solution x* of the problem
(65) based on the Cgg, criterion must also be a Cggp-
Pareto efficient solution to the problem (9).

Proof Suppose that X is the optimal solution of the

problem (65) but not the Cggp-Pareto efficient solution to
the problem (9).

It can be seen from Definition 8 that some ¥ definitely
exists and there must be at least one indicator iy(1 <

iy < p), such that fi(¥,&) <= fi(x*,&)and f, (%,&) <=
ﬁu(x*’fi)~

E[fi(x,€)] <E[fi(x",&)] (66)
4
Since 1 € {A: Ao A 0, ) = 1} holds, and
i=1
according to Lemma 1 and Lemma 2, we can arrive at

E[me)} <E Zﬂff,-(x*,f,-)], (68)

U[i Aifi(x’fi)} <o

Zaifi(x*,&)]. (69)
That is,
D ASEE) < Y ASi(x ). (70)

Obviously, we can arrive at

Ux,§)<UK.§). (71)

It can be seen from Definition 8 that x* is not the op-
timal solution to the problem (65), so it is contrary to the
assumption. Thus, the assumption is not true, and x* is a
Cgsp-Pareto efficient solution to the problem (9). The the-
orem is proved.

4.2 IPM

IPM is appropriate for the condition where decision
makers can easily know the optimal choice for each ob-
jective. By minimizing the distance between each object-
ive function and the ideal point which is obtained without
considering the influence of other objective functions, the
IPM converts the I-URMOP problem (9) into the I-
URSOP problem according to the distance functions.

minU (x,£) = (f (x.8) — )

xeR" ; (72)
S.t.

Ch{d,(x,f,) < 0} > aiy l= 1,27' o 7q

where f° stands for the lower bound of single objective
fi(x,&) (i=1,2,---,q) on the feasible set.

Theorem 6 Suppose that ¥ is the optimal solution to
the problem (65) but not the Cggp-Pareto efficient solu-
tion to the problem (9).

Proof It can be seen from Definition 8 that some
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X definitely exists and there must be at least one
indicator iy (1 < iy < p), such that fi(¥,£;) <= fi(x*,§;) and
[ (X&) <= [fi,(x",&i)-

Since f(1<i< p)is the lower bound of f; (%,&,), and
according to Lemma 3, we arrive at

E[(ﬁn(x’gio) - f;g)z] < E[(fl"n(x*?fio) - f;s)z]’ (73)

ol &)~ [ <Al 6) - [ (74)
We have
Fu®E) = [ <= S &)= f7. (79)
When i # iy, we can get that
F®E) - [ < (fux &)= (76)
We have
E[Z /(%€ —f;’f] <E Z (fi(x".€) —f,-“)z], (77

a[Z(ﬁ- (%.£) —ff’f] < G[Z(ﬁ (x*,f,-)—ﬁ°)2]- (78)

That is,
FEE - < Y (&1 (19
i=1 i=1
According to Lemma 4, we have
E[ J D @& - <
i=1
E[ J D &) -, (80)
ol J D FEE - <
i=1
P
G[JZ(ﬁ(x*,é)—ﬁ”)z]- (81)
i=1
That is,
J D FEE)- £ < J D E- (82)
Thus, we can arrive at
U(F,&) < UK. (83)

It can be seen from Definition 8 that x* is not the op-
timal solution to the problem (72), so it is contrary to the
assumption. Thus, the assumption is not true, and x* is a

Cggp-Pareto efficient solution to the problem (9). The the-
orem is proved. O

5. Example applications

In this section, the LWA and the IPM are introduced to
transform the I-URMOP problem into the I-URSOP
problem. The influences of weights and the conversion
criterion are discussed.

