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Abstract: As  the  scale  of  current  systems  become  larger  and
larger  and  their  complexity  is  increasing  gradually,  research  on
executable  models  in  the  design  phase  becomes  significantly
important as it  is  helpful  to simulate the execution process and
capture defects of a system in advance. Meanwhile, the capabil-
ity of a system becomes so important that stakeholders tend to
emphasize their capability requirements when developing a sys-
tem. To deal with the lack of official  specifications and the fun-
damental  theory basis for  capability  requirement,  we propose a
cooperative capability requirements (CCR) meta-model as a the-
ory  basis  for  researchers  to  refer  to  in  this  research  domain,  in
which we provide detailed definition of the CCR concepts, asso-
ciations  and  rules.  Moreover,  we  also  propose  an  executable
framework,  which  may  enable  modelers  to  simulate  the  execu-
tion process of a system in advance and do well in filling the in-
consistency and semantic gaps between stakeholders’  require-
ments and their models. The primary working mechanism of the
framework  is  to  transform  the  Alf  activity  meta-model  into  the
communicating  sequential  process  (CSP)  process  meta-model
based on some mapping rules, after which the internal commu-
nication  mechanism  between  process  nodes  is  designed  to
smooth the execution of behaviors in a CSP system. Moreover, a
validation method is  utilized to check the correctness and con-
sistency  of  the  models,  and  a  self-fixing  mechanism is  used  to
fix  the  errors  and  warnings  captured  during  the  validation  pro-
cess  automatically.  Finally,  a  validation  report  is  generated  and
fed back to the modelers for system optimization.
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1. Introduction
With the explosive development of social diversification,
interactions  and  cooperation  between  different  domains

tend to be more and more frequent,  as a result,  the scale
of a software system supporting these interactions and co-
operation become larger and larger and its complexity is
increasing  gradually.  When  developing  large  scale  com-
plex systems, especially for those applied into some vital
application domains,  e.g.,  in emergency response system
(ERS),  in  military  domain,  whose  reliability,  efficiency
and security are main concerns and it  is  very difficult  to
evaluate their capabilities and identify their bugs and de-
fects.  For  example,  if  an  ERS  is  developed  for  carrying
out emergency rescue missions after earthquakes, only an
earthquake actually occurs can we evaluate the capability
of this ERS and capture its defects and errors, so it is un-
wise to capture some typical errors (such as inconsisten-
cies, unreachable processes and deadlocks) until the test-
ing phase and return the system back for redevelopment.
Consequently,  an  executable  framework  in  the  require-
ment analysis phase, which is helpful to simulate the exe-
cution process and capture the defects of a system in ad-
vance,  is  considered  as  a  significantly  important  ap-
proach to evaluate the capability of the to-be system, for
it is beneficial for requirement analysts or modelers to fix
these  defects  reasonably  and  effectively  in  the  require-
ment analysis phase or the modeling design phase so as to
ensure  the  to-be  ERS is  rational  and  scientific.  Take  the
2020 novel corona virus for example, which has affected
many countries and caused huge loss of life and property,
it  is  mainly  because  that  many  countries  fail  to  evaluate
the  capability  of  their  bio-safety  emergency  response
plans ahead of time. If these countries has constructed ex-
ecutable  models  when  making  their  bio-safety  emer-
gency response plans, they would be able to simulate the
execution  behaviors  of  their  emergency  response  activi-
ties  beforehand,  then  repair  defects  captured  during  the
simulation  process  and  finally  improve  the  capability  of
their bio-safety emergency response. If they had done so,
maybe there would not be such a huge loss.

Nowadays,  when developing systems,  especially  large
scale  and complex systems,  the  capability  of  these  to-be
systems has drawn increasingly more stakeholders’ atten-
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tion,  which  will  visually  represent  some  vital  features
(functions  and  performances)  of  the  systems,  and  stake-
holders  can  evaluate  the  real  value  of  the  systems  di-
rectly.  Therefore,  when  developing  a  large  and  complex
system,  stakeholders  tend  to  emphasize  their  capability
requirements  to  modelers  and  developers  of  the  to-be
system. However, the “Capability” concept firstly comes
from some military architecture frameworks,  such as the
Department of Defense Architecture Framework (DoDAF
[1])  and  the  Ministry  of  Defense  Architecture  Frame-
work  (MODAF),  most  of  which  consider  that  capability
is a significantly important element to represent the value
of  a  system.  The  term  “Capability  Requirement ”  fre-
quently  appears  in  various  official  documents  and  re-
search  papers,  during  which  there  is  no  precise  official
definition for it,  our research group refers to it as the re-
quirements of functions and performances of a large and
complex  system [2].  In  addition,  there  are  two  principal
categories  of  capability:  complex  capability  and  simple
capability.  According  to  the  capability  decomposition
characteristic [1], a complex capability usually can be de-
composed  into  other  several  simple  capabilities,  and  we
use the term “atomic capability” to represent the smallest
capability unit so that it cannot be decomposed into other
capabilities again.

At present, as the frequency and the severity of the disa-
sters  around  the  world  increase,  there  is  an  urgent  re-
quirement  for  more  efficient  emergency  rescue  ways  to
respond to small or large scale emergent incidents. Such a
requirement gradually forms a trend that cohesive cooper-
ation  among  all  performers  is  increasingly  required  in
ERS,  especially  in  vital  cases  of  crises  and  disasters.  In
an  ERS,  only  multiple  performers  cooperate  with  each
other  smoothly  and  efficiently,  can  we  give  full  play  to
the maximum effectiveness  of  the cooperative capability
of ERS, which is beneficial to make up for the deficiency
of a single atomic capability and form capability support
as an organic whole in ERS. However,  the evaluation of
the cooperative capability of a whole ERS is not a simple
superposition  or  integration  of  atomic  capabilities,  be-
cause  there  are  complex  relationships  between  atomic
capabilities  existing  in  ERS,  actually,  it  involves  an  or-
ganic  composition  of  multi  atomic  capabilities  under  se-
veral composition rules [3].

