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Abstract: Modern radar signals mostly use low probability of in-
tercept (LPI) waveforms, which have short pulses in the time do-
main,  multicomponent  properties,  frequency  hopping,  com-
bined  modulation  waveforms  and  other  characteristics,  making
the detection and estimation of LPI radar signals extremely diffi-
cult,  and leading  to  highly  required  significant  research  on  per-
ception  technology  in  the  battlefield  environment.  This  paper
proposes a visibility  graphs (VG)-based multicomponent signals
detection  method  and  a  modulation  waveforms  parameter  es-
timation  algorithm  based  on  the  time-frequency  representation
(TFR). On the one hand, the frequency domain VG is used to set
the  dynamic  threshold  for  detecting  the  multicomponent  LPI
radar waveforms. On the other hand, the signal is projected into
the time and frequency domains by the TFR method for estimat-
ing  its  symbol  width  and  instantaneous  frequency  (IF).  Simula-
tion  performance  shows  that,  compared  with  the  most  ad-
vanced  methods,  the  algorithm  proposed  in  this  paper  has  a
valuable  advantage.  Meanwhile,  the  calculation  cost  of  the  al-
gorithm is quite low, and it is achievable in the future battlefield.
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mation,  visibility  graphs  (VG),  low  probability  of  intercept  (LPI),
time-frequency representation (TFR).
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1. Introduction
In the contemporary battlefield environment, the intercep-
tion  and  sensing  of  non-cooperative  parties  are  mostly
low probability of intercept (LPI) radar signals, which use
special transmission waveforms to prevent the sensing of
non-cooperative  parties  [1].  LPI  radar  waveforms  gene-
rally  have  the  characteristics  of  short  pulses  in  the  time
domain, agile waveforms in the pulse, rapid agile beams,
combined  modulation  waveforms,  and  simultaneous  ar-
rival of multiple signals [2], which makes signal sensing

by  non-cooperative  parties  particularly  difficult.  There-
fore,  the  research on signal  sensing of  LPI  radar  plays  a
critical role in the maintenance of military applications.

Considered in a complex electromagnetic environment,
multiple LPI radar waveforms are input at the same time,
and  the  signal  detection  performance  will  deteriorate.  In
the  past  LPI  radar  signal  detection  algorithms,  two-di-
mensional  representation [3−5],  cyclic  shifting [6],  auto-
correlation,  and  other  algorithms  [7]  are  used,  and  they
have  achieved  good  performance.  However,  these  al-
gorithms  hardly  consider  the  detection  of  multicompo-
nent signals, which is inseparable from practical applica-
tions.  In [8],  an algorithm to convert  from time series to
visibility graphs (VG) was proposed. This paper uses the
statistical  characteristics  of  the  frequency domain VG to
set the dynamic threshold based on the Neyman Pearson
criterion (NYC), and then the corresponding signal detec-
tion probability is obtained.

Parameter estimation has long been a question of great
interest  in  a  wide  range  of  signal  processing  [9].  In
[10,11],  frequency  hopping  parameter  estimation  based
on  machine  learning  and  sparse  Bayes  was  proposed.  In
[12−15], the time-frequency representation (TFR) method
for  frequency  estimation  was  introduced.  In  [16,17],  the
parameters  of  the  frequency  shift  keying  (FSK)/binary
phase  shift  keying  (BPSK)  combined  modulation  wave-
form were estimated, and the performance is superior. In-
stantaneous  frequency  (IF)  estimation,  which  describes
the  law  of  signal  frequency  changing  with  time,  is  the
foundation of the time-frequency analysis domain. There-
fore,  many  researchers  consider  estimating  IF  from  the
perspective  of  TFR  [18].  Also,  adaptive  TFR  is  also  a
current  research  hotspot  [19,20].  The  common  point  of
these  methods  is  to  reassign  each  point  to  the  center  of
gravity  located  in  its  vicinity.  Moreover,  the  positioning
of signal components in the time-frequency (TF) domain
can be improved while suppressing interference terms. In
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[21−25],  an  adaptive  short-time  Fourier  transform
(STFT)  algorithm  was  proposed  to  determine  the  win-
dow  width  by  analyzing  the  IF  gradient,  and  estimate
simultaneously the IF of the signal by detecting the ridges
of  the  wavelet  transform.  Reference  [26]  is  also  to  opti-
mize  the  window  width  to  obtain  the  best  case  in  TFR,
thereby  minimizing  the  estimated  value  of  the  mean
square  error  (MSE)  at  each  position  in  the  time-fre-
quency domain.

