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Abstract: Adaptive digital  self-interference cancellation (ADSIC)
is  a  significant  method  to  suppress  self-interference  and  im-
prove  the  performance  of  the  linear  frequency  modulated  con-
tinuous  wave  (LFMCW)  radar.  Due  to  efficient  implementation
structure, the conventional method based on least mean square
(LMS)  is  widely  used,  but  its  performance  is  not  sufficient  for
LFMCW radar. To achieve a better self-interference cancellation
(SIC) result and more optimal radar performance, we present an
ADSIC  method  based  on  fractional  order  LMS (FOLMS),  which
utilizes  the  multi-path  cancellation  structure  and  adaptively  up-
dates  the  weight  coefficients  of  the  cancellation  system.  First,
we  derive  the  iterative  expression  of  the  weight  coefficients  by
using the fractional order derivative and short-term memory prin-
ciple.  Then,  to solve the problem that  it  is  difficult  to select  the
parameters  of  the  proposed  method  due  to  the  non-stationary
characteristics  of  radar  transmitted  signals,  we  construct  the
performance evaluation model of LFMCW radar, and analyze the
relationship  between  the  mean  square  deviation  and  the  para-
meters  of  FOLMS.  Finally,  the  theoretical  analysis  and  simula-
tion  results  show  that  the  proposed  method  has  a  better  SIC
performance than the conventional methods.
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1. Introduction
Linear frequency modulation continuous wave (LFMCW)
radar has the advantages of no blind spots, high receiver
sensitivity,  high  range  resolution,  and  small  size.  It  is
widely  used  in  navigation  radar  [1],  automotive  radar
[2−4] and other fields. However, the existence of self-in-
terference (SI) seriously reduces the isolation between the
transmitter and the receiver in LFMCW radar. Therefore,
in  order  to  achieve  higher  isolation,  the  self-interference
cancellation (SIC) technology is particularly critical.

According to the SIC implementation location, the SIC

is classified into three categories: space SIC (SSIC), ana-
log SIC (ASIC) and digital SIC (DSIC). SSIC suppresses
the SI signal power by using the antenna natural isolation,
antenna directivity, antenna polarization and so on [5−8].
ASIC is placed at the front end of the receiver channel to
limit the power of SI signals to the dynamic range of the
analog to digital converter (ADC) [9−13]. In [14], an im-
proved  isolation  method  based  on  convex  optimization
was proposed, which suppressed the signal coupled to the
receiver  by  the  zero-point  technique.  In  [15],  an  X-band
cancellation  test  system  based  on  digital  cancellation
technology was  developed for  LFMCM radar.  However,
the above implementation ASIC methods are not flexible
and  analog  circuit  is  too  complicated.  Thus,  the  DSIC
method is widely used because of its advantages such as
easy  implementation,  low  complexity,  and  high  calcula-
tion accuracy [16,17].

To adaptively track the change of  signal  channels  and
signal  characters,  more  and  more  researchers  pay  atten-
tion to the adaptive DSIC (ADSIC) method. With advan-
tages of its simple structure, stable performance and easy
implementation,  least  mean  square  (LMS)  has  been  uti-
lized  in  ADSIC  [18].  The  LMS-based  ADSIC  method
uses the digital baseband signal as the reference signal to
produce the cancellation signal, which is subtracted from
the received signal to suppress the SI signals. In [19], the
initial  delay  and  frequency  offset  were  compensated  by
the LMS-based ADSIC method, which tracked the chan-
ges  of  the  SI  signal  amplitude  and  phase  to  produce  the
cancellation  signal.  Finally,  it  eliminated  SI  signals  by
approximately  20  dB.  In  [20,21],  an  ADSIC  method
based on the recursive least square (RLS) algorithm was
proposed.  Compared  to  the  ADSIC  method  based  on
LMS, its convergence time is shorter, but the implemen-
tation is complex. The ADSIC method based on LMS and
RLS are widely used in the communication field based on
the stationary signal.
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The LMS-based ADSIC method is implemented by the
integer  order  gradient  descent  (IOGD)  and  the  cancella-
tion  performance  of  the  ADSIC  method  could  be  im-
proved. However,  the emergence of fractional order gra-
dient  descent  (FOGD)  method  brings  possibility  to  ob-
tain a better performance. In [22], by using the Caputo’s
fractional derivative theory, the author proposes the frac-
tional order LMS (FOLMS). It is pointed out that the lar-
ger  the  fractional  gradient  order,  the  greater  the  weight
noise,  and  the  smaller  the  fractional  gradient  order,  the
smaller the weight noise and the slower the convergence
rate.  Specifically,  when  the  fractional  gradient  order  is
greater than 1, its convergence rate is faster than the LMS,
when  the  fractional  gradient  order  is  smaller  than  1,  it
also  brings  small  steady-state  error.  In  [23,24],  the
FOLMS consisting of IOGD and FOGD was proposed. It
is  mentioned  that  when  the  fractional  gradient  order  in-
creases  to  1,  the  convergence  rate  and  steady-state  error
will increase.