Therefore,  in  order  to  evaluate  the  capability  of  an
ERS, the capability of cooperation or interaction between
multiple  performers  should  be  fully  considered.  Con-
sequently, stakeholders tend to be accustomed to empha-
size  their  cooperative  capability  requirements  (CCR)  to
modelers  and  developers  when  developing  an  ERS.
However,  when  studying  the  CCR,  what  elements  (or
concepts)  researchers  should  take  into  consideration?

How to define the associations between elements (or con-
cepts)  and what does the meta-model of CCR look like?
There is  no official  specification for  them. In this  study,
we design a CCR meta-model in the emergency response
domain, in which the definitions of CCR concepts, some
essential  elements  of  CCR  meta-model  and  the  associ-
ations between elements  are included.  Moreover,  our  re-
search  group  wishes  that  the  CCR  meta-model  we  pro-
pose could help to deal with the lack of official specifica-
tions about  CCR at  present  and provide some references
for researchers in this domain.

As  the  issue  of  executable  models  has  already  drawn
much attention  of  researchers  and  much study also  have
been done in this research domain [4−6], even though the
models  modelers  have  designed  can  correctly  represent
the  requirements  of  stakeholders,  the  executable  models
cannot be executed directly. Review paper [7] introduces
that there are two execution ways to make models execut-
able,  interpretive  execution  and  translational  execution.
For  interpretive  execution,  there  should  be  some  com-
pilers  that  can  parse  the  models  based  on  the  modeling
language and execute the models directly, and during the
very  execution  process,  there  will  not  be  such  problems
as inconsistency and semantic gaps; while for translation-
al execution, modelers should translate the modeling lan-
guage  into  a  specific  high-level  programming  language
(such  as  Java  and  C++)  and  execute  on  its  target  plat-
form, during which process the problem of inconsistency
and semantic gaps will arise again. However, the current
situation for this execution issue is that few compilers are
equipped  for  most  modeling  languages  to  parse  models
and  execute  them directly,  and  modelers  usually  tend  to
adopt to translate the modeling language into a high-level
programming language to make their models executable.

Generally  speaking,  after  stakeholders  propose  their
cooperative  capability  requirements,  modelers  will  ab-
stract  the  requirements  and  design  models.  Since  stake-
holders’ requirements are usually textual descriptions ex-
pressed by human-readable nature languages, there will be
several  semantic  or  inconsistency  gaps  between  the  mo-
deling  language  and  the  natural  language  [4].  During
various  modeling  languages  in  the  modeling  domain  at
present,  the  unified  modeling  language  (UML)  [8],  re-
leased by the Object Management Group (OMG), is con-
sidered  as  a  popular  and  practical  modeling  standard  in
actual  industry  modeling  practice  [9],  and  especially  is
widely used to describe the architecture of some large and
complex systems in the specific domain [10].  In spite of
this,  UML can only depict the most static properties and
fail to depict the dynamic behavior of the system, which
makes UML models unable to execute directly. To make
up  for  this  deficiency  of  the  UML,  the  OMG  releases
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fUML [11]  and Alf  [12]  to  provide  precise  definition  of
behavior semantics for UML models, which enable UML
to depict dynamic behaviors of systems, therefore, applic-
ation  models  modeled  with  fUML or  Alf  are  executable
theoretically.  However,  the  behaviors  semantics  fUML
can provide is limited to a subset of UML (such as com-
posite  structures,  activities  and  classes),  while  Alf  does
not  need  to  conform  to  the  scope  limitations;  moreover,
compared  to  the  graphical  notation  features  of  fUML
modeling  elements,  the  textual  notation  features  of  Alf
modeling elements enable Alf models more suitable to be
interpreted  and  executed  on  a  target  platform,  which  is
significantly  helpful  to  eliminate  (or  alleviate)  the  se-
mantic and consistency gaps between models transforma-
tion  to  a  large  extent.  In  this  paper,  we  choose  Alf  to
model  the  CCR  of  ERS,  and  translate  Alf  models  into
communicating  sequential  processes  (CSP)  models  to
make them executable.

The reasons we choose CSP as the target language are
that:  firstly,  CSP is  good at  describing  the  execution  se-
quence and internal event triggering mechanism of a sys-
tem in detail,  it  can provide sufficiently powerful syntax
and semantics to simulate the execution processes of co-
operative activities in an ERS [13,14]. Secondly, as a rig-
orous  mathematical  method,  CSP  utilizes  algebraic  laws
for processes specification and formal logic reasoning to
analyze  the  behaviors  of  a  system  [15,16].  During  the
models  transformation  from  translating  Alf  into  CSP,
based  on  CSP powerful  algebra  theoretical  laws,  we  are
enabled  to  examine  whether  there  are  inconsistency  and
semantic gaps between models transformation.

In this paper, we propose an executable framework for
modeling and validating CCR in ERS, in which a formal
description  of  CCR  in  ERS,  model  transformation  for
simulating the execution process of cooperative activities
in  ERS  and  models  validation  are  included.  The  frame-
work  is  helpful  to  evaluate  the  cooperative  capability  of
an ERS in advance, since it is able to simulate the execu-
tion process  of  various cooperative activities  (behaviors)
in ERS automatically at the requirement analysis phase.

In  summary,  the  contributions  of  this  study  are
provided as follows:

(i)  Propose  a  CCR  meta-model  in  the  emergency  re-
sponse  domain,  in  which we try  our  best  to  define  CCR
concepts,  internal  associations  between  elements  in  the
model  and  meta-rules  for  constructing  the  cooperative
capability.

