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Abstract: In recent years, with the continuous development of
multi-agent technology represented by unmanned aerial vehicle
(UAV) swarm, consensus control has become a hot spot in aca-
demic research. In this paper, we put forward a discrete-time
consensus protocol and obtain the necessary and sufficient con-
ditions for the second-order consensus of the second-order
multi-agent system with a fixed structure under the condition of
no saturation input. The theoretical derivation verifies that the
two eigenvalues of the Laplacian of the communication network
matrix and the sampling period have an important effect on
achieving consensus. Then we construct and verify sufficient
conditions to achieve consensus under the condition of input
saturation constraints. The results show that consensus can be
achieved if velocity, position gain, and sampling period satisfy a
set of inequalities related to the eigenvalues of the Laplacian
matrix. Finally, the accuracy and validity of the theoretical re-
sults are proved by numerical simulations.
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1. Introduction

Consensus control of multi-agent systems has become an
important research topic, which has attracted great atten-
tion from researchers in many subjects such as control,
mathematics and artificial intelligence, especially in
swarm systems, distributed sensor networks, etc [1—8].
Due to the limited perception of individuals, it is gene-
rally believed that the consensus control would be
achieved through systems with large-scale of local in-
formation. Various forms of distributed control protocols
have been provided by robotics and control research
teams. Saber and Murray [9] put forward a general hier-
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archy to solve the consensus problems of multi-agent sys-
tems of a single integrator. Ren and Beard [10] studied
the consensus problem with a directed weighted graph,
and pointed out that under certain conditions, the system
can achieve consensus. Moreau [11] analyzed the net-
work of the discrete system by the Lyapunov method and
the convexity theory, which proved that as long as the
coupling between agents satisfies certain convexity con-
ditions and the network is connected, the consensus can
be achieved. In latest research, researchers have focused
on switching directed network time-delays, topologies,
and consensus control with disturbance appearing [12—17].

For past years, the consensus control of second-order
dynamics has become one of the hottest topics in this
field, and it has been affirmed that consensus may not be
achieved even the topology is connected and has directed
spanning trees. Zhan and Li [18] provided some suffcient
conditions for consensus control of second-order multi-
agent systems with fixed and switching interaction topo-
logies. Ren and Atkins [19] showed clearly that the gain
parameters have to satisfy certain conditions related to ei-
genvalues of the Laplacian matrix in order to guarantee
consensus of second-order continuous-time systems. Yu
et al. [20] gave a necessary and sufficient condition to en-
sure second-order consensus, and they found both the real
and imaginary parts of the eigenvalues have important ef-
fects. Zhang and Tian [21] indicated that there must exist
appropriate gain parameters for discrete-time systems
with fixed interaction topology, so that the consensus can
be achieved if and only if union of graphs has globally
reachable nodes. However, they did not explain how to
design the parameters. Although Xie and Wang [22] put
forward a mathematic expression and gave a reasonable
range of gain parameters under fixed interaction topo-
logy, they still did not consider the sampling period of the
system.

Another significant fact is that most of the researchers



948 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

of the existing literature do not pay attention to input con-
straints which have to be considered in many practical en-
gineering systems due to actuators limitations. To handle
this, the so-called parameterized low-gain and high-gain
feedback techniques were introduced in [23]. With the in-
troduction of the low-gain and high-gain feedback tech-
niques, consensus of multi-agent systems with input sa-
turation was studied in [24—27]. Meng et al. [28] pro-
posed a linear control protocol based on the relative state
information. Global leader-following consensus with in-
put saturation was also solved under fixed/time-varying
topologies in their article. Yang et al. [29] further con-
sidered the global consensus control for discrete-time sys-
tems with input saturation constraints and fixed undirec-
ted topologies, and some necessary conditions for achiev-
ing global consensus were obtained. In [30,31], model
predictive control protocols were used to achieve con-
strained consensus when the topology had a directed
spanning tree and the sampling period was sufficiently
small.

