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Abstract: In  order  to  resolve  direction  finding  problems  in  the
impulse noise,  a  direction of  arrival  (DOA)  estimation method is
proposed.  The  proposed  DOA  estimation  method  can  restrain
the  impulse  noise  by  using  infinite  norm exponential  kernel  co-
variance matrix  and obtain  excellent  performance via  the  maxi-
mum-likelihood (ML) algorithm. In order to obtain the global opti-
mal solutions of this method, a quantum electromagnetic field op-
timization (QEFO) algorithm is designed. In view of the QEFO al-
gorithm,  the  proposed  method  can  resolve  the  difficulties  of
DOA estimation in the impulse noise. Comparing with some tra-
ditional DOA estimation methods, the proposed DOA estimation
method  shows  high  superiority  and  robustness  for  determining
the DOA of independent and coherent sources, which has been
verified  via  the  Monte-Carlo  experiments  of  different  schemes,
especially  in  the  case  of  snapshot  deficiency,  low  generalized
signal  to  noise  ratio  (GSNR)  and  strong  impulse  noise.  Beyond
that, the Cramér-Rao bound (CRB) of angle estimation in the im-
pulse  noise  and  the  proof  of  the  convergence  of  the  QEFO al-
gorithm are provided in this paper.

Keywords: direction  of  arrival  (DOA)  estimation,  impulse  noise,
infinite  norm  exponential  kernel  covariance  matrix,  maximum-
likelihood (ML) algorithm, quantum electromagnetic field optimi-
zation (QEFO) algorithm, Cramér-Rao bound (CRB).
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1. Introduction
Direction  of  arrival  (DOA)  estimation  is  usually  called
spatial  spectrum  estimation  or  direction  finding.  It  has
been widely  used in  mobile  communication and satellite
communication  systems,  information  warfare,  radar,
passive  sonar,  seismology,  radio  frequency  astronomy,
navigation,  sound  source  tracking,  microphone  array,
spectrum  estimation  and  so  on  [1−3].  Schmidt  et  al.  [4]

proposed  the  multiple  signal  classification  (MUSIC)  al-
gorithm in 1986, which pioneered the subspace-based ar-
ray signal processing algorithm and realized high-resolu-
tion  direction  finding  of  arrays  in  a  real  sense  [5].  The
MUSIC  method  is  universally  accepted  as  an  efficient
and  asymptotically  unbiased  estimation  method  for  tar-
gets locating in the Gaussian noise [6,7].

Over several decades, several subspace-based DOA es-
timation  algorithms  have  received  considerable  atten-
tions. A maximum-likelihood (ML) method of stochastic
sources which may be correlated was presented in [8]. A
noise  subspace fitting (NSF) algorithm was proposed by
using the noise subspace fitting criterion function in [9].
Han et  al.  [10]  proposed  an  estimation  method of  signal
parameters via rotational invariance techniques (ESPRIT)
algorithm,  which  uses  the  rotation  invariant  feature  of
signal subspace to locate targets, avoids the large amount
of computation produced by the MUSIC algorithm in the
whole search domain due to search at quantization inter-
val,  and  reduces  the  hardware  requirements  of  the  al-
gorithm  to  some  extent,  but  the  performance  of  the  ES-
PRIT  algorithm is  inferior  to  that  of  the  MUSIC  algori-
thm [11,12].

α -stable (SαS)
α

SαS

Most of the classical DOA estimation methods are only
applicable  to  Gaussian  noise.  However,  non-Gaussian
noise  with  impulse  characteristics,  such  as  atmospheric
noise  (thunderstorms),  underwater  noise,  low-frequency
atmospheric  noise  and  some  artificial  noise  are  con-
sidered in the practical application environment and all of
them can be described by symmetric   dis-
tribution with different characteristic exponent  [13,14].
The second-order  and higher-order  moment  methods ap-
plied  to  the  Gaussian  model  cannot  be  applied  to  non-
Gaussian  distribution  because  impulse  noise  does
not have second-order and higher-order moments. Hence,
taking  impulse  noise  as  the  research  object  of  DOA  es-
timation and designing a more generalized DOA estima-
tion method to  improve the  robustness  of  the  DOA esti-
mation method in the impulse noise will greatly expand the
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application scope of existing DOA estimation methods.

0 <α < 1
1 <α < 2

α

0 <α < 1

It is generally known that the traditional DOA estima-
tion methods on account of second and higher-order mo-
ments  will  lose  effectiveness  in  the  impulse  noise.  With
respect to this problem, the robust covariation (ROC) was
used for inhibiting the impulse noise, and the ROC-MU-
SIC method was put forward for DOA estimation in [15].
However, it requires large sample sizes for a satisfactory
performance. The fractional lower order moment MUSIC
(FLOM-MUSIC) DOA estimation method was presented
in [16]. However, the performance of FLOM-MUSIC de-
teriorates  seriously  in  the  strong  impulse  noise 
which is limited in the range of . You et al. [17]
proposed  a  FLOC-MUSIC  method  using  the  fractional
lower  order  cyclic  covariance  (FLOC) matrix.  However,
the  FLOM-MUSIC  method  and  FLOC-MUSIC  need
prior information of the characteristic index , in order to
avoid estimating the noise characteristic index, an infinity-
norm  normalization  MUSIC  (IN-MUSIC)  algorithm  for
received data was put forward in [18]. Although the ML
algorithm [19] has a more accurate estimation result com-
pared with these subspace-based algorithms, the perform-
ance  of  the  ML  algorithm  deteriorates  seriously  in  the
background of impulse noise. Zhao et al. [20] proposed a
FLOC-ML DOA estimation method on account of FLOM
matrices, but the performance deteriorates seriously in the
strong impulse noise . The correntropy has been
proposed by applying a translation-invariant kernel which
can obtain more information than the traditional  correla-
tion functions [21,22]. In order to restrain the strong im-
pulse noise and obtain more information, we are the first
to introduce the exponential  kernel  (EK) covariance ma-
trix to the ML method and propose the infinite norm ex-
ponential  kernel  maximum  likelihood  (INEK-ML)  me-
thod for DOA estimation.

