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Abstract: Because of the low convergence efficiency of the ty-
pical Vicsek model, a Vicsek with static summoning points
(VSSP) algorithm based on the Vicsek model considering static
summoning points is proposed. Firstly, the mathematical model
of the individual movement total cost on each summoning point
is established. Then the individual classification rule is designed
according to the initial state of the cluster to obtain the sub-
clusters guided by each summoning point. Finally, the summon-
ing factor is introduced to modify the course angle updating for-
mula of the Vicsek model. To verify the effectiveness of the pro-
posed algorithm and study the effect of the cluster summoning
factor on the convergence rate, three groups of simulation ex-
periments under different summoning factors are designed in
this paper. To verify the superiority of the VSSP algorithm, the
performance of the VSSP algorithm is compared with the clas-
sic algorithm by designing the algorithm performance compari-
son verification experiment. The results show that the algorithm
proposed in this paper has good convergence and course angle
consistency. The summoning factor is the sensitive factor of
cluster convergence. This algorithm can provide a reference for
efficient cluster segmentation movement.
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1. Introduction

Cluster system is ubiquitous in nature and human life,
which has important practical significance for the study
of cluster movement. The application research of cluster
system has been widely carried out in many fields, such
as the control and evolution of aviation clusters [1], lead-
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er-missile follower-missile cluster distributed guidance
[2], time-varying formation tracking control [3], un-
manned aerial combat system [4—9] and so on. In recent
years, with the development of underwater unmanned
systems, the intelligent technology of underwater clusters
has been highly valued, which is of great significance to
the research on the movement model of underwater
cluster systems.

The research on cluster systems is mainly realized by
establishing corresponding models. Typical cluster mo-
dels include the Vicsek model, the Boid model, the three-
circle model, the leader-follower model, and so on.
However, these classic models have their shortcomings,
so many scholars have improved them to enhance the per-
formance of models. Given the slow convergence speed
and low consistency of the Vicsek model, Gao et al. [10]
proposed a new method to improve the convergence effi-
ciency of the Vicsek model by using the topological
structure of a dynamic network and combining the
concept of the moderate degree of complexity network.
This method can improve the convergence speed and
consistency of the system. Aiming at the problem that
convergence efficiency of the Vicsek model is not high,
Chen et al. [11] proposed a new rule that takes the medi-
an value of the movement direction of two neighboring
individuals with the largest deviation of the movement
direction within the set of individual neighborhoods as
the motion direction of the next moment. The speed of
the improved model under the control rule to achieve the
direction uniformity is obviously accelerated. Jiang [12]
proposed a heterogeneous speed adaptive cluster model
based on the Vicsek model and studied the convergence
speed and convergence probability of cluster. Tian [13]
proposed a limited perspective model based on the Vic-
sek model and found that there is an optimal perspective
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for clusters, so that clusters can achieve synchronization
as quickly as possible. Wang [14] added limited horizon
constraints and neighborhood weights to the Vicsek mo-
del and studied the connectivity of ad-hoc communica-
tion networks. Olfati-Saber discussed how to use dyna-
mic networks to model the behavior of multi-agent clusters
[15], and extended the idea of multi-agents clustering in
free space to multi-obstacle space [16]. The Olfati-Saber
algorithm uses an improved potential field function to en-
able agents to avoid obstacles and move toward the tar-
get point, which improves the limitation of potential field
traps and has become a classic multi-agents cluster con-
trol algorithm. Ye et al. [17] studied the aggregation and
segmentation evolutionary behavior of the cluster system.
Luo et al. [18] studied the cluster behavior of the pigeon
herd. Li et al. [19] established a dynamic model of the
cluster with an attention mechanism.

To solve the problem of low convergence efficiency of
the Vicsek model, this paper proposes to add static sum-
moning points based on the classic Vicsek model, so that
the movements of all individuals in the group can quickly
reach a consensus according to the summoning direction,
and the equation of movement direction update in the
Vicsek model is improved. The cluster consistency veri-
fication experiment is designed for verifying the effect-
iveness of the Vicsek with static summoning points
(VSSP) algorithm in this paper. To verify the superiority
of the VSSP algorithm, the Vicsek algorithm and the Ol-
fati Saber algorithm are compared with the VSSP al-
gorithm respectively, and the algorithm performance
comparison verification experiment is designed. The ex-
perimental results verify the good performance of the al-
gorithm in this paper. This algorithm can provide a refer-
ence for efficient cluster segmentation movement.