In order to achieve higher SI suppressing and improve
the isolation, an ADSIC method based on the FOLMS in
LFMCW radar is proposed. First, we modify the conven-
tional ADSIC method by fractional order gradient which
is  calculated  by  Caputo’s derivative.  Then,  to  solve  the
problem that the long memory characteristic of fractional
order  derivative  leads  to  the  non-convergence  of  the  al-
gorithm,  we  utilize  the  short-term  memory  principle  to
ensure  the  convergence  of  the  proposed  algorithm.  Fur-
thermore,  from  the  nonstationary  and  time-varying  per-
spective, we analyze the influence of the fractional order
and the step size on the mean square deviation of the pro-
posed algorithm in the steady state, which provides a theo-
retical basis for the practical application of the algorithm.
Finally,  the performance and superiority of the proposed
method are shown by using simulation and experimental
data.

The rest of this paper is organized as follows. Section 2
introduces  the  ASIC  and  the  ADSIC  system  model  of
LFMCW radar in detail,  and Section 3 presents the AD-
SIC  method  based  on  FOLMS.  In  Section  4,  simulation
results of the different cases are provided to illustrate the
efficiency and superiority  of  the  proposed  method.  Con-
clusions are given in Section 5.
 

2. System model
In  this  section,  the  simplified  system model  of  LFMCW
radar  is  described  in  detail. Fig.  1 shows  the  block  dia-
gram for the proposed ADSIC method, where the analog
domain and the digital domain SIC are included.
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Fig. 1    Block diagram of LFMCW radar with analog domain and
digital domain SIC stages
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In the model, x(t),  d(t)  and r(t)  are  the radar  transmit-
ted  signal,  the  echo  signal  and  the  received  signal,  re-
spectively.  PA  and  LNA  represent  the  power  amplifier
and the low noise amplifier, respectively. x(t) is sent into
the circulator  and radiated through a  single  antenna.  Be-
cause of the lack of the circulator isolation and the space
coupling  of  electromagnetic  waves,  the  receiver  channel
receives the SI signal from the transmitter. The SI signal

 consists  of  the  strong  leakage  SI  signal  and
the  space  multi-path  component  [25 ],  which  is
modeled as x(t) through the Rician fading channel model.
In the radar receiver, the SI signal  can be written as

xSI (t) =
L−1∑
l=0

al x (t−τl) = xLP (t)+ xMP (t) (1)

where al  refers  to  the  amplitude  attenuation  coefficient
and τl is time delay in the lth SI signal coupling path. The
radio  frequency  (RF)  signal  of  the  radar  receiver  before
cancellation can be expressed as

r (t) = d (t)+ xSI (t)+ v (t) (2)

where d(t )  is  the  echo signal  reflected  by  the  target.  We
assume that it is uncorrelated with transmitted signal x(t).

574 Journal of Systems Engineering and Electronics Vol. 32, No. 3, June 2021



The noise  signal v(t )  is  a  zero-mean  Gaussian  noise  and
uncorrelated with d(t) and x(t).

After  the  ASIC,  a  multi-path  cancellation  scheme  is
shown in Fig. 1 at the digital domain. Each path includes
different  fixed  time  delays  and  the  complex  weighting
coefficient that is controllable by adaptive algorithms. All
paths are combined to get the digital reconstructed SI sig-
nal y(n), i.e.,

y (n) =
N−1∑
i=0

w∗i (n) xi (n) (3)

where xi(n)=x(n−Δni) and i is the index of the path. wi(n)
and xi(n )  are  the  complex weighting coefficients  and the
baseband version of the signal x(t) in the ith path, respect-
ively. N  is  the  number  of  paths  and Δni is  shifted samp-
ling  points  of  the i th  path.  The N  baseband  signals  are
multiplied  by  the  complex  weights  to  adjust  the  amp-
litude and phase of the signals, and we combine the N ad-
justed signals to obtain y(n) at the current time.

Then,  the  cancellation  signal y(n )  is  subtracted  from
z(n) to obtain the digital residual signal e(n), i.e.,

e (n) = z (n)− y (n) =

xre (n)+d (n)+ v (n)−
N−1∑
i=0

w∗i (n) xi (n) (4)

where xre(n) is a discrete representation of the analog re-
sidual  SI  signal, d(n )  is  a  discrete  representation  of  the
analog echo signal.

In  order  to  adapt  to  the  impact  of  changes  on  the  SI
channel, the complex coefficients must be estimated adap-
tively and precisely to ensure SI suppression processing.
Therefore, the adaptive algorithm is deployed to tune and
update the coefficients. 

3. ADSIC method
 

3.1    ADSIC method based on FOLMS algorithm

In  the  ADSIC method, J(n )  is  defined  as  the  instantane-
ous  power  of  the  digital  residual  signal e(n ),  and can be
described as

J (n) = |e (n)|2 = e (n)e∗ (n) (5)

| · |where  means  the  absolute  value  operation.  Ideally,
there  are  only  the  echo  signal  and  noise  in  the  residual
signal e(n) after SIC. Therefore, J(n) is a convex quadric
surface with a unique extreme point.