(ii) Propose an executable framework of CCR in ERS,
which  is  significantly  helpful  to  simulate  the  execution
process  of  cooperative  activities  in  ERS  and  ensure  the
consistency between the executable models and the stake-
holders’ requirements.

(iii)  Utilize  the  Alf  language,  for  its  extensive  and
comprehensive  executable  semantics,  as  a  semi-formal
modeling language to design CCR models in ERS.

(iv)  Implement  the  detailed  transformation  of  trans-
forming Alf models into CSP models by using the Epsi-
lon language as a middleware. As various cooperative be-
haviors  (sequential,  parallel,  conditional  and  iterative)
exist in ERS at present, CSP does well in capturing these
behaviors  for  its  high-level  descriptions  of  synchroniza-
tions,  communications,  and interactions  between process
nodes.

(v) Provide consistency validation between models and
stakeholders’ requirements  in  order  to  examine  that  if
these models satisfy their requirements and if  some con-
straint rules (logical rules and business rules) are broken
during the modeling process. And finally generate a vali-
dation report, which records the errors and warnings cap-
tured  during  the  validation  process,  and  feed  it  back  to
modelers for optimizing the executable framework.

The rest  of  this  study is  organized as  follows:  in  Sec-
tion  2  we  give  a  brief  background  introduction  of  the
tools we select to conduct our study; in Section 3 we in-
troduce  the  meta-model  of  CCR  we  design,  which
provides  detailed  definition  of  CCR  of  meta-concepts,
meta-association and meta-rule involved; in Section 4 we
give an overview of the executable framework of CCR in
ERS, which will assist us to illustrate the working mech-
anism  of  the  framework;  in  Section  5,  we  describe  the
process  of  model  transformation;  in  Section 6,  we intro-
duce  the  communication  mechanism  between  process
nodes briefly and finally,  a  case study is  led to illustrate
the feasibility and effectiveness of the method in Section 7. 

2. Related work
In this section, we introduce the tools (the modeling lan-
guage,  the  formal  method  and  the  integrated  develop-
ment  environment  platform)  we  select  to  facilitate  our
study,  during  which  process  we  will  illustrate  what  ad-
vantage  the  tools  have  compared  to  the  current  popular
tools in their application domain. 

2.1    Alf

Although  both  fUML  [11]  and  Alf  are  released  by  the
OMG to provide precise definition of behavior semantics
for  UML models,  each  of  which  has  their  own  features.
Compared to their advantages and disadvantages, our re-
search  group  considers  that  in  this  research  paper  Alf  is
more suitable than fUML.

As a subset of UML, fUML is able to provide precise
definition of behavior semantics by adding some abstract
syntax  elements  (constraint  structure,  behaviors,  activi-
ties  and  actions)  to  UML  models.  Consequently,  these
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features enable fUML to describe the dynamic behaviors
of a system, as a result, application models modeled with
fUML  are  executable  theoretically,  as  long  as  there  is  a
complier  which  could  parse  fUML  models  directly,
which  does  not  exist  actually  at  present.  Therefore,
modelers  and  researchers  tend  to  translate  the  fUML
models  to  a  format  file  expressed  by  a  high-level  pro-
gramming language so as to make the file run on a speci-
fic  target  platform  (e.g.,  translate  the  fUML  models  to
Java code and make the models run on a Java virtual ma-
chine)[7].  Although  the  fUML  models  can  be  executed,
another  problem  may  arise  that  there  may  be  semantic
and inconsistency gaps between models transformation.

Similar  to fUML, Alf  [12] is  released by the OMG to
provide precise execution semantics to UML models, but
fUML  is  limited  to  a  subset  of  UML  to  provide  execu-
tion  semantics  to  composite  structures,  activities  and
classes, while Alf is utilized primarily for providing exe-
cution  semantics  for  UML models  and  does  not  need  to
conform  to  the  scope  limitation.  Alf  is  a  textual  surface
notation for UML model elements, which implements its
execution  semantic  by  mapping  Alf  concrete  syntax  to
UML abstract syntax. Additionally, not only can Alf spe-
cify  the  execution  behaviors,  its  extended  notations  also
can  be  used  for  representing  structural  modeling  ele-
ments  [7].  That  is  to  say,  modelers  and  researchers  are
able  to  model  a  system  and  describe  its  behaviors  en-
tirely  using  a  unified  modeling  language  Alf,  which  en-
ables Alf models to be easily interpreted and executed on
a  target  platform  and  is  helpful  to  eliminate  or  alleviate
the semantic and consistency gaps between models trans-
formation to a large extent.

In this study, Alf is utilized to model the activities (be-
haviors) of an ERS, for the features of its textual notation
make Alf models more easily interpreted and executed on
a target platform than fUML. 

2.2    CSP

For  popular  formal  methods  of  architecture  frameworks,
most researchers tend to adopt Petri net (PN), finite state
machine (FSM) and CSP [13].

Among these methods, an FSM model can describe the
state  transitions and business logic of  a  system in detail,
but the scope it can describe is very limited and a key dis-
advantage is that there is a lack of descriptions for some
relevant  dynamic  semantics  of  activities  and  behaviors.
That is to say, FSM just can describe some static proper-
ties  of  a  system, not  including the dynamic behaviors  of
the system.

Better than FSM, a PN model can capture and describe
the dynamic state of a system, but PN is only suitable for
modeling small and medium scale systems. When facing

large-scale complex systems, PN fails to control the large
number  of  emerging  behaviors  of  its  models  in  state
transition  and  event  triggering,  which  may  easily  cause
the state spaces explosion problems in real application.

CSP  [14],  as  a  branch  of  process  algebra,  is  different
from  classic  FSM  and  PN  methods  and  it  can  describe
systems without  considering  the  scale  of  systems.  When
describing  a  system,  the  CSP  models  will  generate
Markov  transition  processes  whose  unique  equivalent
combination technology can effectively compress the size
of  the  first-order  state  space  of  the  continuous  time
Markov  chain,  whose  technology  can  improve  the  state
space explosion problem to a large extent.