2. Classic Vicsek model

The Vicsek model [20—30] is a discrete-time cluster sys-
tem composed of N autonomous individuals. They move
at the same speed v in the plane, and the course angle of
each individual is updated according to the average of its
neighbors’ course angles vector. The neighbors of indi-
vidual i consist of individuals centered on the individual’s
current position (x;(¢),y;(#)) and having a Euclidean dis-
tance from the individual less than the normal number 7.
N(1) is used to express the neighbors of individual i at
time ¢, that is

N ={j/d}(t) <7}, (1)
dy = O -5 + G-y, @)

Each individual is its own neighbor. Each moves at a
constant positive speed v in the plane, so the position of

each individual is updated as

{x,-(t+l):x,-(t)+vc050,-(t) =12 N ()

where 6;(¢) is the course angle of individual i at time ¢,
which is updated as
Z sinf,(f)
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It is noted that the dynamic behavior of the above sys-
tem is completely determined by the initial state (initial
course angle and initial position), the neighborhood radi-
us », and the movement speed v. The neighbors of each
individual are determined by the position of other indi-
viduals, and the course angle of each individual is de-
termined by the neighbors’ course angle. Similarly, the
course angle also affects the position. Therefore, a com-
plex non-linear relationship is formed between the posi-
tions and course angles of all individuals.

Synchronization of the multi-agent system above
means that the course angles of all individuals meet the
condition:

lim6,(¢) = 0,

t—o0

i=1,2,---,N (5)

where & may depend on the initial state {6,(0),x;(0),
v:0),i=1,2,---,N} and the system parameters v, r.

3. An improved Vicsek model with static
summoning points

Because of the low convergence efficiency of the Vicsek
model which describes the dynamic behavior of cluster,
this paper proposes to add static summoning points based
on the classic Vicsek model for making all the individual
movements in the group quickly reach a consensus ac-
cording to the summoning direction, and the movement
direction update equation of the Vicsek model and its lin-
earized model is replaced.

3.1 Individual classification of the initial group

All individuals in the cluster will be guided by summon-
ing points in the process of movement. When there are
multiple summoning points, it is necessary to classify all
the individuals in the group first, and clarify the sub-
cluster guided by each summoning point, because dynam-
ic behavior of the cluster system based on the Vicsek
model is completely determined by the initial state (ini-
tial course angle and initial position), the neighborhood
radius r, and the movement speed v. When the neighbor-
hood radius and movement speed of the cluster system
are given, movement of the cluster system is completely
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determined by the initial course angle and position of
each individual. Therefore, the classification of sub-
clusters is also based on the course angle and position of
the cluster at the initial state.

Suppose there are P static summoning points in the
system, and the position of summoning pointp is ex-
pressed as (x,,y,) (p=1,2, -, P). R, is used to represent
the subcluster guided by the summoning point p in the
cluster. To make the cluster reach the consensus quickly
at the summoning direction in the optimal state, the total
movement cost of the individual to each summoning
point (distance cost and summoning diversion cost) needs
to be considered to ensure that each individual is as-
signed to the summoning point with the minimal total
movement cost.

3.1.1 Total cost model of movement

(i) Distance cost
The distance cost of individual i in the subcluster guided
by summoning point p at time ¢ is recorded as dc,,(¢). The
distance cost is the normalized value of Euclidean dis-

tance from the individual to the summoning point.
dey,(t) =
dy(1) — min(d;, (1))
max(d,, (1)) —min(d,, (1))’
(i) Summoning diversion angle cost
As shown in Fig.1, the course angle of individual i at time
t is denoted as 6,(r). The angle between the direct line of
individual ; at time ¢ pointing to summoning point p and
the horizontal coordinate axis is defined as the summon-
ing angle of the summoning point to the individual,
which is denoted as v,,(t). The summoning diversion
angle ¥;,() of summoning point p to the individual i at
time ¢ is the difference between the course angle of indi-
vidual 7 and the summoning angle of summoning point p
to the individual ;. The summoning diversion angle cost
of summoning point p to the individual i is recorded as
Ye,(t), and the summoning diversion angle cost is the
normalized value of the summoning diversion angle from
the summoning point to the individual.

=1,2,---,P (6)

y

Vip

Fig.1 Summoning diversion angle diagram

_ yp(t) _yi(t)
’y,',,(t) = arctan [m} (7)
Yip(1) = 0:(1) =, (1) ®)

v Cip(t) =
Wip(1) —min(y;, (1))
max(i,(1)) — min(;,(1)”
(iii) Movement total cost

The movement total cost Mc,(¢) is the weighted sum of

distance cost and summoning diversion angle cost when

individual / is classified into subclusters of summoning

point p at time . Distance cost coefficient d,,., and sum-

moning diversion angle cost coefficient .,.; are intro-

duced respectively, and they meet the requirement of
eoef +Weoer = 1.