Taking a panoramic view of these existing investiga-
tions, gain parameters design for achieving consensus
with input saturation constraints is a difficult problem.
Although some attempts have been made, the problem
has not been solved perfectly. For the single-integrator
case, Li et al. [32] indicated that any relative-state-based
linear protocol, which solves the linear consensus prob-
lem under fixed directed topology without input satura-
tion constraints, can also solve the global consensus prob-
lem with input saturation constraints. Though these docu-
ments did not explain how to design the parameters, they
have presented the affirmation that the desired consensus
state may not be reached even the network is connected
and has direct spanning trees. When considering the in-
put saturation constraints and sampling period for discrete-
time situation, things get even more complicated [33,34].
This is the motivation of this study.

The organization logic of this paper is as follows: Sec-
tion 2 introduces some basic conceptions and problem de-
scriptions; Section 3 considers the consensus problem
without constraints. Thereafter, consensus with input sat-
uration constraints is studied in Section 4. Section 5
presents simulation examples which demonstrate the
validity of the control protocol and Section 6 is the sum-
marization of this paper.

2. Preliminaries
2.1 Graph theory

G = (W,E, A) isadirected graph, in which W = {w;,w,,---,
wy} is the node set of the graph, E C{(i,j):i,j€ W}is

the edge set, A = [a;;]yxv 1S the weighted adjacency ma-
trix of the graph. g;; indicates the connection weight
between w; and w;, a; =1 indicates that the node w;, can re-
ceive information from w;, otherwise a; =0. In addition, it
is defined here that when i =, a; = 0.

The Laplacian matrix of the graph G is L, and

N

L= [lij]NxN' It is defined as l,-,-=Za,~‘,~, lijz —aij, l:] If

there is a node w;, the informatior can be passed from w;
to any other nodes in the graph. The graph G is said to
contain a directed spanning tree, and w; is called a root.

Lemma 1 [35] The Laplacian matrix L of the graph
G has at least one zero eigenvalue, and other N—1 non-
zero eigenvalues all have positive real parts; if G has a
directed spanning tree, zero is a single eigenvalue of L,
and 1y is its corresponding right eigenvector.

2.2 Problem formulations

Consider a multi-agent system with N agents. Each agent
is described as
xi(k+1) =x;(k) + Tv;(k) (1)
vitk+1) =v(k)+ Tu,(k)

wherei =1,"--, N, x(k) ER", v(k) ER’", u (k) ER", denote
the position, velocity and control input of agent i at time
k, respectively. T > 0 is the sampling period. It is as-
sumed that n = 1 if not otherwise specified for simplicity
of description. However, all the results hereafter remain
valid for a higher dimensional case and can be calculated
by using the Kronecker product.
Consider the following consensus protocol:

(k) = —a ) (k) = ;)

JEN;

B vk = v,(k) @)
JeN;
where >0, >0 are position and velocity gain parame-
ters to be designed.
Definition 1 System (1) achieves consensus if for
any initial conditions,
Jim [0 - ;) = 0,
tim [y (k) =, (0l = 0,
Vi,j=1,---,N.

Denote x(k) = col[x,(k),--- ,xy(k)], v(k) = col[v,(k),---,
ww(K)], u(k) = collu,(k),---,uy(k)], y(k) = col[x(k),v(k)].
Substituting (2) into (1), system (1) can be rewritten in a
compact matrix form as follows:

y(k+1) = Ty(k) 3)
Iy TI,

where I'=\ 71 1,-pTL

, I, represents an iden-
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tity matrix with dimension M.

Clearly, then system (1) is equivalent to (3) under the
protocol (2).

Let u be an eigenvalue of matrix I". Then by the defini-
tion of eigenvalue, we can get

det(ul,y —T) =

{(u=1 +[aT? + (- 1)BTIA,} =0 4)

i

where A; is the eigenvalue of Laplacian matrix L,i =
1, N.

Lemma 2 [22] L has a zero eigenvalue with algeb-
raic multiplicity m if and only if I" has a one eigenvalue
with algebraic multiplicity 2m.