The INEK-ML method is difficult to be put into effect
because  the  optimization  objective  for  the  INEK-ML
method  is  high-dimensional,  nonlinear,  and  multimodal,
which needs the maximization of the cost function. In this
context,  intelligent  optimization  algorithms  have  been
greatly  developed.  They  have  an  excellent  performance
when optimizing the objective function of the INEK-ML
DOA estimation method in terms of reducing the runtime
and improving the speed of convergence.

At  present,  some  scholars  have  researched  on  intelli-
gence  optimization  algorithms  in  detail,  for  example,
particle  swarm  optimization  (PSO)  [23],  genetic  al-
gorithm (GA) [24], artificial bee colony (ABC) [25], and
glowworm swarm optimization (GSO) [26] have got sig-
nificant  progress  in  various  domains  [27,28]  because  of
their simplicity and derivation-free mechanism. However,
there  is  a  contradiction  between  convergence  speed  and

convergence  accuracy  for  these  traditional  intelligence
optimization algorithms in solving complex optimization
problems, a larger population size and more iterations are
required  when  solving  high-dimensional  optimization
problems,  which  increases  the  computational  cost,  espe-
cially  in  the  DOA  estimation  problem.  Hence,  on  ac-
count of quantum computing [29] and the principle of the
electromagnetic field in physics [30], a quantum electro-
magnetic  field  optimization  (QEFO)  algorithm  has  been
put forward in this paper. The proposed QEFO algorithm
can  eliminate  the  contradiction  between  convergence
speed and convergence accuracy and improve the global
search  ability  compared  with  the  electromagnetic  field
optimization  (EFO)  [30].  Therefore,  QEFO  can  be  ap-
plied to solve the objection function of INEK-ML, which
is denoted as the QEFO-INEK-ML method for short.

In  order  to  analyze the  performance of  the  QEFO-IN-
EK-ML  method,  we  prove  that  the  QEFO  algorithm  is
convergent,  and present  a universal  representation of the
Cramér-Rao bound (CRB) for DOA estimation in the im-
pulse  noise.  Then,  the  performance of  the  QEFO-INEK-
ML method has been verified through different DOA es-
timation  scenarios,  including  the  number  of  snapshots,
sources,  antennas,  and  the  characteristic  exponent.  The
desired  performance  in  different  DOA estimation  scena-
rios  can  be  received  by  the  proposed  QEFO-INEK-ML
method through the simulation results of Monte Carlo ex-
periments.

In  summary,  the  important  contributions  of  this  paper
are summarized as below:

(i)  The  DOA  estimation  method  can  restrain  the  im-
pulse noise without estimating the characteristic index of
noise, and obtain the expected performance for DOA es-
timation with  snapshot  deficiency and a  low generalized
signal noise to ratio (GSNR).

(ii) There are no need for additional pretreatment tech-
niques  for  the  proposed  DOA  estimation  method  to  lo-
cate coherent sources.

(iii)  An  intelligence  optimization  algorithm  called
QEFO is proposed, and QEFO can be applied to resolve
the optimal solution of the INEK-ML method.

(iv) The convergence of the QEFO algorithm is proved
by the mathematical analysis.

(v) A universal representation of the CRB for DOA es-
timation in the impulse noise is presented by mathemati-
cal derivation.

The rest of this paper is arranged as below: In Section 2,
the  DOA estimation  model  in  the  impulse  noise  and  the
INEK-ML  method  are  researched.  In  Section  3,  the
QEFO  algorithm  is  represented  fully  and  the  conver-
gence of QEFO is analyzed, after that, QEFO is used for
resolving  the  cost  function  of  the  INEK-ML method.  In
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Section 4,  the CRB which can be used for analyzing the
performance of  the  proposed DOA estimation method is
derived in the background of impulse noise. In Section 5,
the superiority of the proposed QEFO-INEK-ML method
is verified by comparing with some existing DOA estima-
tion  methods  in  several  scenarios.  Finally,  the  conclu-
sions of the paper and the follow-up research interests are
presented in Section 6. 

2. DOA estimation model in impulse noise
M N

θi(i = 1,2, · · · ,N) λ

d lth

Assume a uniformly linear array with  antennas, and 
far  field  narrow-band  point  source  signals  incident  from

,  the  wavelength  is ,  and  the  element
spacing is . The  snapshot data received by the array
can be described as

y(l) = A(θ)s(l)+ n(l) (1)

s(l)= [s1(l), s2(l), · · · , sN(l)]T N ×1
y(l)= [y1(l),y2(l), · · · ,yM(l)]T M×1

n(l) M×1
SαS

α A(θ)= [a(θ1), a(θ2), · · · ,
a(θN)] M×N

a(θi)= [1,e−j2πd sinθi/λ, · · · ,e−j2π(M−1)d sinθi/λ]T θ = [θ1, θ2, · · · ,
θN] i = 1,2, · · · ,N

where  is an  source vec-
tor,  is  an  array  snap-
shot data vector,  is an  complex impulse noise
vector,  which is  modeled  standard  by  distribution
with the characteristic exponent , 

 is an  steering matrix, and the steering vector
is , 

 is an angel vector of signal source, .

z(l) =
[z1(l),z2(l), · · · ,zM(l)]T

R=


R11 R12 · · · R1M

R21 R22 · · · R2M

...
...
. . .