Moreover,  as  a  rigorous  mathematical  method,  CSP
utilizes  algebraic  rules  for  processes  specification  and
formal  logic  reasoning  to  analyze  the  behavior  of  a  sys-
tem [15,16],  which is helpful to examine whether incon-
sistency  and  semantic  gaps  arise  between  models  trans-
formation. In addition, not only can CSP capture the dy-
namic state of a system, but also can describe concurrent
systems,  which  is  utilized  to  reason  about  systems  bio-
logy,  communication  protocols,  and  business  logic  [17].
Our  research  subject,  the  cooperative  capability  in  ERS,
includes many concurrent behaviors (such as parallel exe-
cutions)  because  there  are  interactions  between  multiple
subsystems. Furthermore, CSP provide a family of some
relevant classic stochastic process algebras, such as timed
process and performance (TIPP) evaluation and perform-
ance evaluation process algebra (PEPA) [18], which have
perfect formal semantic definition languages for research-
ers to select to satisfy their research needs.

In  this  study,  we  aim  at  forming  several  CSP  formal
executable models, based on its powerful algebra theoret-
ical  laws [19],  which are sufficiently enough to simulate
the execution process of an ERS. To obtain CSP execut-
able  models,  we  will  transform  Alf  models  into  corres-
ponding  CSP  models  by  using  the  model  operation  lan-
guage Epsilon. 

2.3    Epsilon

Epsilon  is  a  novel  open  source  programming  language
which  is  designed  mainly  for  model  management  tasks
such as code generation, model-to-model transformation,
models  validation,  comparison,  merging  and  refactoring
[20].  Epsilon  provides  a  set  of  eclipse-based  develop-
ment  tools  and  an  interpreter  which  can  execute  pro-
grams  written  in  this  language,  as  well  as  several  ANT
workflows  of  different  tasks  (e.g.,  a  validation  followed
by a transformation after code generation).

Epsilon  provides  a  family  of  languages  to  fulfill  the
specific  model  management  task  as  follows:  epsilon  ob-
ject  language  (EOL),  epsilon  transformation  language
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(ETL), epsilon validation language (EVL), epsilon gene-
ration  language  (EGL),  epsilon  comparison  language
(ECL),  epsilon  model  generation  language  (EMG),  epsi-
lon  merging  language  (EML),  epsilon  pattern  language
(EPL) and epsilon wizard language (EWL). From the fea-
tures  of  these  specific-task  languages,  we  may  draw  a
conclusion  that  the  significant  distinguish  between  epsi-
lon and a high-level programming language is that the ep-
silon language manages and operates a model directly as
long  as  the  model  has  already  been  registered  into  its
model library. Generally speaking, epsilon is a model-ori-
ented language; the features of epsilon may help to avoid
(at  least  alleviate)  the  semantic  and  inconsistency  gaps
between models transformation and execute behaviors of
the model on the basis that the model has been correctly
designed.  Now  we  introduce  two  specific-task  epsilon
language briefly, ETL and EVL, which are relevant to our
study [21].

ETL is a hybrid, rule-based model-to-model transform-
ation  language  which  provides  all  the  standard  features
and  enhanced  flexibility  of  a  transformation  language.
Consequently, it can transform an arbitrary number of in-
put models to an arbitrary number of output models, and
modify  and  update  both  source  and  target  models  once
the models are changed. In this study, we will adopt ETL
to transform Alf models into CSP models.

EVL is  a  validation language that  supports  generating
customizable  validation  report,  which  records  error  and
warning  messages  during  model  transformation,  and
feeding the validation report back to modelers for system
optimization. Moreover, EVL provides a self-fixing mecha-
nism  which  modelers  can  make  full  use  of  to  repair  in-
consistencies  and  semantic  gaps  automatically.  In  this
study,  EVL is  utilized to validate the CSP models  trans-
formed  from  Alf  models  and  generate  validation  report,
as well as specify quick fixes for errors and warnings. 

3. The CCR meta-model
 

3.1    Definition of CCR meta-model

Since the “Capability” concept roots from the Data Meta-
Model Group (DM2 Group) of DoDAF [1], according to
the  previous  results  [2,3]  of  our  research  group,  in  the
specific emergency response domain, according to our re-
search need, we propose a CCR meta-model as a theore-
tical basis for cooperative capability modeling in this re-
search  field,  by  extracting  some  related  meta-concepts
and associations from the DM2 Group. Fig.  1 shows the
CCR  meta-model  we  design,  and  we  also  construct  the
internal  relationships,  as  well  as  some  basic  constraint
rules of the cooperative capability, among meta-concepts
according to their attributes and properties.
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Fig. 1    CCR meta-model in emergency response domain
 

Definition 1 The CCR meta-model is  a formal frame-
work  to  detail  the  emergency  response  domain  concepts
at  an  architectural  level,  which  is  composed  of  three
parts: meta-concept, meta-association and meta-rule.

Meta-concept  is  an  extensible  finite  set  of  fundamen-
tal  concepts  which represent  some essential  elements  re-
lated  to  CCR  extracted  from  the  DM2  Group,  such  as
activity, capability, resource, performer, and rule, and the
definitions of these meta-concepts conform to those in the
DM2  Group,  readers  can  refer  to  [8]  for  detailed  intro-
duction.