Equation (3) indicates that the crucial parameter to SIC
is the complex weighting coefficients wi(n), which can be
determined by minimizing J(n), i.e.,

min
wi(n)

J (n) =min
wi(n)

e (n)e∗ (n) . (6)

The  LMS-based  ADSIC  method  utilizes  the  IOGD  to
update its  complex weighting coefficients.  The FOLMS-
based  ADSIC  improves  the  SIC  performance  by  repla-
cing IOGD by FOGD. In this case, the coefficient in the
ith channel updating equation is expressed as

wi (n+1) = wi (n)+µ
[
− ∂

αJ (n)
∂w∗i (n)α

]
(7)

∂αJ (n)/∂w∗i (n)α

w∗i (n)
where α  is  the  fractional  order.  repre-
sents the partial derivative of J(n) for . For any con-
stant m−1<α<m, m∈N+, Caputo’s derivative with order α
for  a  smooth  convex  function J(n )  can  be  written  in  a
form as the Taylor series [26]:

w∗i (0)
CDαw∗i (n) J (n) =

∞∑
k=m

J(k)
0 (n)

Γ (k+1−α)
· [w∗i (n) − w∗i (0)

]k−α
(8)

C
a Dαb

J(k)
0 (n)
w∗i

where  denotes  the  Caputo’s fractional  differential
operator  between a  and  b ,  and  represents  the kth
order partial derivative of J(n) at (0).

w∗i
w∗i

The  convergence  of  FOLMS  cannot  be  guaranteed  in
(8)  due  to  the  long  memory  characteristics  of  fractional
derivative.  Therefore,  in  order  to  reduce  the  memory
characteristics, the initial integral point (0) is replaced
with (n−1) to update at each step, so (8) is rewritten as

w∗i (n−1)
CDαw∗i (n)J (n) =

∞∑
k=0

J(k+1)
n−1 (n)

Γ (k+2−α)
·[

w∗i (n) − w∗i (n−1)
]k+1−α (9)

J(k+1)
n−1 (n)

w∗i

where  the  order  0<α<1  and  represents  the
(k+1)th order partial derivative of J(n) at (n−1).

J(1)
n−1 (n)/Γ (2−α) · [w∗i (n)−w∗i (n−1)

]1−α
w∗i w∗i

Next,  the  steady  state  of  the  algorithm  is  discussed.
 mainly determines

the  value  of  (9)  when  | (n)− (n−1)|→0,  so  we  can
only reserve the first item to simplify the equation [26], i.e.,

w∗i (n−1)
CDαw∗i (n) J (n) =

J(1)
n (n)
Γ (2−α)

· [w∗i (n) − w∗i (n−1)
]1−α

(10)

J(1)
n (n)
w∗i

where 0<α<1 and  represents the first order partial
derivative of J(n) at (n) to be consistent with (7). Tak-
ing  (10)  into  (7),  and  regarding Г(2−α )  as  part  of μ ,  we
have

wi (n+1) = wi (n)−µJ(1)
n (n) · [w∗i (n)−w∗i (n−1)

]1−α
(11)

w∗i w∗iwhere  0<α<1  and μ>0.  To  keep μ[ (n)− (n−1)]1−α be
positive  all  the  time  and  extend α  to  (1,  2),  (11)  can  be
further transformed into

wi (n+1) = wi (n)−µJ(1)
n (n) · [|wi (n)−wi (n−1)|+δ]1−α

(12)
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J(1)
n (n) = 2x̃i (n)e∗ (n)where 0<α<2 and . δ is a small posi-

tive  scalar,  which  is  to  avoid  singularity  when  1<α<2.
However, δ is 0 when 0<α<1. From (12), the conventional
LMS is the special case of FOLMS with α=1.

To be simple, (12) can be written in the vector form as

W (n+1) =W (n)+2µ∆W1−α
n X (n)e∗ (n) (13)

∆W1−α
n

where W(n)=[w0(n),  w1(n ),  ···, wN−1(n)]T,  X(n )=  [x0(n),
x1(n),  ···, xN−1(n)]T ,  called  the  digital  baseband  reference
signal,  and  the  diagonal  matrix =diag{[|w0(n)−
w0(n−1)|+ δ]1−α, ···, [|wN−1(n)−wN−1(n−1)|+δ]1−α}. 

3.2    Performance evaluation

In  general,  the  interference  cancellation  ratio  (ICR)  is
used to evaluate the cancellation performance of the AD-
SIC method, which can be defined as

ICR = 10lg
Pz−Pd −Pv

Pe−Pd −Pv
(14)

where Pz  is  the  power  of  the  residual  signal z(n )  before
the  digital  canceller  and Pd  is  the  power  of  echo  signal
d(n). Pe  is  the power of  the residual  signal e(n)  after  the
digital canceller and Pv is the power of noise signal v(n).
Obviously,  ICR  is  in  an  inverse  relation  with Pe ,  the
smaller Pe, the higher ICR and the better performance of
ADSIC.