3. Consensus without constraints

Theorem 1 [22] The consensus condition can be de-
scribed as if and only if the matrix I has exactly a one ei-
genvalue of multiplicity two and all the other eigenva-
lues are in the unit circle. In addition, if the consensus is
reached, then,

lim [x(k) = [1,€"(0) + kT 1,£™v(0)]} = 0
lim vk~ 1,6™(0)} = 0 ©)

where £7 is the unique nonnegative left eigenvector with
zero eigenvalue satisfying €™, = 1.

Proof (Sufficiency) It can be verified that if the ei-
genvalue of I' is 1, the multiplicity is two and cannot be
similar to a diagonal matrix. Suppose there is a matrix P,
which is non-singular and satisfies P~'I'P = J, in which
1 10
01 0]

00 J ]

Let P=({- &), PP =(n,---py)", and substituting

them in P 'I'P=J, we can obtain I'({ - &oy) =

1 10
({1...§2N)( 01 0 ],thatis{ e =¢,

J has the form of J =

00 J I, =46+4

Therefore, ¢, and ¢, are the eigenvector and genera-
lized eigenvector of I'" associated with eigenvalue 1. Thus
1 T
we can get £, = [1}, 0%]7,4, = |05, 71%
Similarly, n] and 7, are the left generalized eigen-

vector and left eigenvector of I' associated with eigen-
T

1
value 1, and can be obtained as 5, = [TgT (I
[07¢T]", where ¢T is an arbitrary left eigenvector of L as-

1
sociated with eigenvalue 0. Let &7 = T;'T, note that
P'P=1, that is nl{, =€"1y=1. Clearly, &' is the
uniquely determined left eigenvector of L associated with

eigenvalue 0. Thus we can get 1, = [£T 0% 1,77, = [0, TE€"].
Hence, we have

1 1 0
limr=p| 0 1 0 |p'=
koo 0 0 klim]"'
'
Lk n sk 3
1,42 r |+ (&, on) lim J
O l ”2 k—+00 .
Mon

Note that I' has exactly a one eigenvalue of multipli-
city two and all the other eigenvalues are in the unit

circle, then we get lim J* = 0, that is,
k

1,67 kT1,€7

k—+00 k—+00

lim I'* = lim[

From (3), we get y(k) = I'*y(0). In combination with
Definition 1, one can conclude that the consensus of sys-
tem (1) is achieved and the consensus state satisfies (5).

(Necessity) Since L has at least one zero eigenvalue
(Lemma 1), then on the basis of Lemma 2. If the neces-
sity is not satisfied, it indicates that I" has at least three ei-
genvalues which are not in the unit circle, that is J has at
least one eigenvalue which is not in the unit circle, then

klirgo J¥#0. This means that there is at least one agent
whose consensus conditions cannot be met, which contra-
dicts the assumption that consensus of system (1) is
achieved. Thus the necessity is satisfied.

Theorem 2 The consensus of multi-agent system (1)
can be achieved by protocol (2) if and only if the topo-
logy graph has a directed spanning tree, and the gain
parameters and sampling period satisfy

fia,B,T, ) = aT? = 28T + 41?/?‘(;") >0

B—aT >0 i

S p.T.2) = [@T? = 2p TP +aRe1)] (7
Gretr=—p 7"

where Re(/;) and Im(4,) are the real and imaginary parts
of 4, respectively, i =2,---, N.

Proof (Necessity) Suppose that the system (1) is able
to get consensus, and then on the basis of Theorem 1 and
Lemma 2, L has exactly one simple 0 eigenvalue.

Let u—1=s, hence Re(s)<0 and (4) can be rewritten as

S +BTAs+aT?, =0, i=2,--- N. (8)

Denote s;,, s;, are a pair of roots of (8) associated with
A, thatis s; +s,,=—BTA, then Re(s; + 5;,) = =BTRe(4;) < 0.
Since >0, T> 0, then we get Re(4,)>0. Then by Lemma 1,
there is a directed spanning tree in the topology graph.