This  paper  proposes  a  TFR-based  FSK/BPSK symbol
width and IF joint  parameter  estimation algorithm. First,
the  FSK/BPSK  waveform  is  represented  by  smooth
pseudo-Wigner Ville distribution (SPWVD), and then the
symbol  width  and  IF  are  estimated  by  performing  time-
domain  and  frequency-domain  projections,  respectively.
The  innovation  of  this  paper  lies  in  the  proposed  LPI
radar signal parameter estimation method based on time-
frequency  representation  projection.  Moreover,  the  VG-
based  multicomponent  LPI  radar  signal  detection  al-
gorithm  is  also  proposed  for  the  first  time.  Further,  the
signal detection probability and the parameter estimation
accuracy  of  FSK/BPSK  signals  are  greatly  improved
compared with the state-of-the-art technology.

The remaining paper is structured as follows. Section 2
provides  an  overview  of  the  multicomponent  signal  de-
tection model.  Section 3 describes the parameter estima-
tion  of  the  FSK/BPSK combined  modulation  waveform.
Section  4  presents  the  validation  of  the  proposed  al-
gorithm  including  the  simulation  experiment  setup,  re-
sults,  and  discussion.  Section  5  concludes  the  paper  and
presents the potential future research directions. 

2. Multicomponent signal detection model
Considering  a  signal  sensing  environment,  electronic
warfare  (EW)  receivers  intercept  three  signals  from  dif-
ferent  directions  simultaneously  in  the  air,  and their  sig-
nal strengths are different, then [27,28]

y1[k] = x1[k]+n1[k] =

b1 exp
{
j
[
2π f1[k](kT s)+φ1[k]

]}
+n1[k], (1)

y2[k] = x2[k]+n2[k] =

b2 exp
{
j
[
2π f2[k](kT s)+φ2[k]

]}
+n2[k], (2)

y3[k] = x3[k]+n3[k] =

b3 exp
{
j
[
2π f3[k](kT s)+φ3[k]

]}
+n3[k], (3)

y[k] = y1[k]+ y2[k]+ y3[k] (4)

{b1,b2,b3} { f1, f2, f3} {φ1,φ2,φ3}where , ,  are  respectively

{x1, x2, x3} k
T s fs

τpw 0 ⩽ kT s ⩽ τpw {n1[k],n2[k],
n3[k]} y

{y1,y2,y3}

the random amplitude, carrier frequency, and phase of the
original signal ,  is the sample index for each

 increasing  with  the  sampling  frequency ,  under  a
given pulse time interval , , 

 is additive white Gaussian noise (AWGN), and  is
the  sum  of  the  signals  received  by  the  EW  receiver  as

.

S = {y1,y2, · · · ,yn}
i, j,k yi y j yk

i j i < k < j

yi y j

yk

A  VG  is  an  undirected  graph  for  a  time-ordered  se-
quence .  Assume  that  three  arbitrary
nodes  are labeled corresponding to data ,  and ,
respectively.  The  two  nodes  and   (assume  
without  loss  of  generality)  are  connected,  if  and  only  if
one straight line can connect  and , without any inter-
secting intermediate data . Then there is

yk < yi+
k− i
j− i

(y j− yi), ∀k : i < k < j. (5)

They satisfy three criteria: (i) Each vertex is connected
to  at  least  two  adjacent  points.  (ii)  The  connection  rela-
tionship  is  non-directional.  (iii)  VG  has  rotation  invari-
ance,  no  matter  whether  its  signal  amplitude  and
sampling frequency are changed at the same time or not,
the connection relationship remains unchanged [8].