If  the  reference  signal X(n )  is  the  stationary  signal,
such as the single tone signal, Wiener solution of the AD-
SIC system is stable. However, the reference signal is the
non-stationary  in  LFMCW  radar.  The  non-stationary
characteristics  of  the  LFM  transmitted  signal  will  make
the  optimal  weighting  coefficients  of  taps, Wopt(n)=
[w0opt(n), w1opt(n), ···, wN−1opt(n)]T, also changes with time.
In this case, the SI suppression performance is related to
the  adaptive  adjustment  ability  of  the  proposed  method
closely.  Therefore,  in  the  actual  LFMCW  radar  applica-
tions, the adaptive algorithm performs an additional task,
which  is  tracking  the  time-varying  position  of  the  mini-
mum value on the cost function performance surface.

In  the  non-stationary  signals,  the ε(n )  and Q(n )  are
defined as  ε (n) =W (n)−Wopt (n)

Q (n+1) =Wopt (n+1)−Wopt (n)
(15)

where ε(n )  and Q(n )  are  nonzero in  LFMCW radar  AD-
SIC theoretically. Then, the residual SI signal xre(n) after
analog canceller is also written as

xre (n) =WH
opt (n) X (n)+ eo (n) (16)

where eo(n) is the evaluated error, which is a white Gaus-
sian  noise  and  mutual  statistical  independence  with  the

reference signal X(n). By (13), (15) and (16), we can get
that

E[ε (n+1)] = E
[
ε (n)−Q (n+1) −

2µ∆W1−α
n X (n) XH (n)ε (n)+

2µ∆W1−α
n X (n)e∗o (n)

]
= E[ε (n)]−E

[
Q (n+1)

]−
2µ∆W1−α

n,E R (n)E[ε (n)] (17)

E
[
2µ∆W1−α

n X (n)e∗O (n)
]
= 0 ∆W1−α

n,E = E
[
∆W1−α

n

]
where ,  and
R(n) is the autocorrelation matrix of the vector X(n). R(n)
is the Hermitian matrix, which can be represented as

R (n) = H (n)Λ (n) HH (n) (18)

where H(n) is the unitary matrix and Λ(n) is the diagonal
matrix which consists of R(n) eigenvalues. Because R(n)
is a positive definite matrix, the diagonal elements of di-
agonal  matrix Λ(n )  are  all  positive  real  numbers.  Mul-
tiply (17) by HH(n), which is converted to

E
[
HH (n)ε (n+1)

]
= E
[
HH (n)ε (n)

]
−

E
[
HH (n)Q (n+1)

]
−2µ∆W1−α

n,E Λ (n)E
[
HH (n)ε (n)

]
. (19)

When the modulation rate of the LFM signal is small,
the statistical characteristics of the signal change slowly.
After the algorithm converges to the steady state, the ap-
proximation can be obtained.

E
[
HH (n)ε (n+1)

] ≈ E
[
HH (n+1)ε (n+1)

]
(20)

According to (20), (19) can be further expressed as

E[ε′ (n+1)] = E[ε′ (n)]−E
[
Q′ (n+1)

]−
2µ∆W1−α

n,E Λ (n)E[ε′ (n)] (21)

ε′ ε′ Q′where (n+1)=HH(n+1)ε(n+1), (n)=HH(n)ε(n), (n+1)=
HH(n)Q(n+1).

Mean  square  deviation  (MSD) D(n )  and  mean  square
error (MSE) ξ(n) are defined as

D (n) = E
[
∥ε (n)∥22

]
ξ (n) = E

[∣∣∣εH (n) X (n)
∣∣∣2] (22)

∥·∥22where  is  the  square  of  the  Euclidean  norm.  When
W(n)  is  closer  to  Wiener  solution Wopt(n )  in  the  vector
space, the MSD and the MSE are smaller.

We write D(n+1) as
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D (n+1) = E
[
∥ε (n+1)∥22

]
=

E
{N−1∑

i=0

{
|ε′i (n)|2+

∣∣∣q′ i (n+1)
∣∣∣2+

4µ2
(
∆w1−α

in

)2
λi

2 (n) |ε′i (n)|2+
4µ∆w1−α

in λi (n) ·Re
[
ε′i (n)q′i

∗ (n+1)
]−

4µ∆w1−α
in λi (n) |ε′i (n)|2− 2Re

[
ε′i (n)q′i

∗ (n+1)
]}}

(23)

∆w1−α
in

∆W1−α
n

where  is the ith diagonal element of diagonal ma-
trix , and λi(n) is the ith diagonal element of diagonal
matrix Λ(n).  ε'i (n )  and q'i (n+1)  are  the  elements  of  ma-
trix ε(n) and Q(n+1), respectively.