5.1 Numerical example

Assume that x;,x,,x; are nonnegative decision variables,
m,1, 15 are independent random variables with distribu-
tions U(1,3),E(0.8),N(3,5); 7,,7,,7; are independent un-
certain variables with distribution Z(0.8,1.3,1.8),L(1.5,
12),L(5,10). The I-URMOP problem involves three ob-
jectives.

min fi(x,1,,7,) = —1, exp{[sin(2mx,)+

Sin(2mx)]/cos(2x))) + 74 (sin(2x, %) + X3)
min fo(x,7,72) = X2(X; + X3) + 172(c0s(2x, x,) +

)+ (0 + DI 6x) + 1)
min f3(x,75,73) = —15(x2 + D(sinQRx, x3) + 11— (84)

T3(co8 /X + X3 + x5 + 1)/ AJx] + X5+ X3
st Ch{(x,—m —71)* + ( —my +711)%+
(x3+m,—71)* <35} 0.9
X1,X2,X%3 20

Obviously, fi(x,n;,7) is strictly decreasing with re-
spect to n;, while strictly increasing with respect to 7y;
fo(x,1m,,7,) is strictly decreasing with respect to 7,,7,;
Sfa(x,m3,73) is strictly increasing with respect to 73, 75.
The I-URMOP problem can be converted to an [-URSOP
problem through LWM with A;,4,,4; (4, + 4, +4; = 1).

Ux,8) = A fi(x,m, 1)+
A fo(x,102,T2) + A3 f3(X, 73, 73) (85)

Then we convert the [-URSOP problem into a deter-
ministic counterpart under the Cggp, criterion.

minE[U(x,&)] +o[U(x,6)] = E[4, fi+

Lh+ A1+l fi+ b+ A4f] (86)

The I-URMOP problem can be converted to the I-
URSOP problem through IPM.

U8 = i~ + -2+ (o= (87)

Then we convert the [-URSOP problem into a deter-
ministic counterpart under the Cggp, criterion.
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{crg{r‘}E[U(x,f)] +olU(x,6)] =

+

4Jm—ﬁf+m—ﬁfﬂﬁ—ﬁf

cﬂJm—ﬁY+m—ﬁ¥+m—ﬁf (88)

In general, the deterministic counterpart converted
from the I-URMOP problem has a high complexity and a
lot of local minima, the constraints of which may be also
complex. Thus, we apply the beetle antennae search
(BAS) algorithm [23], which has a strong robustness and
a low time complexity. Parameter settings adopted in the
BAS algorithm are shown in Table 1.

Table 1 Parameter settings adopted in BAS algorithm

Control parameter Value
Beetle size 50
Maximum cycle number 1 000
[Vmax Vmin ] [0.9,0.4]
Constant [0, 1]

We solve each problem for 20 times, and then use the
average values as the final results, which is shown in
Table 2. Expected values and standard deviation values
change with 1;,,,1; changing.

Table 2 Results by LWA with different weights

Traditional approach Proposed approach
[A1,22,43] . . - .
Objective Solution Objective  Solution
[2.805 4 [0.429 5 [2.6839 [0.450 1
[0.8,0.1,0.1] 6.587 1 2.8785 6.786 3 29785
—2.127 6] 3.4513] —29831]  3.5513]
[3.997 3 [0.409 7 [3.782 4 [0.389 5
[0.1,0.8,0.1] 6.365 4 21213 6.1458 21258
—2.247 8] 3.567 1] —2.8956]  3.256 9]
[3.697 1 [0.420 5 [3.0124 [0.4125
[0.3,0.4,0.3] 7.0923 2.356 8 6.458 7 22358
—2.651 8] 3.167 3] —3.0815]  3.8954]
[3.652 3 [0.3729 [3.789 5 [0.356 9
[0.1,0.1,0.8] 7.895 4 24531 7.095 4 2.0125
—5.298 3] 3.347 1] -5.5983]  3.1893]

The values of the objective function with various
weights are evenly distributed in a relatively concen-
trated interval. For the proposed approach, the value of
X1, X, %3 are in (0.35, 0.46), (2.01, 2.98), (3.18, 3.90), re-
spectively and the values of objective 1, objective 2, ob-
jective 3 are in (2.60, 3.79), (6.10, 7.10), (—5.60, —2.89),
respectively. For the traditional approach, the values of

X1,X,%; are in (0.37, 0.43), (2.10, 2.90), (3.16, 3.60), re-
spectively, and the values of objective 1, objective 2, ob-
jective 3 are in (2.80, 4.10), (6.30, 7.90), (—5.30, —2.10),
respectively.