Meta-association  is  an  extensible  finite  set  of  funda-
mental  associations  among  all  the  meta-concepts.  The
meta-associations  of  CCR  meta-model  can  be  summa-
rized as follows:

(i)  CCR  is  a  requirement  description  that  requires  se-
veral  capabilities  to  composite  a  cooperative  capability
under the constraints of several rules;

(ii)  Capability  has  two  principle  categories:  complex
capability and simple capability;

(iii)  A  complex  capability  is  composited  by  several
simple  capabilities  (according  to  the  capability  decom-
position  characteristic)  under  several  composition  rules,
and a complex capability can be utilized as a simple cap-
ability to composite other complex capabilities;

(iv)  The  cooperative  capability  is  a  kind  of  complex
capability, which should be composited by several simple
capabilities under several composition rules;

(v)  The  evaluation  of  a  capability  is  reflected  by  the
execution effect of several activities;

(vi) Activity should be performed by performers;
(vii) Activity consumes and changes the status of some

resources;
(viii) Desired effect is part of the capability and guides

the activity;
(ix) Resource supports capability, and the function and
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performance  of  resources  will  affect  the  evaluation  of  a
capability;

Meta-rule  is  an  extensible  finite  set  of  fundamental
rules, including logic rules and business rules, which rep-
resents  the  constraints  that  need  to  be  held  by  all  con-
cepts  and  associations,  and  which  provides  a  set  of  do-
main general rules for cooperative capability modeling in
the emergency response domain. The meta-rules of CCR
meta-model can be summarized as follows:

(i) The object CCR requires must be a capability, not a
resource, an activity or any other;

(ii) Every capability must be an execution result of one
or more activities;

(iii)  Every  activity  must  be  performed  by  at  least  one
performer;

(iv) A performer can perform one or more activities;
(v) Every rule can constraint one or more capabilities.
Moreover, researchers and modelers are allowed to ex-

tend  some  essential  associations  and  rules  depending  on
their study needs. 

3.2    Application for modeling in emergency
response domain

Based  on  the  formal  definition  of  CCR  meta-model,  we
are able to model the cooperative capability in the emer-
gency response domain. We will illustrate the application
of  the  CCR meta-model  in  the  modeling  field  through  a
simple example of  emergency rescue response for  a  ma-
rine accident [22]:

Basic  scenario:  suppose  a  marine  accident  occurs  at
1 000 km from a coastal city, the rescue coordination cen-
ter (RCC) should detect the warning signal in 5 min, then
notify the coast guard force (CGF) to carry out the search
and rescue task and the medical assistance center (MAC)
to prepare to rescue the people in the accident.

During  this  emergency  rescue  response  process,  the
RCC,  CGF  and  MAC  should  perform  cooperatively,  to
model  the  cooperative  capability  in  this  ERS,  there  may
be  some  basic  ERS  domain  models  of  concepts,  associ-
ations and rules, which are shown in Table 1. 

 
 

Table 1    An application of CCR meta-model for modeling in ERS domain

Element Meta-model In ERS domain

Concept

CCR Emergency rescue capability in marine accident (ERCMA)

Capability
Search and rescue capability (SaRC)

Medical care capability (MCC)

Activity
Air-based rescue (ABR)

Water-based rescue (WBR)
Rescue victims in hospital (RVH)

Performer
CGF
RCC
MAC

Resource

Search and rescue cutter (SRC)
Search and rescue plane (SRP)

Medical apparatus and instruments (MAI)
Early-warning radar (EWR)

System
Communication tools (CT)

Emergency rescue platform (ERP)

DesiredEffect
Get to the marine accident site in 20 mins (GMAS2M)

EWR detects warning signals in 5 mins (DWS5M)

Association

Activity should be performed by performers
CGF performs WBR and ABR

MAC performs RVH

Activity consumes and changes the status of some resources WBR needs 20 SRCs and ABR needs 3 SRPs

Resource supports capability, and the function and performance of
resources will affect the evaluation of a capability

SRC supports SaRC, but not supports ABR
SRP supports ABR

Cooperative capability is a kind of complex capability and
should be composited by several simple capabilities

ERCMA needs SaRC and MCC to work cooperatively

Rule

The object CCR requires must be a capability,
not a resource, an activity or any other

ERCMA needs SaRC, not SRP

A performer can perform one or more activities
CFG can perform WBR by using SRC,

and also can perform ABR by using SRP

Every rule can constraint one or more capabilities
WBR and ABR should work simultaneously

RVH should work after WBR or ABR
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4. Executable framework overview
In  this  study,  we  propose  an  executable  framework  that
transforms Alf models into CSP models, which is signifi-
cantly  helpful  for  simulating  the  execution  process  of
ERS automatically and eliminating the semantic [23] and
inconsistency  [24]  gaps  between  models  transformation.
The  framework  also  generates  a  consistency  validation
report which will capture the error and warning messages
about  inconsistency  and  semantic  gaps  during  the  trans-
forming  process.  Please  refer  to Fig.  2 which  is  leve-
raged to illustrate the working process of overall execut-
able framework visually.
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Fig. 2    Executable framework overview
 

Initially,  modelers  analyze  the  stakeholders’ CCRs  in
the  emergency  response  domain  and  then  abstract  them
into Alf activity models. To capture various kinds of beha-
viors  in  an  ERS,  the  models  are  represented  in  the  form
of the Alf activity model which is able to describe the act-
ive objects (ActivityNode) and behaviors (Action) during
its execution process. As we illustrate in the previous sec-
tion,  the  evaluation  of  the  cooperative  capability  in  an
ERS is reflected by the activities executed by performers
and  embodied  in  the  processes  of  the  executing  behavi-
ors, as a result,  we may evaluate the cooperative capabi-
lity of an ERS by analyzing the execution effect of activi-
ties  (or  behaviors)  of  an ERS.  Consequently,  in  Alf  mo-
dels, we abstract a CCR in ERS into an “Activity” meta-
model,  with  the  functionality  and  the  performance  re-
quirements into its “Action” and “ActivityParameterNode”
elements  respectively.  The  “ActivityNode ”  and  “Activ-
ityEdge” are essential elements to completely describe an
execution  of  cooperative  behaviors  in  an  ERS,  the
“ActivityNode” element  contains  all  kinds  of  active  ob-
jects  in  an  ERS  system,  while  the  “ActivityEdge ”  ele-

ment  will  provide  control  connection  or  data  passing
between active objects.