In order to analyze the effects of step size μ  and frac-
tional order α on MSD, we suppose that

S (n) = 4λi
2 (n) |ε′ i (n)|2µFO

2+{
4λi (n)Re

[
ε′ i (n)q′ i

∗ (n+1)
]−4λi (n) |ε′ i (n)|2

}
µFO (24)

µFO

µFO ∆w1−α
in

µFO

4λi
2 (n)
∣∣∣ε′i (n)

∣∣∣2
µ∗FO

where  is  the  equivalent  step  size  of  the  FOLMS
method and =μ >0.  The effects  of  step  size  and
fractional order on MSD can be considered as the effects
on  function S(n ).  Function S(n )  can  be  regarded  as  a
quadratic  function  of  variable .  Since  the  coefficient
of the quadratic term, , is more than 0, the
curve of the function is a parabola with opening upwards,
and there is a symmetry axis , which is given as

µ∗FO = −
Re
[
ε′ i (n)q′ i

∗ (n+1)
]− |ε′i (n)|2

2λi (n) |ε′i (n)|2
. (25)

µFO

According to the position of the symmetry axis and the
value of , MSD and MSE can be divided into the fol-
lowing cases:

µ∗FO

µFO µ
∗
FO

µFO µ
∗
FO

µ∗FO

(i)  When the  symmetry  axis >0, S(n )  is  a  decreas-
ing function in 0< <  and S(n) is an increasing func-
tion  in > . S(n )  obtains  the  minimum  value  at  the
symmetrical axis .

∆w1−α
in

µFO ∆w1−α
in µFO µ

∗
FO

µFO µ∗FO

µFO

i)  When  |wi(n)−wi(n−1)|<1  and α>1,  >1,  then
= μ >μ. If  0< < , then S(n)  of the FOLMS

method is less than kS(n) of the LMS method, i.e., SFO(n)<
SLMS(n), which further leads to that D(n+1) of the FOLMS
method  is  less  than D(n +1)  of  the  LMS  method,  i.e.,
DFO(n+1)<DLMS(n+1)  and ξ(n+1)  of  the  FOLMS  method
is  less  than ξ(n +1)  of  the  LMS  method,  i.e., ξFO(n+1)<
ξLMS(n+1). At this point, the ICR of the FOLMS method is
higher than that of the LMS method; when  >  and

>μ, then SFO(n)>SLMS(n). We get DFO(n+1)>DLMS(n+1)
and ξFO(n+1)>ξLMS(n+1).  Now,  the  ICR of  the  LMS me-
thod is higher than that of the FOLMS method.

∆w1−α
in µFOii) When |wi(n)−wi(n−1)|<1 and α<1, <1, then  =

∆w1−α
in µFO µ

∗
FO

µFO µ
∗
FO

µFO

μ <μ. If  0< < ,  then SFO(n)>SLMS(n ),  which
further  leads  to DFO(n +1)  > DLMS(n +1)  and ξFO(n+1)>
ξLMS(n+1).  At  this  time,  the  ICR  of  the  LMS  method  is
higher  than  that  of  the  FOLMS  method;  when >
and <μ,  then SFO(n)<SLMS(n ).  We  get DFO(n+1)<
DLMS(n+1) and ξFO(n+1)<ξLMS(n+1). Now, the ICR of the
FOLMS method is  higher than that  of  the LMS method.
In practice, we generally select a smaller step size to en-
sure the stability of the adaptive algorithm.

µ∗FO(ii)  When the symmetry axis <0, S(n)  is  a  increas-
ing function in the range of μFO>0.

∆w1−α
ini)  When  |wi(n)−wi(n−1)|<1  and α>1,  >1,  then

μFO>μ and SFO(n)>SLMS(n), which further leads to DFO(n+1)>
DLMS(n+1) and ξFO(n+1)> ξLMS(n+1). At this time, the ICR
of LMS is higher than that of FOLMS.

∆w1−α
inii)  When  |wi(n)−wi(n−1)|<1  and α<1,  <1,  then

μFO<μ and SFO(n)<SLMS(n), which further leads to DFO(n+1)<
DLMS(n+1) and ξFO(n+1)<ξLMS(n+1). By this time, the ICR
of FOLMS is higher than that of LMS.

In LFMCW radar, the modulation rate of x(n) is a sig-
nificant factor affecting the Wiener solution Wopt(n). The
dynamic  range  of Wopt(n )  is  proportional  to  the  modula-
tion  rate.  For  LFMCW  radar  with  the  large  modulation
rate,  the  LMS-based  ADSIC  method  cannot  make  the
change  of W(n )  match  that  of Wopt(n )  only  by  adjusting
the  step  size,  which  leads  to  the  fact  that  the  SI  compo-
nent cannot be fully suppressed. Different from LMS, the
proposed algorithm can make W(n) well track Wopt(n) by
selecting the appropriate fractional order. From the above
analyses in (i) and (ii), the fractional order in FOLMS is
usually set to a value greater than 1 to improve the ICR of
ADSIC system when the modulation rate of x(n) is large.