Taking  six-time  instants  as  an  example,  the  corres-
ponding signal amplitude and the connection relationship
of the VG sequence are shown in Fig. 1. VG means if you
can  see  the  surrounding  points  at  a  certain  point,  a  con-
nection relationship is  established; otherwise,  it  is  irrele-
vant, and there is no connection relationship.
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Fig.  1      An  illustration  of  N=6  instants  versus  signal  amplitude
between 0-1 for the VG algorithm
 

P f =

P(H1|H0) = α

Pd = P(H1|H1)
µ(µ ⩾ 0)

When  the  false  alarm  probability  is  set  to 
 by  the  VG  statistical  average  value  in  the

frequency  domain  of  the  signal,  according  to  NYC,  the
detection probability can be expressed as .
Using Lagrange multiplier , construct the object-
ive function as

J = Pd −µ[P f −α] = P(H1|H1)−µ[P(H1|H0)−α]. (6)

PdTo maximize the detection probability ,
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J =
w

R1

p(H1|H1)dy−µ
w

R1

p(H1|H0)dy+µα =w
R1

[
p(H1|H1)−µp(H1|H0)

]
dy+µα. (7)

µ ⩾ 0 p(H1|H1)−µp(H1|H0) ⩾ 0Since , , from which the
likelihood ratio function can be constructed.

L(y) =
p(H1|H1)
p(H1|H0)

H1

≷
H0

µ (8)

p(H1|H0) = α µTo satisfy  the  condition of ,  should be
satisfied.

p(H1|H0) =
w

R1

p(H1|H0)dy =
w ∞
µ

p(L|H0)dL =α (9)

α

µ Pd

Therefore,  given  an ,  it  corresponds  to  a  detection
threshold ,  and then the detection probability  is  de-
termined according to this threshold. 

3. Parameter  estimation  of  FSK/BPSK  com-
bined modulation waveform

The  FSK/BPSK  waveform  is  usually  a  combination  of
two  modulation  modes:  FSK  and  BPSK.  FSK/BPSK
combined modulation waveform can be expressed as

s(n) = A
M∑

k=1

exp
[
j
(
2π f

k
n+ θ(n)

)]
rect [n− (k−1)Tb]

(10)

A rect (n)
Tb M

fk

[kTb, (k+1)Tb] θ (n) = πd (n)
d (n) = {0,1}

where  is the amplitude of the signal,  is the rect-
angular pulse,  is the symbol width,  is a positive in-
teger,  is  the  frequency  encoding  information  at  time

,  and  is  the  phase  encoding,
.  BPSK  has  a  lower  side  lobe  and  Doppler

tolerance than a single pulse.  Due to the problem of fre-
quency modulation sequence, FSK avoids the reactive in-
terference  of  the  jammer  to  the  transmission  frequency
[1].  FSK/BPSK  takes  into  account  the  performance  of
both and has a lower interception.

This  paper  proposes  an  SPWVD-based  FSK/BPSK
combined  modulation  waveform  parameter  estimation
method. SPWVD [29−31] can be expressed as

SPWx(t,ω) =w
h(τ)

w
g(s−ω)x(t+τ/2)x∗(t−τ/2)e−jωτdsdτ (11)

h(t) g(t)
x(t)

SPWx(t,ω)

fk

where  represents  the  window  function,  repre-
sents the smoothing function,  represents the signal it-
self,  and  represents  the  TFR obtained by the
SPWVD  transformation  of  the  signal.  This  method  first
converts  the  LPI  radar  signal  into  a  time-frequency  im-
age,  and  then  projection  in  the  time  and  frequency  do-
mains are performed, separately. Next, the symbol width
and  carrier  frequency  rate  are  calculated.  The  more

specific processing and the corresponding simulation are
shown in Fig. 2.
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Fig.  2      Flow chart  of  the  FSK/BPSK signal  parameter  estimation
method based on SPWVD
  

4. Simulation performance evaluation
 

4.1    Parameter setting

fs f0

fb N
τpw N/ fb

{10,20,30,40}×106

(0,π)

The  experimental  parameters  include  all  parameter  set-
tings  of  the  LPI  radar  waveform.  The  sampling  fre-
quency  is 400 MHz, the  signal frequency is 80 MHz,
the code rate  is 10 MHz, the number of symbols  is
4,  the  duration  is  ,  the  symbol  rate  of  FSK  is

 respectively, and the phase of BPSK
is . 