...
RM1 RM2 · · · RMM


R

Theoretical  analysis  demonstrates  that  the  infinite
norm  exponential  kernel  covariance  matrix  for 

 can  be  represented  by

 at  the  limited  snapshot

numbers, and  the  specific  representation  of  is  de-
scribed as

Ri j =
1
L

L∑
l=1

zi(l)z∗j(l)exp
(
−η|zi(l)−µz∗j(l)|

)
(2)

z(l) =
y(l)

max{|y1(l)|, |y2(l)|, · · · , |yM(l)|} (3)

zi(l) z j(l) ith jth
z(l) L

η

µ

i = 1,2, · · · ,M j = 1,2, · · · ,M

where  and   represent  the  and  the  com-
ponent  of  vector ,  respectively,  denotes  the  maxi-
mum number of snapshots,  denotes the EK size which
belongs  to  [0,1],  and  is  a  positive  constant  which  be-
longs to [0,2], , .

θ
According to the ML algorithm, the estimation value of

 can be obtained via the following function:

θ̂ = argmax
θ

tr (PA(θ)R) (4)

where

PA(θ) = A(θ)(AH(θ)A(θ))−1 AH(θ).

θ

α =

2 α=1
1 < α < 2 0 < α < 1

In  this  case,  the  infinite  norm  exponential  kernel  co-
variance matrix can be used to obtain the estimation value
of  according to ML algorithm in the impulse noise. The
proposed  ML DOA estimation  method  based  on  infinite
norm exponential kernel can be shorted for the INEK-ML
method,  and  which  can  be  used  in  Gaussian  noise  (

),  the  Cauchy  noise  ( ),  the  weak  impulse  noise
( ), and the strong impulse noise ( ).

Beyond  that,  the  proposed  INEK-ML  method  can  be
not  only  applicable  for  uniform  linear  array  (ULA),  but
also  applicable  for  circular  array,  planar  array  and  other
more complex array structures.  The proposed INEK-ML
method has a wide range of applications in case of DOA
estimation. 

3. DOA estimation method based on
QEFO algorithm

 

3.1    QEFO algorithm

Electromagnetic  field  optimization  (EFO)  [30]  is  an  op-
timization algorithm based on the principle of the electro-
magnetic  field  in  physics,  and  it  is  different  from  the
swarm  intelligence  optimization  algorithm  which  is
widely  proposed  from the  biological  point.  In  EFO,  due
to the effect of the attraction and repulsion of electromag-
netic  particles  in  the  electromagnetic  field,  electromag-
netic particles keep moving away from the worst solution
and  towards  the  best  solution.  The  electrified  iron  core
produces  magnetic  field  and  forms  electromagnets.  The
electromagnet  has  one  polarity  and  it  changes  with  the
direction of the current. Electromagnets have two charac-
teristics: attraction and repulsion. The same polarity elec-
tromagnets  repel  each  other,  while  the  different  polarity
electromagnets  attract  each other.  In  the  EFO algorithm,
the  strength  of  attraction is  5%−10% higher  than that  of
repulsion, and the ratio of attraction to repulsion is a gol-
den section ratio, which can promote electromagnetic par-
ticles to fully explore the search space of the problem and
find an approximate optimal solution [30]. EFO performs
well in dealing with general low-dimensional or high-di-
mensional  problems.  However,  the  performance  of  EFO
deteriorates seriously or even fails in dealing with multi-
dimensional  problems.  The  EFO  algorithm  cannot  over-
come  the  shortcoming  of  easily  trapping  in  local  opti-
mum, which leads to that the EFO algorithm cannot con-
verge to the optimal solution in dealing with the complex
continuous optimization problem.

In  view  of  the  theory  of  the  EFO  algorithm  and
quantum computation, a QEFO algorithm is proposed. In
QEFO,  evolution  equations  are  designed  to  improve  the
global  search  ability.  In  QEFO,  each  electromagnetic
particle  is  composed  of  a  group  of  electromagnets,  each
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electromagnetic  particle  represents  a  point  in  search
space,  and  a  certain  number  of  electromagnetic  particles
constitute an electromagnetic field. The dimension of the
point  corresponds  to  the  number  of  electromagnets  con-
tained  in  the  electromagnetic  particles.  The  algorithm
stipulates  that  each  electromagnet  of  electromagnetic
particles has the same polarity, that is, the polarity of the
electromagnetic particle is the same as that of the electro-
magnet it contains.

K

tth x̂t
k = [x̂t

k,1, x̂
t
k,2, · · · ,

x̂t
k,Q] (k = 1,2, · · · ,K)

xt
k = [xt

k,1, x
t
k,2, · · · , xt

k,Q] 0 ⩽ xt
k,q ⩽ 1 (q =

1,2, · · · ,Q)

There  is  an  electromagnetic  field  with  electromag-
netic  particles,  each  of  the  electromagnetic  particle  pos-
sesses its own position. The kth electromagnetic particle’s
position at the  iteration is defined as 

 ,  which  is  mapped  by  the  quantum
position ,  where  

. The specific mapping method is defined as

x̂t
k,q = x̂low

q + xt
k,q(x̂high

q − x̂low
q ) (5)

x̂t
k,q ∈

[
x̂low

q , x̂
high
q

]
x̂low

q

qth x̂high
q

qth

where ,  denotes  the  lower  bound  of
the  electromagnet, and  denotes the upper bound
of the  electromagnet.

x̂t
k

x̂t
k

F(x̂t
k)

The  position  of  each  electromagnetic  particle  repre-
sents  a  potential  solution  for  the  problem  to  be  solved
with Q-electromagnet. Hence, the performance of the po-
tential solution  can be evaluated by calculating the fit-
ness value of electromagnetic particle  according to the
fitness function .