Different  from  LMS,  the  FOLMS  has  an  extra  power
term  ΔWn

1−α.  The  existence  of  this  component  increases
the  complexity  of  the  proposed  algorithm.  In  the  updat-
ing of weight coefficient, only one multiplication, two ad-
ditions and one power operation are added to the calcula-
tion of each order coefficient. In the application that cal-
culation  accuracy  is  not  strict,  ΔWn

1−α can  be  simplified
by  approximate  calculation  to  reduce  the  computational
complexity of FOLMS. 

4. Simulation results
The performance of the FOLMS-based ADSIC method is
verified by the experiments on simulation data and mea-
sured  in  Matlab.  The  nonlinear  and  ADC  quantization
noise are not considered for the time being. In the simula-
tions, we take the triangular wave modulated LFM signal
as  the  transmitted  signal,  which  is  with  a  sample  rate  of
100  MHz  and  a  sweep  repetition  period  of  100  μs.  The
sweep bandwidth is 20 MHz. The SI channel is modeled
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as Rice channel, the number of delay paths is 25, and the
delay time satisfies  the uniform distribution of  the range
[0, 10] ns. In the ADSIC structure, the number of paths is
N=4.  We  suppose  that  the  noise  level  of  the  receiver
channel is −97.8 dBmW, and the SI power is −11.5 dBmW
after the SSIC and ASIC. 

4.1    Simulation experiments of SI suppressing
 

4.1.1    SIC performance versus fractional order α

In  the  digital  cancellation  stage,  we  contrast  the  experi-
mental results between the LMS method and the FOLMS
method.  The  power  of  the  residual  signal  with  different
fractional orders are shown in Fig. 2. The results are ob-
tained from 1 000 Monte Carlo simulations. When the or-
der α=1.1, the power of the FOLMS method is lower than
the LMS method approximately by 13 dB with the same
step size. The level of the residual signal power is closer
to the noise floor  with the FOLMS method (α=1.1)  than
the  LMS  method.  However,  the  LMS  method  has  the
lower power level of the residual signal than the FOLMS
method with α=0.9.
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Fig. 2    Power of the residual signal versus various α
 

µ∗FO

In  this  experiment,  |wi(n)−wi(n−1)|<1,  when  1<α≤1.2,
|wi(n)−wi(n−1)|1−α increases  as α  increases  and μFO>μ .  In
Fig. 3, when μ=0.01 and 1<α≤1.2, it can be observed that
ICR  of  FOLMS  is  larger  than  that  of  LMS  obviously.
Then, ξ(n) of the FOLMS method is less than the LMS me-
thod,  which  implies  the  FOLMS method holds  excellent
ability  of  tracking  performance.  For  example,  when μ=
0.01 and α=1.1, ICR is 69.4 dB, but LMS is only 56.31 dB.
However,  it  is  worth  noting  that  ICR will  become dimi-
nished when α is greater than a certain range for the same
μ.  The reason is that when μFO  increases, μFO  will  be lar-
ger than  and the iterative search method of the algo-
rithm is changed from the asymptotic way to the oscilla-
tory way, which makes ξ(n) become larger. In other words,
the  SI  suppression  performance  of  the  proposed  method

with α>1 is better than that of LMS when the step size μ
is  within  a  reasonable  range.  Moreover,  the  proposed
method has an optimal fractional order to obtain the high-
est ICR when μ is fixed, and the optimal fractional order
decreases with the increase of μ.
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In terms of the power spectral density (PSD), Fig. 4 in-
dicates that if the fractional order α>1, then the SI signal
can  be  cancelled  more  efficiently  in  the  FOLMS  algo-
rithm than the LMS algorithm.
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Fig. 4    PSD of the residual signal versus various α
 

The  power  of  different  residual  signals  is  shown  in
Table 1. Before ADSIC, the power of the received signal
is −11.5 dBmW. As μ= 0.03 and α=1, the power of resi-
dual signal e(n) is −77.16 dBmW. LMS can suppress the
SI signal by 65.7 dB. However, at the same step size, if α=
1.1, then the power of residual signal e(n) is −88.94 dBmW.
The ICR is  in  the  order  of  77 dB compared to  the  LMS
method,  the  ICR  is  in  the  order  of  77  dB.  Compared  to
the LMS method, the ICR is improved by about 11 dB in
the FOLMS method.
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Table 1    Power of the residual signal with different fractional orders

Item Power/dBmW
Before digital cancellation −11.50

α = 0.9 −64.11
α = 0.95 −70.64
α = 1.00 −77.16
α = 1.05 −83.54
α = 1.10 −88.94

Receiver noise floor −97.80
 

4.1.2    SIC performance versus bandwidth and INR

In addition, the performance of the digital SI canceller is
affected  by  the  signal  sweeping  frequency  rate.  If  the
bandwidth of the LFM signal becomes larger, the sweep-
ing rate will increase when the modulation period is fixed.
ICR with different bandwidths is depicted in Fig. 5.
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Fig. 5    ICR versus the bandwidth under various α
 