We  will  get  a  corresponding  textual  Alf  “Activity”
meta-model by mapping Alf concrete syntax with textual
Alf  code  to  CCR  meta-model  in  the  form  of  UML  ab-
stract syntax [12]. Models in the style of Alf textual code
is convenient to, as Alf language is designed by use of the
Java-like syntax,  be interpreted and executed on a  target
platform.  Please  note  that  Alf  is  a  model  aware  action
language,  not  a  programming  language,  since  modeling
with a programming language will  hide some significant
behavior  semantics  and  result  in  inconsistency  and  se-
mantic  gaps  which  are  not  conductive  to  satisfy  stake-
holders’ requirements and simply maintain a system.

Secondly,  we  will  transform  the  textual  Alf  activity
meta-model  into  a  CSP  process  meta-model,  by  using
ETL [20], which are beneficial for reasoning business lo-
gic and consistency validation based on several mapping
rules designed depending on the features of Alf and CSP.
As  modelers  create  instances  of  CSP  process  models  to
simulate  the  execution  process  of  an  ERS,  validation
rules are designed, by using EVL, to support consistency
validation  between  these  instances  and  CSP meta-model
according  to  their  research  and  analyzing  needs.  Then  a
validation  report  will  be  generated  to  capture  the  error
and  warning  messages  of  inconsistency  and  semantic
gaps  which  arise  during  the  validation  process.  In  addi-
tion,  EVL is  utilized to  provide  a  self-fixing mechanism
to fix the inconsistency and semantic gaps automatically.
And  finally  the  validation  report  will  be  fed  back  to
modelers,  which  is  significantly  helpful  to  optimize  and
maintain the executable framework for improvement. 

5. Model transformarion of the framework
The primary functionality of model transformation of the
framework is to transform the Alf activity meta-model in-
to a corresponding CSP process meta-model, after which
rigorous  algebra  rules  [19]  are  able  to  be  utilized  for
formal  logical  reasoning  about  and  consistency  valida-
tion  between  system  models,  we  will  accomplish  these
tasks in three stages:

(i) Complete the transformation from Alf activity meta-
model  into  CSP  process  meta-model  based  on  several
mapping rules using ETL;

(ii)  Configure  the  internal  communication  mechanism
between CSP process nodes to smooth the working mecha-
nism of a CSP system;

(iii) Validate the CSP models resulted from step (i) us-
ing EVL and generate  a  validation report  to  be fed back
to the modeler for system optimization.

We will  illustrate  each  of  these  stages  in  detail  in  the
following sections. 

CHAI Lei et al.: An executable framework for modeling and validating cooperative capability requirements in ... 895



5.1    Mapping rules of model transformation

To  accomplish  the  task,  transforming  the  Alf  activity
meta-model  into  the  CSP  process  meta-model,  mapping
rules should be declared first  for us to comply with dur-
ing the transformation process.

Generally speaking, activities are classes and may also
have  attributes  and  operations  in  UML [8].  However,  in
Alf,  the specification does not provide a textual  notation
for  features  and  specializations  on  activities.  Con-
sequently,  in  our  study,  the “Activity” element  in Alf  is
used to represent a specific behavior in ERS, just a single
behavior, which is equivalent to the element “Action” in
UML models, and to be transformed into a process in the
CSP model. Just like an activity is accomplished through
executing  several  actions  by  active  objects  in  UML mo-
dels,  in  the  CSP  model,  several  processes  can  be  com-
bined  into  a  single  process  to  represent  the  whole  beha-
vior of an ERS. For modeling active objects in real world,
which are described in UML as “ActivityNode”, we mo-
del them by using the “Active Class” element in Alf. When
come to  the  interactions  between  objects  in  an  ERS,  we
summarize  them  into  two  kinds  of  system  behaviors
(sending  signals  and  accepting  signals),  and  any  one  of
specific behaviors in ERS can be characterized by defin-
ing the format of the signal and sending it out to a speci-
fic accepting object. For example, by defining the format
of  the  signal  “submitRescueOrder”  shown in Fig.  3,  the
RCC is able to introduce the information about a marine
accident to the CGF and order the CGF to rescue the vic-
tims of  the accident.  Consequently,  the coordinate activ-
ity  is  completed  by  sending  the  signal,  which  also  re-
flects that the RCC possesses the coordinate capability.
  

Fig. 3    An example of the format of a signal
 

In Fig. 4, we exhibit the mapping rules from Alf meta-
model to CSP meta-model, in order to visualize the map-
ping  relationships  between  the  two  different  domains
models, we also list the corresponding UML models out.
From the mapping rules shown in the table, ANS and ANR

represent an instance of the active object who is in charge
of  sending  signals  and  accepting  signals  respectively
[16]. It is fundamental for an executable system that each

of the objects of a CSP system should be uniquely identi-
fied, otherwise, it will make analysts confused when they
are analyzing the system or a deadlock phenomenon will
arise  during  the  system  execution.  The  interactions
between  objects  will  be  carried  out  by  sending  and  ac-
cepting  signals,  through  defining  the  format  of  signals,
which will enable active objects to execute a specific do-
main behavior. We now illustrate the mapping rules con-
cretely as follows:

(i)  Mapping  an  “activity”  element  to  a  process  in  the
CSP model

The “activity” element is a fundamental mechanism for
behavior modeling in Alf models [12].  Modelers usually
use the “activity” element to model a single behavior in
ERS. During the model transformation process, we trans-
form an  “activity”  in  Alf  into  a  process  “Act”  in  CSP.
Both “activity” and “Act1” represent a single behavior in
their  application  domain,  and  can  be  merged  or  com-
bined into a composite activity model or a composite pro-
cess  respectively  to  represent  multiple  behaviors  of  a
whole system.