950 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

Define g(u)=(u—1)*+[aT* + (u—1)BT1A;,i=2,---,N.
Then I' has exactly a one eigenvalue of multiplicity two
and all the other eigenvalues are in the unit circle, which
is equivalent to that I' has exactly a one eigenvalue of
multiplicity two and g(u) is Schur stable, that is, all the
roots of g(u) satisfy |u| < 1. By the technique of bilinear

. o+1
transformation u = ——, we get

o-1
, [o+1
Oo)=(-1gl—|=
o-1
aAT?0? + 24T (B - aT)o+
aA,T? = 2BA.T +4. )
Define
6(o) , 2T(B-eaT) aA,T*-2BAT +4
y(o) = =0+ o+ .
aA,T? aT? aA,T?

(10)

Then the polynomial g(u) is Schur stable if and only if
(o) is Hurwitz stable.
Denote o = iw and substitute it in (10), it follows that

2T(B—aT) .
QT (lw)+

(aT?=2B8T)| ;> + 42,

y(iw) = (iw)* +

11
a|,|PT? (b
where A; is the conjugation of ;. Denote
,  (@T*=2BT)|A) +4Re())
m(w) = -w” +
a|/l,-|2T2
(12)

_2T(B-aT)  4Im(A)
ST YT aapr

n(w)

Then, by the Hermite-Biehler theorem, y(o) is Hur-
witz stable if and only if the following conditions hold:

(1) m(w)=0 has two different roots, denoted as
my < ny;

(i1) The single root of n(w) = 0 satisfies m; < n; < my;

(iii) m(0)r’(0) —m’(0)n(0) > 0.

Simple calculation gives

(aT?*=2BT)| 41> +4Re(A) 20
a|LPT?
m <n <m (13)

A=

(@7 =D)AL +4Re(d) 2T(B-aT)
alLPT? aT?

where

(@T?*=2BT)|A,* + 4Re(1,)
m; = — s
' alPT?

B \/(aT2 —2BT)|A,)> +4Re(1;)
"= Al APT? ’
_ 2Im(4)
|APBT —aT?)’

n

By solving the inequality (13), conditions in (7) can be
established.

(Sufficiency) By Lemma 1, we get that if G has a span-
ning tree, then L has exactly one simple 0 eigenvalue.
Hence, I' has exactly a one eigenvalue of multiplicity two
by Lemma 2. From the above proof in necessity, we ob-
tain that parameters a, 5, 7, which meet the conditions of
(8), also guarantee the roots of g(u) satisfy |u| < 1. There-
fore I' has exactly a one eigenvalue of multiplicity two
and all the other eigenvalues are in the unit circle. Hence,
Theorem 2 is established. O

Corollary 1 If the topology graph is an undirected
one, then the consensus of system (1) can be achieved by
protocol (2) if and only if the graph is connected and

4
«—_

28T — aT>

B

T<—
a

Aw
(14)

where Ay is the maximum eigenvalue of the Laplacian
matrix L. In addition, if the consensus of system (1) is
achieved, then

lim {x(k) - [%ul;x(()) + ]%LVIWO)]} =0

k—+0c0

lim {v(k) - %INLT\,V(O)} =0

k—+0c0

. (15)

Since &7 satisfies €'1y =1 and is a left eigenvector of
L associated with eigenvalue 0, that is £TL =0. If the

1
graph is undirected, it follows that &7 = ﬁlﬁ, then Corol-

lary 1 can be easily verified.

Remark 1 Theorem 1 and Theorem 2 are extensions
of existing literature and this is considerable because the
sampling period is a critical parameter for practical ap-
plications. For example, Dong et al. [36] applied a con-
sensus-based time-varying formation tracking protocol to
quadrotor formation flying test. Its controller update fre-
quency is up to 10 Hz so as to be on the safe side.
However, this is not only a vast waste of energy, but also
extremely challenging for mobile communication net-
work when the number of vehicles in the swarm is get-
ting more.