According to the feature of QEFO, the region of elec-
tromagnetic  field  is  divided  into  positive  field,  negative
field and neutral field. Electromagnetic particles in QEFO
are divided into three categories according to their fitness
values:  positive  polarity  electromagnetic  particles  with
larger  fitness  values,  negative  polarity  electromagnetic
particles  and  neutral  electromagnetic  particles  with  mid-
dle  fitness  values,  the  neutral  polarity  electromagnetic
particles  are  considered  as  negative  which  are  almost
close to zero. All electromagnetic particles are situated in
the corresponding electromagnetic field region.  The pro-
posed QEFO adopts two different forms of quantum posi-
tion  updating tactics.  The updating equations  of  the  first
strategy are presented as follows:
δk,q < ρIf , the quantum position updating equations are

defined as follows:

vt+1
k,q = r1(xt

β,q− xt
k,q)+ r2(pt

k,q− xt
k,q) (6)

xt+1
k,q =

∣∣∣∣∣xt
k,q · cosvt+1

k,q +

√
1− (xt

k,q)2 · sinvt+1
k,q

∣∣∣∣∣ (7)

else

vt+1
k,q = r3(gt

q− xt
k,q)+φr4(xt

β,q− xt
ϑ,q)− r5(xt

ζ,q− xt
ϑ,q) (8)

xt+1
k,q =

∣∣∣∣∣xt
k,q · cosvt+1

k,q +

√
1− (xt

k,q)2 · sinvt+1
k,q

∣∣∣∣∣ (9)

δk,q ρ

vt+1
k = [vt+1

k,1 ,v
t+1
k,2 , · · · ,vt+1

k,Q]
φ = (

√
5+1)/2

r1 r2 r3 r4 r5

β ϑ ζ

xt
k,q qth

xt
k = [xt

k,1, x
t
k,2, · · · , xt

k,Q] pt
k,q

qth
pt

k = [pt
k,1, p

t
k,2, · · · , pt

k,Q]
tth gt

q

qth
gt = [gt

1,g
t
2, · · · ,gt

Q]
tth q = 1,2, · · · ,Q

where  is  a  uniform  random  number  in  [0,1],  is  a
constant  number  in  [0,1],  denotes
the quantum rotations angle,  is the golden
ratio, , , ,  and   are  the  uniform random num-
bers in [0,1], ,  and  represent  the quantum position
labels  of  electromagnetic  particles  which  are  randomly
selected in positive field, neutral field and negative field,
respectively,  represents  the  dimension  of  the
quantum  position ,  represents
the  dimension of the local optimal quantum position

 which is searched by the kth elec-
tromagnetic particle at the  iteration,  represents the

 dimension  of  the  global  optimal  quantum  position
 which  is  searched  by  all  electromag-

netic particles until the  iteration, .
In  the  second  strategy  of  electromagnetic  particle’s

quantum  position  updating,  the  quantum  position  is  up-
dated by changing the search size and direction, which is
described as

vt+1
k,q = u1(bt

q− xt
k,q)+u2(gt

q− xt
k,q) (10)

xt+1
k,q =

∣∣∣∣∣xt
k,q · cosvt+1

k,q +

√
1− (xt

k,q)2 · sinvt+1
k,q

∣∣∣∣∣ (11)

u1 u2

bt
q = (1/K)

K∑
k=1

pt
k,q qth

K
bt = [bt

1,b
t
2, · · · ,bt

Q]

where  and   represent  random numbers  which  obey
the  Gaussian  distribution  with  the  mean  0  and  the  vari-

ance 1, and  denotes the  dimension

of  the  average  value  of  local  optimal  quantum  posi-
tions, . 

3.2    Computational complexity analysis of QEFO

K
Q

O(KQ)
O(2KQ)

O(K)

O(K)

O(K)

O(tmax(3KQ+3K))
tmax

In  QEFO,  the  population  size  is ,  the  quantum coding
length  is  which  represents  the  dimension  of  the  opti-
mization  problem,  the  computational  complexity  of  the
QEFO  algorithm  at  each  iteration  can  be  calculated  as
follows: the computational complexity of updating quan-
tum  rotation  angles  is ,  the  computational  com-
plexity  of  updating  quantum  positions  is ,  the
computational complexity of calculating the fitness value
of the updated positions is , the computational com-
plexity  of  updating  the  global  optimal  quantum  position
by means of  the greedy selection is ,  and the com-
putational complexity of updating the positive field, neut-
ral field and negative field is . According to the ope-
ration rule of symbol O, the total computational complex-
ity  of  the  QEFO  algorithm  is  when
the maximum number of iterations  is reached. 
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3.3    QEFO-INEK-ML method for DOA estimation

In  QEFO,  all  dimensions  of  the  initial  electromagnetic
particle’s quantum  position  are  randomly  generated  in
[0,1]. For the proposed QEFO-INEK-ML method, the fit-
ness function is defined as

F(x̂t
k) = tr

(
PA(x̂t

k)R
)

(12)

x̂t
k = [x̂t

k,1, x̂
t
k,2, · · · , x̂t

k,Q]
Q = N N

where  the  position  of  the  electromagnetic  particle
 can  be  considered  as  the  estima-

tion values of angles, , and  represents the num-
ber of targets.