4.2    Multicomponent detection performance

Given each signal has its VG, the VGs are different even
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P f

under  the  same  signal-to-noise  ratio  (SNR).  Therefore,
the  statistics  of  VG  can  be  considered  as  the  basis  for
judging the probability of NYC false alarm. In this paper,
by setting the density of the VG median to 1 as the basis
for  NYC  judgment,  the  constant  false  alarm  probability

 is set to 0.005, and the performance of the 1 000-time
Monte Carlo algorithm is shown in Fig. 3.

 
 

(a) VG frequency density dynamic threshold

(b) Correct detection probability

3.9

−20 −15 −10 −5 0

×10−3

SNR/dB

−20 −15 −10 −5 0
SNR/dB

F
re

q
u
en

cy
 d

o
m

ai
n
 V

G

: Mean H0; : Mean H1; : Threshold.

X −7

: H1/H0; : H1/H1.

Y 0.883
X −6
Y 0.943

3.8

3.7

3.6

3.5

3.4

3.3

3.2

1.0

0.8

0.6

0.4

0.2

0

C
o
rr

ec
t 

d
et

ec
ti

o
n
 p

ro
b
ab

il
it

y

Fig. 3    Multicomponent signal parameter estimation
 

It can be seen from Fig. 3(a) that when the SNR is low,
the  average  frequency  density H1  and  H0  of  1 000  inde-
pendent experiments are close to each other. As the SNR
increases, the average frequency density H1 gradually in-
creases,  and  the  average  frequency  density  of H1  gradu-
ally increases. As shown in Fig. 3(b), when SNR>−7 dB,
the correct detection probability of the signal is more than
90%,  when  the  SNR  is  −3  dB,  the  signal  correct  detec-
tion  probability  is  approximatively  100%.  Since  this  pa-
per  is  a  multicomponent  LPI  radar  waveform  detected,
the detection probability is lower than that of a single sig-
nal.  The environment setting is consistent with [3,7], the
performance comparison experiment is shown in Fig. 4.
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Fig. 4    Comparison experiment of signal detection
 

Through comparative experiments, it can be found that
the algorithm proposed in this paper is slightly weaker at
low SNRs [3]. However, with the increase of SNR, espe-
cially after SNR>−5 dB, the correct detection probability
is  already  close  to  100%,  which  has  certain  advantages
over the literature [3] and [7]. The algorithm proposed in
this paper simultaneously is more suitable for a complex
electromagnetic environment.

Pfa

Pfa

Pfa

Considering the different constant false alarm probabi-
lities,  set  to  be  0.001,  0.005,  0.01,  0.05,  and  0.1  re-
spectively,  and  the  corresponding  detection  probabilities
are  shown  in Fig.  5.  It  is  easy  to  find  that  when  SNR<
−10  dB,  except  for  the  case  where  is  0.1,  the  signal
detection probabilities of the other four cases are all less
than  0.8.  However,  the  signal  detection  probability  in-
creases with the increase of SNR in all  cases, which is
consistent  with  our  cognition.  When  SNR>−5  dB,  the
correct detection probability of multicomponent signals is
close to 100%.
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4.3    Performance  of  FSK/BPSK  combined  modula-
tion parameter estimation

For  combined  FSK/BPSK  waveforms,  the  conventional
parameter  estimation  method  generally  removes  the
BPSK by squaring the signal, which reduces the SNR by
3 dB, therefore the parameter estimation accuracy is weak
in the case of low SNRs. In this paper, the parameter es-
timation  of  the  FSK/BPSK  combined  modulation  wave-
form does not require signal squaring. In this way, the ac-
curacy of the parameter estimation can be ensured at low
SNRs.