4. Consensus with input saturation
constraints

Suppose there is a multi-agent system with the members
of N, and the constrained input is described as c(u;(k)) =
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[es(uii(k)), -+ ,c (i (k))], where c,(+) is the standard sa-
turation function, and the definition is as follows:

Ug, U > Uy

c(u)=14 u, |ul<u (16)
—Uy, U< —Uy

where 1, is the maximum control input.

Theorem 3 Assume that the topology is undirected
and fixed. The consensus of multi-agent system (1) with
input constraints described in (16) can be achieved by
protocol (2) if the topology graph is connected and the
gain parameters and sampling period satisfy

gl(a'9ﬁ3 Ts/lN) = gaTz/lN <1
(@B, T,Ay) = (@T?*-BT)* Ay+ 17)
BaT*-2BT)<0
where Ay is the maximum eigenvalue of L.

Proof When considering the input constraints, sys-
tem (1) can be rewritten as the following form:

xi(k+1) = x;,(k) + Tvi(k)
vitk +1) = vilk) + Te(ui(k))”

For simplicity, x(k),v(k),u(k), and y(k), whose defini-
tions have been given in Section 2, are denoted as x, v, u,
and y, respectively.

Consider the equation below:

V(k) = —c"(w)c) + 2cT (w)u+
2aTc"(w)Ly +av"Ly. (18)
Since ¢"(w)u > ¢"(w)c(u) for any column vector u, we

get that

V(k) > c"(w)e) +2aTc " (w)Lv +av Ly =

I aTl c(u)
[cT(u)(Lv)T][ cﬂiVIN HINN H I |t
vi(«L - 6L L)v. (19)

Suppose 60— (aT)* >0 and aL—60LTL is semi-positive
definite, then it follows that V(k) > 0 and V(k) =0 if and
only if x; =--- =xy, v, =--- = vy, that is, the consensus
is achieved. Thus (18) is an appropriate Lyapunov can-
didate function. Next, the proof is given to show that
there exists such § meeting the conditions.

Since the graph is undirected, it follows that LT = L
and the eigenvalues of aL—6L"L can be obtained by
ad;— 022 (i =1, -, N). The graph is undirected and con-
nected, also indicating that 0=1,<1,<---<Ay. aL—60LTL
is semi-positive definite if and only if ad, — 642 > 0, then
we can get @ —604; >0, thus 6 < @/Ay. Further consider
that 8—(aT)?* > 0, it follows (aT)* <0< a/Ay. If there
exists such 6 meeting the conditions, then (aT)* < /Ay,
that is,

aT? Ay < 1. (20)

Now, it is time to show that AV(k+1)=V(k+1)—
V(k) < 0. By (18), it can be obtained that

AV(k+1) =V(yk+1)) - V(yk)) =
—t"t+ 26 u+2(aT? - BT)t" Le(u)+
cTW)aT?’L+1c(u)-2c"(w)u 21

where t = c(u(k+1)).

Without loss of generality, suppose u; > uy, i€S,=
{1+ N}, luil <up for i€ S, ={N,+1,--- ,N,,}, u; < —u
forieS,={N,+1,---,N}. Note that S ,, §,,, S, may be
empty. We define the partition ¢=[¢],¢),¢]]"
[w),u),u;]", where t,,u, eR", t,,u, eR"™ t, u, e

7u:

RNM» . Accordingly, the Laplacian matrix L should also
be rewritten into stacks as

LPI) me L Pq
L= Lzm me Lmq (22)
T T
LP‘I L”lt] qu

By the definition of (16), we have c(u)=[u1],
u,,~uy1}]". By substituting #, u, L into (21), and by com-

m>

pleting squares, we obtain

AV(k+1) =2(t, —upl,) (w, — uo1,)+
2(t, +uol,) (u, +uol,)—
(5", g 1x [p" m",g" +s"Ms (23)
where
M = (aT?-BT)’'L'L+ (3aT?-28T)L,

s = [upl},u,

m?