When α=1.1,  the  highest  ICR value  is  obtained  under
the current bandwidth. From the figure, the increasing of
the  bandwidth,  i.e.,  the  increasing  of  the  sweeping  rate,
will cause ICR to decrease. It means that if the sweeping
rate is increasing, then the change of the complex coeffi-
cients is not able to adapt the variation tendency of Wiener
resolution. That will make the MSE ξ(n) increase, so ICR
will be decreasing. At the same bandwidth, μFO is increas-
ing  with  the  increasing  of α ,  then  E[J(n)]  is  decreasing
and  ICR  is  becoming  higher.  In  the  wider  bandwidth,
when  simulating,  taking  1<α≤1.1,  ICR  of  the  FOLMS
method  is  also  better  than  LMS  at  the  same  step  size,
which means that the FOLMS-based ADSCI method with
the larger fractional order may get higher ICR for LFMCW
radar with the larger modulation rate of x(n).

Fig.  6 depicts  the  impact  of  the  interference-to-noise
ratio  (INR)  on  the  ADSIC  ability.  The  selection  of  the
step  size  is  the  optimal  step  size  of  the  order α =1.1  in
each INR. These curves show that ICR is directly propor-
tional to INR and the proposed method with α>1 is better
than the LMS method in all the INR regions. Fig. 6 shows

that  compared  with  LMS,  the  SI  suppression  perform-
ance of the FOLMS method is not obvious under the con-
dition of  low INR. However,  the FOLMS method is  go-
ing to surpass the LMS method more and more for α=1.1
with INR increasing. In addition, compared with the LMS
method, it overcomes the serious deterioration of ICR un-
der the lower INR. It is noted that when INR is between
10  dB  and  40  dB,  ICR  of  the  order α=1.05  is  close  to
α=1.1, because the residual signal powers are all particu-
larly close to the noise floor in the cases.
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4.1.3    SIC result by the proposed method in
actual LFMCW radar

In  order  to  describe  the  effectiveness  of  the  method fur-
ther, FOLMS is employed in the actual radar data, which
is with a sample rate of 90 MHz and bandwidth of 10 MHz
and the sweep repetition period is 90 μs. The power of re-
sidual  signal e(n )  is  shown  in Fig.  7.  When α=1.1,  The
power of the residual signal obtained by FOLMS is about
7 dB lower  than that  obtained by LMS. In  this  case,  the
FOLMS method obtains about 44 dB SIC.
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Fig. 8 shows the residual signal PSD under different α
cases.  It  is  easy  to  get  that  the  SI  signal  in  the  received
signal  is  suppressed  adequately  in  the  frequency  band-
width,  and the  performance of  the  FOLMS method with
α=1.1 is better than the LMS method. The simulation re-
sults  demonstrate  that  FOLMS-based ADSIC is  efficient
in the actual LFMCW radar.
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Fig. 8    PSD of the residual signal versus various α in actual LFM-
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4.2    Target echo loss effect by the proposed method

In the LFMCW radar, the echo signal is considered in the
ADSIC. The radar receiver starts  receiving the echo sig-
nal after delaying 30 μs, which is reflected from the sta-
tionary  target,  so  the  Doppler  shift  is  zero.  The  simula-
tion  results  are  shown  in Fig.  9 and  Table  2.  The  echo
signal-to-interference  signal  ratio  is  defined  as  the  ratio
of  the  beat  signal  power  at  6  MHz  to  the  beat  power  at
0 MHz.
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Fig. 9    PSD of the residual signal versus various α after de-chirping
 

Table 2    PSD and ESIR of the signal with different fractional orders

Item
PSD/(dBmW/10 kHz)

ESIR/dB
Signal 1 Signal 2

Before digital cancellation −12 −71 −59

α = 0.90 −68.5 −71 3.2

α = 0.95 −75.4 −71.7 3.7

α = 1.00 −81.6 −71.7 9.1

α = 1.05 −87.3 −72.5 12.3

α = 1.10 −93.3 −80.1 13.2
 

In Table 2, signal 1 and signal 2 represent the echo sig-
nal and the interference signal after de-chirping, respect-
ively. Before the ADSIC, the PSD of the received signal
is −12 dBmW/10 kHz after de-chirping. After the ADSIC,
PSD of the residual signal drops to −81.6 dBmW/10 kHz
by  employing  the  LMS  method.  However,  the  FOLMS
method  cancels  the  signal  to  −93.3  dBmW/10  kHz.  The
beat signal is at 6 MHz and its level is −71 dBmW/10 kHz
before  ADSIC,  but  PSD  drops  to  −72.5  dBmW/10  kHz
by  the  LMS  method  and  −80.1  dBmW/10  kHz  by  the
FOLMS method.  From Table  2,  when α=1.1,  the  power
of the beat signal 6 MHz is higher than that of the SI sig-
nal by approximately 13.2 dB, which is larger than 9.1 dB
in the LMS method. The FOLMS method not only elim-
inates  the  SI  signal  adequately,  but  also  makes  the  beat
signal easier to detect. According to Table 2, the ESIR is
increasing with the fractional order raising.