As  the  above  description,  the  DOA  estimation  prob-
lem to be solved in this paper can be considered as a con-
tinuous  problem,  and  two  updating  strategies  of  the
quantum position are adopted in the processing of QEFO
until  the  maximum  number  of  iterations  has  been  at-
tained.  The  QEFO-INEK-ML  method  for  DOA  estima-
tion is presented in Algorithm 1.
Algorithm 1　The QEFO-INEK-ML method for DOA

estimation
1 Input: system parameters of DOA estimation;
2 Initialize  parameter  settings  and  the  initial  popula-

tion of QEFO;
t = 13  // the first iteration;

K
K

4  Randomly  generate  the  initial  quantum  positions  of
 electromagnetic  particles  in  [0,1],  and  mapping  them

to  the  corresponding  positions  of  electromagnetic
particles;

5 Calculate the fitness values of the initial positions of
all electromagnetic particles according to the fitness func-
tion (12), in the light of the fitness values, select the glo-
bal optimal;

gt6 Select the global optimal quantum position ;
t ⩽ tmax7 while 

8 Update the present quantum positions of electromag-
netic particles using two strategies, and the probability of
each strategy being selected is 50%;

ρ < 0.59 if (the first strategies)
10 Update the quantum position by (6) and (7);
11 else
12 Update the quantum position by (8) and (9);
13 end if
14 Update the quantum position by (10) and (11);
15  Map  each  quantum  position  and  calculate  the  fit-

ness;
16  In  the  light  of  the  new  fitness  values,  select  the

global optimal quantum position by greedy selection, and
divide  the  electromagnetic  particles  into  positive  field,
neutral field and negative field;

t = t+117 Let ;

18 end while

tmax

19 Obtain the optimal estimation values of angles after
 iterations;

20 Output: the optimal DOA estimation results. 

3.4    Convergence analysis of QEFO algorithm

K X̂

X̂t = {x̂t
1, x̂t

2, · · · , x̂t
K , ĝt}

F X̂
ε

Definition 1　The population size of QEFO is ,  is
the search space of electromagnetic particles, which con-
tains  all  possible  solutions,  repre-
sents the set of positions and the global optimal position
at the tth iteration, and  is the fitness function of . The

 acceptable domain of the QEFO is described as

Rε = { ĝt ∈ X̂t |F( ĝt) > φ̂+ε} (13)

ε > 0 Rε

ε

where , and if QEFO finds a position in , it is as-
sumed that QEFO finds an acceptable position with an er-
ror of .

{F( ĝt)}∞t=1

X̂
φ̂

Definition  2　The  global  convergence  of  the  QEFO
algorithm  means  that  sequence  should  con-
verge to the supremum of fitness function F on , the su-
premum  is defined as

φ̂ = sup(γ : vol[ ĝt ∈ X̂t |F( ĝt) > γ] > 0) (14)

vol[C]
C C ∈ X̂

where  represents the Lebesgue measure on the set
of , and .

F( ĝt+1) ⩾
F( ĝt) x̂t ∈ X̂t F( ĝt+1) ⩾ F(x̂t)
Lemma 1　In QEFO algorithm, hypothesis 

, and if , then .
Proof　The conclusion is obvious, because the QEFO

algorithm  uses  the  optimal  solution  retention  strategy.
With  the  increase  of  iterations,  the  value  of  the  optimal
objective function in the electromagnetic field is non-de-
creasing. □

Ĉ X̂ vol[Ĉ] >

0
∞∏

t=0

(1− ℓt[Ĉ]) = 0 ℓt[Ĉ]

ℓt Ĉ

Lemma 2　  is an any Borel subset of , if 

,  then ,  where  is  the probability

of measure  arriving at .
Proof　There  are  three  ways  to  generate  electromag-

netic particles which can increase the diversity of popula-
tion in  the progress  of  QEFO, and that  can be described
by (6) to (7), (8) to (9) and (10) to (11), respectively. The
evolution of the optimal solution is accomplished by up-
dating  the  quantum  position,  and  the  quantum  position
can be linearly mapped to the position. □
Condition  1　All  dimensions  of  the  electromagnetic

particle’s position  are  distributed  independently,  on  the
basis of (6) and (8) which can generate quantum rotation,
all  dimensions  of  the  electromagnetic  particle’s position
follows uniform random distribution, and the kth position’s
probability density function (PDF) is described as
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fu(x̂t
k) =


1

Q∏
q=1

(x̂high
q − x̂low

q )

, x̂t
k ∈ X̂

0, else

. (15)

Ĉ X̂Therefore, for any Borel subset  which belongs to ,
there is

ℓtk[Ĉ] =
w

Ĉ
fu(x̂t

k)dx̂t
k,1dx̂t

k,2, · · · ,dx̂t
k,Q. (16)

For all t, there is

E(x̂k,q) <∞. (17)

Thus, there must be

0 < ℓtk[Ĉ] < 1 (18)

Kt
k = RN ⊃ X̂ (19)

Kt
k ℓtk X̂ Ĉ ⊃ Kt

kwhere  is the support of  in , and . Then, we
can get

Kt =

K∪
k=1

Kt
k = RN ⊃ X̂ (20)

Kt ℓt

Ĉ ℓt
where  is the support of . The probability measure on

 generated by  can be calculated as

ℓt[Ĉ] = 1−
K∏

k=1

(1− ℓtk[Ĉ]). (21)

By (18), we can get

0 < ℓt[Ĉ] < 1, t = 1,2, · · · (22)