Mcip (t) = dcuef . dcip (t) + lpcoef : lpclﬁ(l) (1 0)

q:1’2,"'ap (9)

3.1.2 Individual classification rules in the initial cluster

The individual classification in the cluster is completely
determined by the course angle and position of the group
in an initial state, and the total movement cost matrix of
the cluster at the initial time is denoted as Mcyyp.

Definition 1 Suppose A4 is a matrix, and min (A4, 1) re-
turns the column position where the minimum value of
each row in matrix A is located. The vector Rc is the
summoning point typeset with the lowest total cost of all
individuals in the cluster.

Rc =min(Mcyyp,1) =

Mcy, Mecy, Mc,p
min M.cl-l M.cl-q M.c,»p 1=
Mew o Moy .. Mo
Rc,
R.c,v (11)
Rex

Then the subcluster R, guided by summoning point p
can be expressed as

R, ={i/Rc; = p}. (12)

Thus, the types of summoning points to which all the
individuals in the cluster belong have been determined,
and all individuals in the subcluster R, will quickly reach
a consensus in the optimal state according to the direc-
tion of summoning point p.
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3.2 Updating equation of course angle

In this paper, static summoning points are added to in-
crease course guidance factors in the movement process
of individuals in the cluster. The updating formula of the
course angle in the typical Vicsek model needs to be
modified under the considering of influence from static
summoning points. The updated formula of the modified

course angle is
> sing,()

JENi(1)

Z cosé;(1)

JENi(1)

6;,(t+ 1) = arctan

+n-y()  (13)

where 7 is the summoning factor, i € (0, 1).
4. Simulation and analysis

The improved Vicsek algorithm with static summoning
points has a good cluster segmentation effect, and the
convergence speed has been greatly improved. To verify
the effectiveness of the algorithm proposed in this paper,
a cluster segmentation consistency verification experi-
ment is carried out. Because the summoning factor has a
great influence on the convergence speed of the cluster
movement, this paper has carried out comparative simula-
tion experiments under different summoning factors. To
verify the superiority of the algorithm proposed in this
paper, the performance comparison experiment is de-
signed.

Parameter settings: N=300, P=3, r=0.8, v=0.02,
Aepe0.4, Yooy =0.6, coordinates of the summoning points
set {(0,0), (3,6), (6,0)}, # is set by 0.3, 0.25, 0.15 respect-
ively. At the initial time, the cluster is randomly distri-
buted in the square range of ([2,4], [2,4]) with the Gaussi-
an distribution. The simulation step is unit 1 and the num-
ber of iterations is 120.

To quantitatively evaluate the convergence consis-
tency and convergence speed of the designed algorithm,
the quantitative evaluation index of maneuver consist-
ency parameter and convergence time defined in [31] are
cited. The maneuver consistency parameter /, and con-
vergence time 7, are expressed as

P

1
Vp(t) = — - (|, 14
K0 = 5 Z év() (14)
T.= V,E};R% . )

4.1 Verification of cluster segmentation consistency

In this paper, three groups of simulation experiments are
carried out when the summoning factor values are 0.3,
0.25 and 0.15 respectively. Fig. 2 shows the spatial distri-

bution state of cluster individuals at typical times when
n=0.15 (the spatial dynamic distribution state of cluster
individuals atx =0.3 and # =0.25 is similar to that at
#=0.15, which will not be shown here). The arrow direc-
tion of each point in Fig. 2 is the direction of the indi-
vidual at this moment, and the black solid box is the sum-
moning point, the points marked in red, blue, and green
are used to represent the subclusters classified into sum-
moning points (0,0), (3,6), (6,0) respectively.
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Fig. 2 Spatial distribution of individuals in a cluster at the typical
time when 7= 0.15

It can be seen from Fig. 2 that under the guidance of
the summoning point, each subcluster quickly separates
and moves to the corresponding summoning point. At the
beginning of the cluster movement, each individual is
constantly adjusting his course due to the great initial
course difference of each individual. It makes subcluster
course of the same summoning point reach the same, so
there will be the phenomenon of individual wandering
near the initial position. When all individuals adjust their
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course angles to reach the same direction as the summon-
ing point, the subclusters will be quickly separated. It can
be seen that the subclusters are completely separated and
the cluster segmentation consistency is good.