—Up 13]3

ﬁ = tp - {((IT2 _BT)[Lppstm9qu]'

o1 T, 0T, —up 171" +uo1,.},

m?

i=t,-{T*-pT)L,

pm?

meaLmq]'
T
[u(Jl;l;’ u;a _u()l:] + um}’

Gg=t,~{(T*-p0)L" L' L]

pg> Hmg>
(o1, u”, —up1™])" —uel,}
0Lps@®ms 0ty 0LgJ-

Clearly, we can obtain that term [p*,m", "1 x [p",m",
¢'1" is non-positive. Since ¢,—u,l, <0, u,—uyl,>0,
t,+ul, >0, u,+ul, <0, we have that the first line of
(23) is also non-positive. Thus the sufficient condition for
AV(k+1) <0 is that term sTMs is non-positive. Hence,
M is negative semi-definite and the eigenvalues of M satis-
fy (aT?-BT)* 22+ (3aT?*-2BT)A; <0. Since the graph is
undirected and connected, it follows 0=4,<A, <---<4,,
then (aT? —BT)*A? + (3aT*—2BT)A; <0 is equivalent to



952 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

(@T*-BT)’ Ay +(BaT?-2BT) < 0. (24)

Hence, the condition AV(k+ 1) <0 is satisfied if there
exists a, B, T satisfying (24).

We then show that AV(k+1) = 0 if and only if the con-
sensus is achieved, that is x; =---=xy, v, = =vy.
Note that if there exists || > uy, AV(k+1) =0 cannot be
established since at least one of the first two lines of (23)
is negative. Hence, |u;| <u, is satisfied for all agents.
Then we can get that

AV(k+1) = V(k+1)=V(k) =
—tTt +26Tu+2(aT*-BT)t" Lu+
u"(@T’L+Du—2u"u =
—{t - [(aT*-BT) +Nu}"

{t —[(aT>~BT) +Iu}+u"Mu.

Therefore, AV =0 if and only if ¢ = [(a«T*-BT)+1u
and Lu = 0 are satisfied, that is # = u. By the definition of
u and with some algebra, we obtain ¢ =u(k+ 1) = u(k)—
aLv(k).

Since @ >0, we have Lv(k) =0, that is v;(k) = v;(k),
Vi,j=1,---,N. Furthermore, Lu = 0 is satisfied if and
only if u;(k) = u;(k),Vi,j=1,---,N. Now, we shall prove
x;(k) = x;(k). Note that Lv(k) =0 also indicates u(k)=
—aLx(k), in other words, we have

l“xl +"'+lleN = _MT

(25)
llel +--- 4+ lNNxN = _M;/
where u; = u;/a and u; = --- = u},. By subtracting the first
line of (25), it follows
(b =L)xi+---+ by —Liy)xy =0
(26)

(Ui =L)x +-+ Uy —Liy)xy =0

N
Note that [;; = —Z l;; and substituting it into (26), we

. =2
obtain

(b = 1) —x) + -+ by = Lin)(xy —x1) =0

Uno = 1) = x) + -+ (Iyy = Lin)(xy — %) = 0

27
. . . 1 05,
Consider a non-singular matrix E = .
1N—l IN—]
. . —1 O L12
Then it can be obtained that E-'LE = =
0N71 L

where L, =[l;5,--+,Ly] and L is the coefficient matrix
of (27).

The graph is connected, indicating that L has exactly
one simple 0 eigenvalue, that is, Rank(L) = N — 1. Hence,
one can obtain that all eigenvalues of L are strictly posi-
tive and Rank(L)=N—1, thus (27) only has all-zero
solution, which is equivalent to x; = --- = xy. Hence, we
have shownthat AV < 0 andAV =0 ifandonlyifx, =--- =
Xy, Vi = -+ = vy, that is, the consensus is achieved.

Note that (17) can be obtained by (20) and (24). Hence,
Theorem 3 is proved in conclusion. O

Remark 2 The sampling period is taken into account
and the result can be regarded as a special case of Theo-
rem 3 with T = 1. Furthermore, the results in Theorem 3
is less conservative by substituting in 7= 1.