∞∏
t=1

(1− ℓt[Ĉ]) = 0. (23)

Condition  2　All  dimensions  of  the  electromagnetic
particle’s position  are  distributed  independently,  on  the
basis of (10) which can generate quantum rotation, all di-
mensions  of  the  electromagnetic  particle’s position  fol-
lows Gaussian distribution, and the kth position’s PDF is
described as

fg(x̂t
k) =

(
1

2π

)Q Q∏
q=1

exp

 −(x̂t
k,q− x̂low

q )2

2(x̂high
q − x̂low

q )
2

. (24)

In this case, we can obtain the same conclusion as Con-
dition 1, and the proof process resembles Condition 1.
Theorem 1　QEFO is a global convergent algorithm.

x̂t
b ∈ Rε εt ∈ Rε

∀t+ > t x̂t+
b ∈ Rε

Proof　According to Lemma 1,  if  or  ,
for , there is, , from this we can get

P[x̂t ∈ Rε] = 1−P[x̂t ∈ X̂|Rε] ⩾ 1−
t∏
τ=1

(1− ℓτ[Rε])

(25)

P[x̂t ∈ Rε] x̂t ∈ Rε
X̂|Rε X̂ Rε

ℓt

where  represents  probability  of  and
 denotes  the  domain  in  where   is  removed.

Taking  limit  and  considering  as  probability  measure,
we can get

1 ⩾ lim
t→+∞

P[x̂t ∈ Rε] ⩾ 1− lim
t→+∞

t−1∏
τ=1

(1− ℓτ[Rε]). (26)

According to Lemma 2, we can get

1 ⩾ lim
t→+∞

P[x̂t ∈ Rε] ⩾ 1−0 (27)

lim
t→+∞

P[x̂t ∈ Rε] = 1. (28)

The above  process  shows that  QEFO can  converge  to
the global optimal solution. □ 

4. Performance analysis for DOA estimation in
the impulse noise

 

4.1    Basic definitions in the impulse noise model

SαS
SαS

In  practical  environments,  the  scattering  intensity  of  the
target  obeys  the  Gaussian  distribution.  However,  the
noise is impulse noise with the heavy tail in the PDF. In
the DOA estimation model which is given by Section 2, it
is  assumed  that  the  noise  among  the  elements  of  the  re-
ceiving array is a zero-mean independent and identically
distributed  process,  and  the  characteristic  function

 distribution is described as

ϕ(w) = e−γ
α |w|α (29)

0 < α ⩽ 2
γ > 0 γ2

where  represents  the  characteristic  exponent,
 represents  the  scale,  and  is  similar  to  the  vari-

ance of Gaussian distribution.
SαS

α

SαS
SαS

The  tail  of  the  PDF  for  distribution  can  be  de-
scribed by the characteristic exponent [31]. Because the
second and higher order moment of  distribution are
not  existing,  the  SNR  for  distribution  is  normally
notable.  Based  on  the  above  description,  the  GSNR  can
be defined as

GSNR = 10lg
{

E[||s(l)||2]
γα

}
(30)

E[||s(l)||2]where  denotes  the  average  power  of  the  sig-
nals. 

4.2    CRB in the impulse noise

CRB  is  proposed  for  parameter  (or  parameters)  estima-
tion,  which determines a lower limit  for the variance (or
covariance  matrix)  of  any  unbiased  estimator.  It  is  im-
possible  to  obtain  unbiased  estimators  whose  variances
are less than CRB, and CRB provides a criterion for com-
paring the performance of unbiased estimators. The vari-
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ance  of  unbiased  estimators  can  only  approximate  CRB
without restriction, but not less than CRB.

y(l) = A(θ)s(l)+ n(l) = ℑ(χ, l)+ h(l) (31)

ℑ(χ, l) h(l)

χ = [θ, s̄(1), s̄(2), · · · , s̄(L), s̃(1), s̃(2), · · · , s̃(L)] h(l) = [h1(l),
h2(l), · · · ,hM(l)]T hm(l) = h̄m(l)+ h̃m(l) m = 1,2, · · · ,M

{·̄} {·} {·̃}
{·}

where  and  denote  the  signal  component  and
the  noise  component  at  the l th  snapshot,  respectively,

, 
, , . We

define  is  the  real  part  of  and   is  the  imaginary
part of .

χ
J

In  general,  the  CRB matrix  of  is  defined  as  the  in-
verse Fisher information matrix (FIM) :

CRB(χ̂) ⩾ J−1 (32)

χ̂ χ Jwhere  is an estimate of , and the element of  is gi-
ven by

Ji j = E
[
∂ ln f (Y/χ)
∂χi

∂ ln f (Y/χ)
∂χ j

]
(33)

Y = [y(1), y(2), · · · , y(L)] f (Y/χ) Ywhere ,  is  the PDF of 
which can be represented as

f (Y/χ) =
K∏

l=1

M∏
m=1

fh[h̄m(l), h̃m(l)] (34)

h̄m(l) = ȳm(l)−ℑ̄m(χ, l) h̃m(l) = ỹm(l)−ℑ̃m(χ, l)
fh(h̄, h̃) Ω

J

where , , and
 represents  the  PDF  with  parameter  that  satis-

fies  the  condition  of  regularity  [32],  then  the  element  of
 can be expressed as

Ji j = Ir(Ω)
L∑

l=1

M∑
m=1

∂ℑ̄m(χ, l)
∂χi

∂ℑ̄m(χ, l)
∂χ j

+

Ii(Ω)
L∑

l=1

M∑
m=1

∂ℑ̃m(χ, l)
∂χi

∂ℑ̃m(χ, l)
∂χ j (35)

where  the  real  part  and  the  imaginary  part  of  scaling
factor can be described as follows:

Ir(Ω) = E



∂

∂h̄
fh(h̄, h̃)

fh(h̄, h̃)


2 , (36)

Ii(Ω)=E



∂

∂h̃
fh(h̄, h̃)

fh(h̄, h̃)


2 . (37)

fh(h̄, h̃)
fh(±h̄,±h̃)= fh(h̄, h̃)= fh(

√
h̄2+h̃2) h̄m(k)

h̃m(k)
Ir(Ω) Ii(Ω)

Suppose  is  circularly  symmetric,  and  then
 which  means  and

 are  uncorrelated  with  zero-mean.  Hence,  we  can
gain  that  and   are  equivalent  to  the  caling

Ic(Ω) Ic(Ω)factor , and  can be denoted as

Ic(Ω)=π
w ∞

0

[ f ′(℘)]2

f (℘)
℘d℘. (38)

We have

J =



ŵ 0 · · · 0 0
0 G · · · 0 ∆1

...
...
. . .

...
...

0 0 · · · G ∆L

0 ∆T
1 · · · ∆T

L Γ


, (39)

J−1 =

Γ− L∑
l=1

∆T
l G−1∆l

−1

, (40)

where

G =
 H̄ −H̃

H̃ H̄


H=Ic(Ω)A(θ)H A(θ)

∆l =
[
∆̄(l), ∆̃(l)

]H

∆(l) = Ic(Ω)A(θ)H DS(l)

Γ = Ic(Ω)
L∑

l=1

Re
{
S(l)H DH DS(l)

}
D = [d(θ1), d(θ2), · · · , d(θN)]

d(θn) = ∂a(θn)/ ∂θn

S(l) = diag{s1(l), s2(l), · · · , sN(l)}.

According to the above analysis,  the CRB can be cal-
culated as

CRB(θ) =

Ic(Ω)
L∑

l=1

Re
{
s(l)H DH P⊥A Ds(l)

}−1

(41)

P⊥A=I− PA PA = A(θ)
(
A(θ)H A(θ)

)−1
A(θ)H

P⊥A
A(θ)

where ,  and
 denotes  projection  onto  the  orthogonal  complemen-

tary space of .

Ic(Ω)

α=1 α= 2

It  is  obvious  from  (41)  that  the  CRB  for  the  DOA  is
composed by the product of two parts, which depends on
the  PDF  of  impulse  noise  and  the  signal,  respectively.
The effect of impulse noise on CRB is realized by .
Because the PDF of impulse noise has no closed-form ex-
pression, except for  and  (Cauchy and Gaussi-
an  distribution,  respectively),  it  is  a  difficult  problem  to
obtain the CRB for angle estimation [33].

SαS
SαS

Based  on  this  background,  an  approximate  model  for
 PDF is adopted in this paper, which is bi-parameter

Cauchy Gaussian mixture model (BCGM) [34]. The 
PDF is described as
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f (℘) = (1− ε̂) fG(℘)+ ε̂ fC(℘) =

(1− ε̂) 1
2γ
√
π

exp
(
− ℘

2

4γ2

)
+ ε̂

γ

π(℘2+γ2)
(42)

ε̂ γ

SαS
where  represents  the  mixture  ratio,  and  denotes  the
scale exponent of the  distribution.
 

5. Simulation results and discussion

d = λ/2 η=0.5 µ=0.35 Q=30
tmax=100 Pfield=0.1 Nfield=0.4 ρ=0.2

For  the  sake  of  assessing  the  angle  estimation  perform-
ance  of  QEFO-INEK-ML,  a  series  of  experiments  are
conducted  in  this  section.  A  uniform  linear  array  with

 is  used, , .  For  the  QEFO, ,
, , , . For the purpose of

ensuring  the  reliability  of  simulation  results,  the  number
of Monte-Carlo experiments is set to 600 in all scenarios.

α̃=1 α̃=1.2
α̃=0.6 α̃=1.2

α̃

In  the  next  simulation  experiments,  the  performances
of QEFO-INEK-ML, IN-MUSIC [18], ROC-MUSIC [15]
( ), FLOM-MUSIC [16] ( ), FLOC-MUSIC [17]
( ),  FLOM [35]-ML [8]  ( ),  and  the  CRB are
compared, where  denotes the fractional order.
 

5.1    The first scenario

θ1= 20◦

θ2= 30◦
Firstly,  two  independent  sources  located  at  and

 are taken into account in this scenario. In order to
examine the accuracy of DOA estimation, the root mean
square error (RMSE) is defined as

RMSE =

√√
N∑

i=1

Nex∑
n̂=1

(θi− θ̂n̂
i )

2

NNex
(43)

N Nex

θi

θ̂n̂
i

n̂th

where  and  represent the number of sources and the
number of Monte-Carlo experiments, respectively,  de-
notes the true angle of DOA for the ith source, and  de-
notes the estimated angle of DOA for the ith source in the

 experiment.