4.2 Effect of summoning factor on
the convergence rate

To analyze the influence of the summoning factor on the
convergence rate of the cluster, three groups of simula-
tion comparison experiments are carried out when the
summoning factor values are 0.3, 0.25 and 0.15 respect-
ively, the results are shown in Fig. 3 to Fig. 5.
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Fig. 4 Simulation results when 17=0.25

According to the simulation results: (i) With the de-
crease of the summoning factor, the convergence rate of a
cluster is slowing down. When #=0.3, the course angles
of all individuals in the cluster tend to be consistent after
about 25 iterations, when #=0.25, that tends to be consist-
ent after about 32 iterations, when #=0.15, it tends to be
consistent after about 50 iterations. (ii) The trajectory of
individuals in the cluster changes greatly in the early
stage of the movement. This is because before course
angles of subclusters reaching consistent, the course
angles of subclusters are constantly adjusted under the
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guidance of the summoning point. (iii) The final course
angles of the subclusters guided by the three summoning
points converge to —135°, 90° and —45° respectively, and
the cluster segmentation has a good consistency. (iv) At
the beginning of the calculation, the course angle-time
curve of individuals show the oscillation of the course
angle. This is because the updating of the course angle is
related to the course angle of other individuals in its
neighborhood, where individuals belong to a subcluster
of another summoning point, which has an impact on the
update of the course angle.
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Fig.5 Simulation results when 7=0.15

4.3 Comparison and verification of algorithm
performance

4.3.1 Comparison and verification for cluster segmenta-

tion consistency of different algorithms

To verify the superiority of the VSSP algorithm pro-
posed in this paper, the performance of the basic Vicsek
algorithm and the classic Olfati-Saber algorithm in this
field are compared with the VSSP algorithm. In the simu-
lation environment of Section 4.1, simulation experi-
ments are carried out based on the VSSP algorithm, the
Olfati-Saber algorithm, and the basic Vicsek algorithm.
The summoning factor in the environment is 7 = 0.45.
Fig. 6 shows the comparison results of the maneuver con-
sistency parameter time history curves of the three al-
gorithms. Table 1 shows the comparison results of the
convergence time indicator of the three algorithms in the
environment.
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Fig. 6 Time history curve of maneuver consistency parameter V,
for the three algorithms when 7=0.45

Table 1
of the three algorithms when 7=0.45

Comparison results of the convergence time indicator T,

VSSP Olfati-Saber Vicsek
T. 6 35 62

Parameter

From the simulation results in Fig. 6 and Table 1, the
following conclusions can be drawn: (i) Whether it is
comparing the maneuver consistency parameter V', or
comparing the convergence time indicator 7, not only the
convergence consistency of the VSSP algorithm pro-
posed in this paper is superior to the Olfati-Saber al-
gorithm and the basic Vicsek algorithm, but also the con-
vergence time is significantly shorter than the other two
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algorithms. (ii) The Olfati-Saber algorithm converges
very quickly in the initial stage, but within a relatively
high convergence consistency range, its convergence rate
is slow. However, the VSSP algorithm converges at a
faster convergence rate throughout the entire process,
which shows a better convergence performance. Through
the comparative experiments, the superiority of the al-
gorithm proposed in this paper can be verified. (iii) The
comparison results between the VSSP algorithm and the
basic Vicsek algorithm show that adding static summon-
ing points to the typical Vicsek model can greatly im-
prove the convergence performance of the cluster move-
ment. The comparison results between the VSSP algori-
thm and the Olfati-Saber algorithm show that the al-
gorithm proposed in this paper has certain advantages.

In order to further verify the superiority of the VSSP
algorithm, different simulation environments need to be
set up for horizontal comparison. In Subection 4.3.2, the
three algorithms are compared and verified by setting up
the simulation environments for clusters of different
scales. And in Subection 4.3.3, the three algorithms are
compared and verified by setting the simulation environ-
ment with different numbers of summoning points.

4.3.2 Comparison and verification of algorithms under
different cluster scales

In this group of comparative experiments, the parame-
ter settings are as follows: #=0.35 , P=3 , r=0.8,
v=0.02, d.,,70.4, .;=0.6. The summoning point
set coordinate is {(0,0),(3,6),(6,0)}. The numbers of in-
dividuals are N,=100, N,=400, N;=700. At the initial
time, the cluster is randomly distributed in the square
range of ([2,4], [2,4]) with the Gaussian distribution.
The simulation step is unit 1 and the number of itera-
tions is 90. Fig. 7 to Fig. 9 are the simulation results
when the numbers of individuals in the cluster are 100,
400 and 700 respectively. Since the movement traject-
ories of all individuals in the cluster and the course
angle-time curves of all individuals in the cluster ob-
tained based on the three different algorithms are simi-
lar, the subgraphs (a) and (b) in Figs. 7-9 only show
thesimulationresultsbasedonthe VSSPalgorithm. Table2
shows the comparison results of the convergence speed
of different algorithms in the three environments.