(ii)  Mapping  an  active  class  to  a  process  node  in  the
CSP model

An active class is an instantiation of an activity object
in the UML model, it has its own attributes, operations as
well as nested classifiers [8], the most significant feature
of  the  active class  in  Alf  is  that  only an active class  has
receptions and, just because of this, we transform an act-
ive class into a process node which is  able to satisfy the
requirement of sending and accepting signals in the CSP
model.

(iii)  Mapping  the  interactions  between  activity  nodes
“sending signals”  and “receiving signals”  to  parameter-
ized events “send” and “receive” respectively in the CSP
model

Signals  with  a  specific  format,  with  arguments
matched with attributes in the parameter list, will be sent
and  received  between  activity  nodes.  In  a  CSP  system,
the sending (or accepting) process will trigger a send (or
accept) event, which will activate a process node to exe-
cute a process.

(iv)  Transformation of  the  sequential  execution in  Alf
models

Generally  speaking,  in  Alf  syntax,  behaviors  included
in a block (such as a do block statement) are executed se-
quentially in order unless such a notation “@parallel” is
labeled ahead of the block, which is coincident with that
in  CSP  process  models,  for  example,  the  format  “P;  Q ”
represents that process Q will continually to be executed
only after the process P is terminated successfully.

(v)  Transformation  of  the  parallel  execution  in  Alf
models 
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UML model Alf element CSP representation

activity Act(param1,param2)

{

…

}

Act: == 

Let process body

within Act

active class ANS (ANR) {  

…

} 
ANS|ANR 

ANS. send (signal, ANR)； 

ANR. accept (signal)； 

Act1:=send!ANS!ANR!signal

→···

Act2:=accept! ANR!signal →···

do{

act1();

act2();

} while (true)

Act1;Act2

do{

//@parallel

act1();

act2();

}while (true)

Act1ǁAct2 

<<Action>>

param1, param2, ···

Act()

<<ActivityNode>>

ANS/ANR

c c<<ActivityNode>>

ANS

<<ActivityNode>>

ANR
Singnal

<<Action>><<Action>>

<<Action>><<Action>>

param

act2()
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act1() 

act2()act1() 

param param

//@assured @determinate

if (condition==a){

act1();

}else if (condition ==b){

act2();

}else{……}

( (a→Act1) Π (b→Act2) )

∨

( (a→Act1)∣(b→Act2) )

for (condition== true){

      

        act1 ();

}

µX:{X in condition}·Act1

param

<<Action>>

act1()
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<<Action>>

act2()Condition?

True

False

Condition?

param

<<Action>>

act1()

False

True

Fig. 4    Mapping rules from Alf to CSP model
 

In  Alf  syntax,  a  notation  “@parallel ”  is  applied  in  a
block statement to represent that several behaviors in the
block are executed concurrently, usually on the basis that
activities in the block are data independent (e.g., Fig. 5 (a)),

if there is a data dependence (or more) between the beha-
viors, they will be executed sequentially (e.g., Fig. 5 (b)).
In  the  CSP model,  the  parallel  execution  in  the  Alf  mo-
del is mapped to a symbol “ǁ” which is used to represent
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two  processes  are  executed  in  parallel,  please  note  that
parallel  processes  are  executed  cooperatively  on  some
events,  but  their  behaviors  are  not  able  to  be  merged  or
combined to act as one process.
  

(a) Data independent (b) Data dependent

Fig. 5    Examples of parallel execution
 

(vi) Transformation of the conditional execution in Alf
models

An  if  statement  or  a  switch  statement  (which  is  not
showed in Table 1) may be used to execute a set of con-
current  behaviors  based  on  the  evaluation  of  the  condi-
tions,  a  significant  distinguish  between  the  two  kinds  of
conditional execution is that the evaluation of the condi-
tional  expression  in  the  if  statement  only  can  be  true  or
false, while in the switch statement it can be other values
conforming to the type of the condition expression. If an
evaluation conforms to the conditional expression, an as-
sociate block will be executed, but if there are more than
one evaluation conforming to the conditional expression,
one of the associate blocks will be chosen non-determin-
istically  to  execute.  Notations  “@assured ”  and  “@de-
terminate” are used to indicate that there are at least one
or  at  most  one  evaluation  conforming  to  the  conditional
expression respectively. Moreover, both of the two nota-
tions  can  also  be  used  simultaneously  to  represent  that
there  is  exactly  one  evaluation  conforming to  the  condi-
tional expression. Usually in the CSP model, under a con-
ditional  execution  context,  the  operate  symbol  “∣”  is
used, corresponding to the situation “@assured @determ-
inate ”  in  the  Alf  model,  to  represent  that  the  process
“Act1” will be executed if the event is “a”, otherwise the
“Act2” will be executed if the event is “b”. While corres-
ponding  to  the  situation  “@assured”  in  Alf,  the  operate
symbol “Π” is used to represent that one process will be
chosen  to  execute,  but  non-deterministically,  from  mul-
tiple  associate  processes  whose  evaluation  conforms  to
conditional expression.

(vii)  Transformation  of  the  iterative  execution  in  Alf
models

In Alf syntax, a “for” statement or a “do…while” state-
ment (which is not showed in Fig. 4) can be used to rep-
resent iterative execution of behaviors. On each iteration,
the  loop  variable  will  continually  increment  or  decre-
ment its value until it no longer satisfies the conditions to
go on executing. In the CSP model, we use such a format
as “μX: A•F(X) ” to represent that a process is iteratively
executed,  and  the  A  in  this  format  is  a  collection  of  the

evaluation of loop variable X under the loop conditions. 