M=8 GSNR = 10 dB α=1.5
ε̂=0.4 γ=1

In order to assess the performance of QEFO-INEK-ML
under  the  conditions  in  different  numbers  of  snapshots,
the  RMSE  and  CRB  simulation  comparison  curves  are
plotted  in Fig.  1 with  , , ,

 and . The simulation results show that the gap
between the RMSE of QEFO-INEK-ML and CRB is the
smallest,  it  means  that  the  angle  estimation  results  ob-
tained by QEFO-INEK-ML about two independent sour-
ces  in  the  case  of  impulse  noise  are  more  accurate.  Be-
yond that, the performance of the proposed QEFO-INEK-
ML  method  outperforms  five  other  methods  in  terms  of
estimation accuracy under the small number of snapshots. 
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Fig. 1    RMSE and CRB simulation comparison curves in different
numbers of snapshots

α=1.5

The angle estimation success rate simulation compari-
son  curves  of  two  independent  sources  under  the  condi-
tions  in  different  numbers  of  snapshots  with  GSNR=
10  dB  and  are  plotted  in Fig.  2,  which  demon-
strates the ability of  effective estimation of six DOA es-
timation  methods.  When  the  absolute  deviation  between
the estimated angle and the real angle is no more than 1°,
the  angle  estimation  is  considered  to  be  successful.  It  is
clearly that the ability of effective target estimation of the
QEFO-INEK-ML  method  in  the  impulse  noise  outper-
forms that of five other methods, especially in the case of
small-snapshot domain. The robustness of the QEFO-IN-
EK-ML DOA estimation method is more excellent in the
impulse noise.
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Fig.  2      Success  rate  simulation  comparison  curves  in  different
numbers of snapshots
  

5.2    The second scenario

In  previous  simulation  scenarios,  we  only  consider  two
sources.  Hence,  in  order  to  verify  whether  the  different
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θ1=20◦ θ2=30◦ θ3=40◦

M = 10

numbers  of  sources  will  affect  the  estimation  perform-
ance of the proposed QEFO-INEK-ML method, three in-
dependent sources located at , ,  are
used  in  this  scenario,  the  number  of  antennas ,
and  the  setting  of  other  parameters  is  the  same  as  the
second scenario.

α=1.5
α=1.5

As for the number of independent sources is three, the
RMSE and CRB simulation comparison curves in differ-
ent  GSNRs with  are given in Fig.  3,  the relation-
ship  between  the  success  rate  and  GSNR  with  is
presented in Fig. 4, and the relationship between the suc-
cess rate  and the characteristic  exponent  with GSNR=10
dB  is  given  in Fig.  5.  From Fig.  3, Fig.  4 and  Fig.  5,  a
conclusion can be obtained that  the proposed QEFO-IN-
EK-ML  method  has  an  excellent  angle  estimation  per-
formance.  Further  more,  the  other  conclusions  resemble
those obtained in the previous experiments.
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Fig. 3    RMSE and CRB simulation comparison curves for three in-
dependent sources in different GSNRs
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Fig.  4      Success  rate  simulation comparison curves  for  three inde-
pendent sources in different GSNRs
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Fig.  5      Success  rate  simulation comparison curves  for  three inde-
pendent sources in different characteristic exponents
  

5.3    The third scenario

The  previous  simulation  experiments  only  consider  the
case  of  independent  sources,  and  are  unable  to  examine
the effectiveness of the proposed QEFO-INEK-ML meth-
od for coherent sources. As we all know, it is more diffi-
cult  to  estimate  coherent  sources,  and  coherent  sources
often  lead  to  a  serious  deterioration  in  the  DOA estima-
tion  performance  of  ROC-MUSIC  method,  FLOM-MU-
SIC method, FLOC-MUSIC method and IN-MUSIC meth-
od [36]. Therefore, the forward-backward spatial smooth-
ing  (SS)  method is  adopted  in  this  scenario  to  deal  with
the coherent sources [37,38].

θ1= 20◦ θ2= 30◦

M=8

Two  coherent  sources  located  at  and  
are taken into account to verify the influence of coherent
sources on the performance of the proposed QEFO-INEK-
ML  DOA  estimation  method.  The  number  of  antennas

,  and  the  other  parameters  are  the  same  as  the  se-
cond scenario.

α=1.5
α=1.5

As  for  two  coherent  sources,  the  RMSE  and  CRB  si-
mulation  comparison  curves  in  different  GSNRs  with

 are given in Fig. 6, the effect of GSNR on the suc-
cess rate in the case of  is presented in Fig. 7, and
the  effect  of  the  characteristic  exponent  on  the  success
rate  with  GSNR=10  dB is  given  in Fig.  8.  From Fig.  6,
Fig.  7 and  Fig.  8,  we  can  receive  a  conclusion  that  the
proposed QEFO-INEK-ML method still  has an excellent
angle estimation performance for coherent sources, and it
outperforms  five  other  methods  in  terms  of  the  estima-
tion  accuracy  and  the  success  rate.  According  to  the
above analysis, it is obvious that the proposed QEFO-IN-
EK-ML method  can  locate  coherent  sources  without  de-
teriorating performance, which proves the robustness and
superiority of the QEFO-INEK-ML method.
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6. Conclusions
We propose a QEFO-INEK-ML DOA estimation method
to locate the directions of targets in the impulse noise in
this paper. The simulation results show that the proposed
QEFO-INEK-ML method can locate independent sources
and  coherent  sources  under  the  complex  impulse  noise
environment, effectively. The proposed QEFO-INEK-ML
method  can  obtain  more  preeminent  performance  com-
pared  with  some  previous  methods  in  the  case  of  snap-
shot deficiency and the strong impulse noise, and it tests
the  superiority  and  robustness  of  the  QEFO-INEK-ML
method.  Beyond  that,  we  prove  the  convergence  of  the
QEFO  algorithm  by  mathematical  analysis,  and  we  ob-
tain the general CRB which can be used for DOA estima-
tion in the impulse noise. In the follow-up study, we will
design  a  multiple  objective  quantum  electromagnetic
field  optimization  algorithm  to  resolve  more  complex
DOA estimation problems.
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