From the simulation results in Figs. 7-9 and Table 2,
the following conclusions can be drawn: (i) As the num-
ber of individuals in the cluster increases, the conver-
gence speed of the maneuver consistency parameter V, of
the Olfati-Saber algorithm and the Vicsek algorithm be-
comes slower, and the convergence time index 7. be-
comes larger, while the convergence speed of the VSSP

algorithm is almost unchanged. This shows that the VSSP
algorithm has a strong adaptability to large-scale seg-
menting movement. (ii) When the cluster scale is small,
the convergence speed of the Olfati-Saber algorithm is
significantly better than that of the Vecsek algorithm, but
as the cluster scale increases, the advantage of the Olfati-
Saber algorithm gradually disappears.
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Fig.7 Simulation results when N=100
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Fig. 9 Simulation results when N=700
Table 2 Comparison results of convergence time of different al-

gorithms in the three environments

Parameter Number of individuals ~ VSSP  Olfati-Saber  Vicsek
N=100 8 25 62
T. N=400 6 48 70
N=700 9 65 83

4.3.3 Comparison and verification of algorithms under
different summoning points

In this group of comparative experiments, the parameter
settings are as follows: N=300, #=0.45, P=3, r=0.8,

v=0.02, d,,.,~0.4, Yr=0.6. When the number of sum-
moning points P, =2, the coordinate of the summoning
point set is {(0,0), (6,6)}; when P,=4, the coordinate of
the summoning point set is {(0,0), (0,6), (6,0), (6,6)};
when P;=6, the coordinate of the summoning point set is
{(3,0), (0,1.5), (0,4.5), (3,6), (6,4.5), (6,1.5)}; when P,=8,
the coordinate of the summoning point set is {(1.5,0),
(0,1.5), (0,4.5), (1.5,6), (4.5,6), (6,4.5), (6,1.5), (4.5,0)}.
At the initial time, the cluster is randomly distributed in
the square range of ([2,4], [2,4]) with the Gaussian distri-
bution. The simulation step is unit 1 and the number of it-
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erations is 90 times. Figs. 10—13 are the simulation res-
ults when the numbers of summoning points in the cluster
are 2, 4, 6 and 8 respectively. Since the movement traject-
ories of all individuals in the cluster and the course angle-
time curves of all individuals in the cluster obtained
based on the three different algorithms are similar, the
subgraphs (c) and (d) in Figs. 10—13 only show the simu-
lation results based on the VSSP algorithm. Table 3
shows the comparison results of the convergence speed of
different algorithms in the four environments.
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Fig. 13 Simulation results when the number of summoning points
P=8

Table 3 Comparison results of convergence time of different al-
gorithms in the four environments

Parameter Number of summoning points VSSP Olfati-Saber Vicsek

P=2 5 12 18

P=4 6 21 29
T.

P=6 9 53 64

P=8 12 65 89

From the simulation results in Figs. 10—13 and Table 3,
the following conclusions can be drawn: (i) As the num-
ber of summoning points in the environment increases,
the more types of clusters need to be classified, the more
difficult it is to segment the clusters, and the conver-
gence speed of the three algorithms is all slowed down.
(i) With the increase of cluster classification, the seg-
mentation performance of the Olfati-Saber algorithm and
the Vicsek algorithm deteriorates sharply, while the
VSSP algorithm shows a strong adaptability.

5. Conclusions

In this paper, based on the typical Vicsek model, static
summoning points are introduced to guide the individu-
als in the cluster to be classified into subclusters, and
each subcluster gathers to its corresponding summoning
points. It can be seen from the simulation experiment that
adding static summoning points to the Vicsek model can
greatly improve the convergence rate of the cluster move-
ment, and at the same time make the cluster maintain
good course consistency. Through the comparative expe-
riments of different summoning factors, we can see that
the summoning factor has a great influence on the con-
vergence rate of the cluster, the larger the summoning
factor is, the faster the convergence rate of the cluster is.
Through comparison and verification with the typical al-
gorithms of the Olfati-Saber algorithm and the basic Vic-
sek algorithm, we can see the superiority of the VSSP al-
gorithm.

The method proposed in this paper can be well used in

cluster segmentation, but in practice, the summoning
points are more dynamic. Besides, the proposed method
cannot be used for cluster gathering. These problems are
what we need to further study later.
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