To  illustrate  whether  the  SIC  has  an  influence  on  the
echo signal,  the echo signal cancellation ratio (ESCR) is
shown in Fig. 10.
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ESCR is given as

ESCR = 10lg
Pae

Pbe
(26)

where Pae  is  the  power  of  the  residual  echo  signal  after
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the digital canceller and Pbe is the power of the echo sig-
nal before the digital canceller. It is worth noting that the
echo signal may be mistaken for the SI signal, so the echo
signal will be lost after being processed by the FOLMS or
the LMS method. The reasons are that the ADSIC meth-
od  is  based  on  the  LMS criterion,  and  the  cross-correla-
tion  function  between  the  echo  signal  and  the  reference
signal is  nonzero in the finite time, which influences the
complex coefficients in iteration.

The larger the absolute value of ESCR, the greater the
loss  of  the  echo  signal.  The  ESCR  of  both  methods  de-
grades  with  the  increase  of  the  fractional  order  and  the
step size, and approaches a value eventually with the lar-
ger order. We must eliminate the SI signal and protect the
echo signal, so choose the appropriate order and the step
size to handle the conflict between them. 

4.3    Performance  comparison  among  FOLMS  and
others methods

We will  compare  the  proposed  method  with  the  method
in  [24]  and  the  conventional  LMS-based  method.  The
FOLMS algorithm of  [24]  is  used  in  the  ADSIC model.
In  order  to  distinguish  it  from  the  method  that  we  pro-
posed,  we  named  it  I-FOLMS,  which  can  be  written  in
the vector form as

W (n+1) =W (n)+µ [I (n)+ T (n)] X (n)e∗ (n) (27)

where T(n)=diag{|w0(n)|1−f ,  ···,  |wN−1(n)|1−f}, I(n )  is  the N
dimension  unit  matrix  and  the  fractional  order  0<f≤1.
When f  =1,  it  is  regarded  as  the  LMS  algorithm.  Equa-
tion  (27)  can  be  seen as  an  IOGD method with  an  extra
fractional  order  item T(n )  added.  As  0<f<1,  if  |wi(n)|>1,
then  the  value  of  |wi(n)|1−f will  be  larger  than  1  that  will
decrease  as  the  order f  increases.  Then, μ|wi(n)|1−f>μ ,  the
algorithm  will  obtain  a  faster  convergence  rate.  On  the
contrary, |wi(n)|1−f will be less than 1 when |wi(n)|<1 and it
is proportional to the order f. Then, μ|wi(n)|1−f will be less
than μ, and the smaller steady error will be achieved.

Taking f∈[0.7,  1.0], Fig.  11 shows ICR of the differ-
ent  cases.  As  for  the  I-FOLMS  method,  ICR  is  increas-
ing with the fractional order f increasing when μ≤0.15. It
is  because  that  when  |wi(n)|<1, μ|wi(n)|1−f  is  proportional
to the order f. When E[J(n)] becomes smaller, ICR is im-
proved. With a step size μ=0.2 and f >0.9, ICR decreases
as f  increases. As mentioned in Fig. 3, the optimal f  also
exists  in  the  I-FOLMS  method.  Compared  with Fig.  3,
the highest ICR of the proposed method and the I-FOLMS
method  are  the  same.  The  reason  is  that  both  the  pro-
posed method and the I-FOLMS method can make it con-
verge to the extreme point ultimately.
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Fig. 11    ICR versus f under various μ
 

Taking μ=0.03,  PSD  of  the I-FOLMS  method  and  the
proposed method are shown in Fig.  12.  When α<1, PSD
of the I-FOLMS method is  lower than the proposed me-
thod, which means the residual signal power is smaller. In
this  case,  the  equivalent  step  size  of  the  I-FOLMS  me-
thod is larger than the proposed method μFO, so the track-
ing performance of the I-FOLMS method is better. How-
ever, the I-FOLMS method obtains the best performance
when f  =1,  and  PSD  of  the  I-FOLMS  method  will  be
higher than the proposed method when α>1.
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5. Conclusions
In this paper, we propose a FOLMS-based ADSIC method
in the LFMCW radar. With advantages of the FOGD, the
FOLMS  method  can  track  the  changes  of  Wiener  solu-
tion more efficiently than the LMS method. Furthermore,
the simulation results of actual LFMCW radar data show
that  the  proposed  method  is  efficacious  in  the  radar.
Whether the LMS or the FOLMS is used, the target echo
signal  will  be  affected  by  the  SI  signal,  but  the  SI  sup-
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pression  effect  of  the  FOLMS  is  better  than  that  of  the
LMS.  It  reduces  the  adverse  effect  of  SI  on  the  target
echo signal detection and makes the target detection more
accurate.
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