5. Simulation experiment
5.1 Consensus without input constraints

Suppose there is a multi-agent system with the members
of N, here N = 15, and its topology G, is given in Fig. 1.
The initial settings are x(0) = [100, 110, 120, 130, 140,
150, 60, 70, 80, 90, 40, 30, 50, 20, 10], v(0) =[10, 11, 12,
13,14,15,6,7,8,9, 5,4, 3,2, 1]. Clearly, G, has a direc-
ted spanning tree and the eigenvalues of the Laplacian
matrix are A;,=0, A,=0.186, 1;=0.509, A, =1,
Asg =2, 1 =2.710, g9 =1.411+0.5851, Ay, = 1.461+
0.439i, Aj5,3 =1.980+1.171i, 14,5 =2.446+£0.970i. i is
the imaginary unit. Let 0=0.20, £=0.35 and plot change
curves of fi(a,B8,T,4;) (i=1,"--,15, j=1,2) vs T, it is known
that the system can attain consensus if and only if 7<0.8 s
based on the results of Theorem 2.

Fig. 1 Graph topology of G,

For comparison, simulations are conducted continu-
ously under the condition that 7= 0.7 s and 7= 0.8 s, re-
spectively. The change curves of accelerations, velocities
and positions of each member of the system are shown in
Fig. 2 and Fig. 3 respectively. The results presented here
show that the control protocol (2) makes them meet the
consensus when 7' = 0.7 s in Fig. 2. While in Fig. 3, one
can see that when 7' = 0.8 s, the system cannot meet the
consensus conditions. Thus the result of Theorem 2 is
verified.
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Fig. 2 Evolution of positions and velocities of all agents (¢=0.20,

p=0.35, T=0.7 s)
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Fig. 3 Evolution of positions and velocities of all agents (¢=0.20,
p=0.35, T=0.8 5)

5.2 Consensus with input constraints

Suppose there is a multi-agent system with the members
of N, here N = 15 and input constraints |u;| < uy =2. The
topology G, is given in Fig.3 (a), here we need to pay at-
tention to that the graph here is undirected and simply
connected. The initial settings, including positions and
velocities, are the same as Section 5.1. After some calcu-
lation, we know the maximum eigenvalues of the Lapla-
cian matrix Ay =5.06. Let a = 0.20, 8 =0.35 and substi-
tuting them into (17), one can obtain that the consensus
condition is 7 < 0.90 s. Hence, we take T = 0.85 s in the
simulation.

The change curves of accelerations, velocities and posi-
tions of each member of the system are shown in Fig.4 (b),
Fig.4 (c) and Fig.4 (d) respectively. The results indicate
that the control protocol (2) makes them meet the consen-
sus and the control input satisfies the constraints, which
demonstrates the effectiveness and feasibility of Theo-
rem 3.

0 50 100 150 200
t/s

(b) Evolution of accelerations

50 100 150 200
t/s
(c) Evolution of velocities
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Fig. 4 Evolution of positions and velocities of all agents (¢=0.20,

=035, T=0.85 s)
6. Conclusions

Consensus control of the multi-agent system is of signi-
ficant importance. In this paper, the consensus problem of
the second-order discrete-time multi-agent system is con-
sidered. Firstly, some necessary and sufficient conditions
are given in order to ensure the second-order consensus,
which shows the importance of eigenvalues of the Lapla-
cian matrix of the topology and the sampling period in
achieving consensus. Then, the case with input saturation
constraints is mainly studied and the deduction of the suf-
ficient condition for consensus is completed. What has
been found in this paper is that consensus will be rea-
lized of the constrained multi-agent systems if velocity
and position gains and sampling period satisfy some ap-
propriate ranges. Finally, numerical simulations are car-
ried out and the feasibility of the theoretical results is il-
lustrated.

Extensions of directing and switching topologies are
currently under investigation. Velocity and acceleration
constraints should be taken into account simultaneously
in future studies.
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