Because the traditional approach and the new one are
different in the order of dealing with uncertainty and ran-
domness, the results are different, which are all Pareto ef-
ficient solutions based on the Cggp criterion. However,
since the new LWA takes into account the inherent uncer-
tainty and randomness of the problem, it makes the result
overall better than the traditional one. This also shows
that in practical problems, the solutions generated by un-
certain random approaches are more in line with the de-
cision-making preferences of most people.

Take [4;,4,,43] =[0.3,0.4,0.3] as an example. Cg:
Lfi, fos f3] = [2.9875, 6.342 1, =2.976 4], [x1, x5, X3] =
[0.408 9,2.342 1,3.907 1],[0y,0,03] =[0.33,0.49,0.81].
Cesp: [071,0%,03]1 =[0.12,0.11,0.19]. The expected va-
lues are similar, but the latter standard deviations in this
paper are smaller.

IPM is appropriate for the condition where decision
makers can easily know the optimal choice for each ob-
jective. The traditional approach is to convert the UR-
MOP into a deterministic problem under the Cg criterion.
The lower bounds of these objectives are 2.987 6, 5.895 6,
—3.225 8. Similarly, we apply the BAS algorithm to solve
the problem, and the control parameters are listed in
Table 2. The comparison of the two approaches are
shown in Table 3.

Table 3 Comparison of the traditional approach and the new ap-

proach

Objective function  Traditional approach Proposed approach
Silem,T1) 2.895 1 27583
fHa(xm2,72) 6.472 2 6.3156
f3(x.m3,73) -3.128 4 —2.9433

Optimal solution (0.375 3,2.328 5,3.114 3) (0.367 4,2.538 1,3.315 4)

Obviously, the results of the new approach are differ-
ent from those of the traditional approach. The new ap-
proach calculates the minimum value of each uncertain
random objective function; thus, the uncertainty and ran-
domness of the problem are maintained. However, the
traditional approach focuses on the multi-objective part of
the problem based on the minimum value of determinis-
tic objective functions.

The results by IPM are shown as follows:
Ce: [fi.fo, 51 =12.6758,6.237 2,-3.031 1],[x;, x5, x3] =
[0.302 8,2.4527,3.585 7], (071,072,031 = [0.42,0.35,0.76] ;
Cesp:[01,03,03]1 =[0.09,0.14,0.17]. The expected values
are similar, but the latter standard deviations are smaller.
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5.2 Case application

In large-scale air combats, formulating a reasonable
weapon target allocation (WTA) scheme can optimize the
allocation of resources and obtain the largest battlefield
revenue with the least cost [24]. Assume that allocate m
different types of weapons to n different types of targets.
The number of weapons i allocated to a target j is de-
noted by x;; € N*. For a target j, a weapon i has a kill
probability p;; € (0,1), which is a random variable. A tar-
get j has a threat coefficient w; € (0,1), which is an un-

certain variable and ij = 1. Thus, the overall kill ef-

fectiveness of all wejazf)ons is denoted by fi=1-f/. In
order to facilitate the calculation, the minimum objective
function f/ is applied to represent the maximum kill ef-
fectiveness fi. A weapon i has a cost ¢;, which is a ran-
dom variable with a value range of (0, 1) for a unified di-
mension. Thus, the total cost is denoted by f,, which is a
random variable. The total number of weapons i is de-
noted by W; and the maximum of weapons i allocated to
all targets is no more than W;. To complete the task, the
total number allocated to target j is more than 1. Thus,
the problem is shown as follows:

min f*; = 1—2(4)1-[1 —ﬁ(l -pi)”
1 i=1

J=

m

min f, = z": Zcixij (39)

j=1 =1
m

n
S.t. ZX,']' < VV,', Z.x,'j > 1, Xij eN
J=1 i

i=1

where m=5,n=6,N;=2(i=1,---,5).w,(j=1,---,6) obey
distribution functions: Z(0.01,0.05,0.08), L(0.05,0.1),
L(0.1,0.2),L(0.2,0.3),Z(0.1,0.2,0.4),L(0.12,0.18). ¢;,(i =
1,---,5) obey distribution functions: N(0.3,0.05), N(0.5,
0.01),/N(0.8,0.09), N(0.7,0.02), N(0.9,0.1).

0.63 0.78 0.12 0.78 0.57 0.69
0.66 0.37 0.53 0.61 039 0.76
(Pi)se=| 0.73 0.86 0.65 055 0.73 0.99
0.81 0.92 0.67 058 085 0.79
0.61 0.88 097 0.72 087 0.64

The problem (89) is transformed into a deterministic
counterpart under the Cggp, criterion:

rxrgzr}E[U(x,f)] +o[Ux,86)] =

E[4 fi + L L]+ 04 fi + L o (90)

Take A, =0.6,4, =0.4 as an example, we get the re-
sults by the traditional approach based on the Cggp cri-
terion (TCggp-Weapon), by the new approach based on

the Cggp criterion (Cggp-Weapon), and by the new ap-
proach under the Cy criterion (Cg-Weapon), which are
shown in Table 4.

Table 4 Results by LWM for WTA

Target TCgsp-Weapon Cggp-Weapon Cg-Weapon

1 1,1 5 1,2

2 2,3 5 3

3 5 4 4

4 5 4 3

5 4 1,2 4

6 3 3 5

h 0.8617 0.894 6 0.880 2
5 5.1912 4.790 9 47767

The problem (89) is transformed into a deterministic
counterpart under the Cggp criterion:

I)}’Elg'lE[U(x,f)] +olUx, )] =

+

E[ o= £+ (= 1

a[ N —f;’f}. 1)

The lower bounds of these objectives are f°=
0.087 2, Y = 4.587 1. We get the results by the traditional
approach based on the Cggp criterion (TCggp-Weapon), by
the new approach based on the Cggp criterion (Cggp-
Weapon), and by the new approach based on the Cg, cri-
terion (Cg-Weapon), which are shown in Table 5.

Table S Results by IPM for WTA

Target TCrsp-Weapon Cgsp-Weapon Cg-Weapon
1 5 4 4
2 3 4
3 5 3 5
4 1,1 5 3
5 2 3 1,2
6 3 1,2 1,2
h 0.853 1 0.887 2 0.889 1
5 4.663 2 4718 6 4719 8

6. Conclusions

Under the Cggp criterion, this paper proposes a new ap-
proach for Pareto-efficient solutions to the I-URMOP
problem. The main contributions are as follows.

Under the Cggp criterion, the new approach considers
the uncertainty and randomness of the uncertain random
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problem and volatility of the results, which is appropriate
for the problems.

The proofs of the four lemmas lay foundations for the
new approach as well as provide a theoretical basis for
properties of uncertain random variables, which enrich
the chance theory.

For the LWM, the influence of weights is studied. Ob-
viously, the choices of weights depend on the problem as
well as the decision makers’ preferences, which shows that
it is appropriate to choose weights by collective decision
making. For IPM, the differences between the new ap-
proach and the traditional approach are discussed, which
illustrates that the new approach is more in line with the
decision preference of most people.

The URMOP with dependent variables should be stu-
died in the future. And a new approach based on the Cggp
criterion for the uncertain random multi-stage program-
ming problem is an open problem solved.
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