The  setting  environment  is  consistent  with  those  in
[16,17]. Normalized root-mean-square error (NRMSE) is
used  as  the  basis  for  performance  comparison.  The  500
times  Monte  Carlo  simulation  is  shown  in Fig.  6.  It  is
easy to find that the algorithm proposed in this paper has
a better IF estimation performance at low SNRs, which is
consistent with the previous analysis.  The LPI radar sig-
nal after SPWVD representation can also show its superi-
or energy gathering performance at low SNRs. Therefore,
compared  to  [16,17],  the  algorithm  proposed  in  this  pa-
per  performs  better  in  IF  estimation  performance  under
low SNRs. With the increase of SNR, the improvement of
energy  aggregation  is  no  longer  so  obvious.  The  maxi-
mum point found by the projection algorithm is not signi-
ficantly  improved  from that  under  low SNRs,  but  it  can
still maintain high estimation performance.
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Fig. 6    Frequency overlap parameter estimation situation
 

However, the algorithm proposed in this paper has cer-
tain limitations.  Since it  is  a projection calculation when
the frequency overlaps, only one value can be estimated,
and the peak calculation error will increase. As shown in
Fig.  7,  when  SNR  is  0  dB,  IF  projection  and  code  ele-
ment  width  projection  can  be  used.  It  can  be  found  that
when  frequency  overlap  occurs,  several  frequency  divi-
sion  signals  can  be  judged  from the  code  element  width
projection diagram alone. Then feedback to the IF projec-

tion  diagram to  find  out  the  highest  point  of  energy  and
judge  the  position  corresponding  to  the  highest  point  of
frequency  overlap.  However,  in  this  way,  if  the  fre-
quency overlaps too much, it  is  not easy to calculate the
IF corresponding to each symbol width.
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The  500  Monte  Carlo  independent  experiments  are
shown in Fig. 8. It can be found that the estimation accu-
racy  of  code  element  width  parameters  proposed  in  this
paper  is  also  higher  than  [16,17]  at  low  SNRs,  and  the
performance  presents  a  very  stable  trend  with  the  in-
crease  of  SNRs.  The  code  width  estimation  is  similar  to
the IF estimation. In low SNRs, due to the good time-fre-
quency energy aggregation, the estimated performance is
very  superior,  and  the  estimated  error  is  not  very  large.
For  example,  when SNR is  −5 dB,  NRMSE is  only  0.2,
which is beyond the capability of most parameter estima-
tion  algorithms.  With  the  increase  of  SNR,  the  time-fre-
quency  energy  aggregation  performance  has  not  im-
proved  significantly,  therefore,  the  performance  growth
of  bit  width  estimation  with  SPWVD  is  also  slowed
down. Also, the fundamental reason for the parameter es-
timation error under high SNRs is that the image resolu-
tion  is  not  high.  For  example,  if  the  pixel  is  128,  each
time the projection is different by one pixel, the error will
increase  by  1/128.  Nevertheless,  LPI  radar  signals  are
mainly  faced  with  low  SNR  conditions.  Therefore,  it  is
reasonable to think that the algorithm proposed in this pa-
per has certain advantages in the algorithm estimation of
FSK/BPSK.  Moreover,  it  can  also  be  extended  to  other
single  signal  parameter  estimation.  However,  it  still  has
some limitations, especially when the signal is sorted and
the multicomponent signal  needs to be estimated,  the al-
gorithm proposed in this paper is inaccurate in estimating
the symbol width.
 
 

0.8

N
R

M
S

E

SNR/dB
−5 0 5 10

0.6

0.4

0.2

0

: Proposed in [16];

: Proposed in [17];

: Proposed in this paper.
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5. Conclusions
This  paper  presents  an  LPI  radar  signal  detection  and
parameter  estimation  algorithm  for  passive  radar,  which
is based on VG for multicomponent signal detection and
SPWVD for FSK/BPSK parameter estimation. The simu-

lation performance shows that the algorithm proposed in
this  paper  is  superior  to  the-state-of-the-art  algorithm.
Further,  it  is  also  more  suitable  for  a  complex  electro-
magnetic  environment.  When  SNR>−7  dB,  the  correct
detection probability of the signal is more than 90%, and
when  SNR  is  −5  dB,  the  NRMSE  of  parameter  estima-
tion  is  only  0.2.  However,  the  estimation  algorithm  still
has weaknesses, such as the problem of parameter estima-
tion  accuracy  of  multicomponent  signals  when  the  sig-
nals  are  not  sorted.  Meanwhile,  we  believe  that  the  al-
gorithm proposed in this paper will play an important role
in the future battlefield. In future work, we will consider
multicomponent  signal  spectrum  sensing  and  parameter
estimation techniques.
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