5.2    Implementation of transformation

The  family  of  epsilon  languages  and  tools,  during  the
transformation  process,  is  leveraged  to  accomplish  the
task  of  model-to-model  transformation  and  consistency
validation within the eclipse modeling framework (EMF)
[25]. We will accomplish the task in two steps and Fig. 6
will assist us to illustrate the steps [21]: firstly, since the
Alf activity meta-model and CSP process meta-model are
not existing in the meta-model library of EMF, we should
create  the  activity  meta-model  (in  Alf)  and  the  process
meta-mode (in CSP) in the beginning, and the EMF will
parse  both  meta-models  into  XMI  format  [26]  in  order
that  both  meta-models  can  be  easily  identified  by  arbi-
trary MDE framework for transformation because XMI is
a  general  purpose  format  in  the  software  modeling  do-
main.  Secondly,  on  the  basis  of  source/target  meta-mo-
dels,  transforming  the  activity  meta-model  into  the  pro-
cess  meta-model  with  ETL  is  going  to  be  carried  out,
which should conform to the fundamental mapping rules
configured in Fig. 4.
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(i) Generating meta-models
To  create  Alf  activity  meta-model  and  CSP  process

meta-model with EMF, we adopt the method that uses an-
notated  Java  interfaces  with  model  properties,  to  be  as
specific as possible, by placing the tag “@model” ahead
of some significant Java interfaces (and also an “@param”
tag ahead of some elements of the model, e.g.,  attributes
and  operations),  the  EMF  generator  can  identify  the  tag
automatically  and  generate  corresponding  models  con-
forming to the interfaces.  Consequently,  we should code
Java  interfaces  with  the  “@model ”  tag  ahead  of  them
first, which can wholly represent the features of Alf activ-
ity meta-model and CSP process meta-model. Fig. 7 will
assist us to demonstrate the design process of both corres-
ponding  interfaces  of  Alf  activity  meta-model  and  CSP
process meta-model. 
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Meta-models Annotated Java interfaces

/** @model*/
public interface Activity extends EObject  {

/** @model*/

String get Activity Name ();
/** @param*/

void setActivityName (String value);

/** @model*/ 

Signal getSignal ();
/** @param*/

void setSignal (Signal value); 

/** @param*/
void setActivityNode (ActivityNode node);

/** @param*/
void setActivityEde (ActivityEdge edge); 

/** @model containment="true"*/

EList<ActivityNode> getActivityNodes ();
/** @model containment="true" */

EList<Edge> getEdges ();
/** @model containment="true"*/

EList<Signal> getSignals();
} // Activity

/** @model*/
public interface Process extends EObject {

/** @model*/ 

String getProcessExpression ();
/** @param*/ 

void setProcessExpression (Expression value); 

/** @model*/

String getProcessId ();
/** @param*/ 

void setProcessId (String value); 

/** @model*/

ProcessOperation getProcessOperation (); 
/** @param*/

void setProcessOperation (ProcessOperation 

operation);
/** @model*/ 

Event getEvent();
/** @param*/

void setEvent (Event value);

/** @model*/ 

EList<ProcessNode> getProcessNodes();
/** @model*/ 

EList<Event> getEvents();

}  // Process 

Activity

Action

ActivityNode

ActivityParameter

ActivityEdge

Alf activity

meta-model

CSP process

meta-model  

ParameterNode ProcessNode

Event Process

Process expressiom ProcessID

Fig. 7    Annotated Java interface of meta-models
 

An  Alf  activity  meta-model  should  include  an  “Acti-
vityNode ”  and  an  “ActivityEdge ”  whose  functions  and
features  have  been  already  introduced  in  our  previous
presentation.  As  a  result,  in  the  interface  we  design  for
the  Alf  activity  meta-model,  some functions  to  get  attri-
butes  of  the  two  elements  (the  “ActivityNode ”  and  the
“ActivityEdge”) should be declared, for example, setters
and  getters  operation.  Moreover,  interfaces  of  the  two
elements,  as  well  as  some  specific  domain  category
classes  should  also  be  created  too.  For  the  limitation  of
literal  space,  we  will  not  exhibit  detailed  information  of
the interfaces and classes we design.

Similar to Alf activity meta-model, a CSP process meta-
model  should  include  some information  about  “process-
Node ”  and  “Event ”,  as  well  as  a  process  expression,
which will make a process execute with a certain manner

under  some specific  conditions.  In  the  context  of  a  CSP
system, once an “Event” is triggered through sending (or
accepting)  some  signals  or  passing  some  data  (or  mes-
sages),  the  event  will  activate  a  “processNode ”  to  exe-
cute  a  behavior  of  a  process.  Consequently,  we  design
some annotated Java interfaces  for  “Process”,  “Process-
Node” and “Event”, as well as some classes about the de-
tailed  domain  category.  We  also  declared  some  process
operation functions to facilitate the execution and logical
reasoning of processes.

The  whole  hierarchical  structures  of  activity  and  pro-
cess meta-models generated in the EMF model library are
shown in Fig. 8, in which the left part shows detailed in-
formation of the interfaces and classes we design for ge-
nerating activity and process meta-models, while the right
two  parts  show  the  hierarchical  structures  of  the  meta-
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models generated by the EMF generator. To mention that
a  file  with  the  suffix  “.genmodle”  represents  that  it  is  a
model  result  generated  by  the  EMF  generator  through
parsing the  annotated  Java  interfaces  and classes  model-
ers have designed. Then we are enabled to run the meta-
models  on  the  eclipse  platform  as  an  application,  and

Fig.  9 shows that  the  meta-models  we design  have  been
imported  into  the  EMF  models  library  and  applied  as
plugins  of  eclipse,  modelers  are  facilitated  to  create  in-
stances  of  the  meta-models  and  override  the  attributes
and  functions  of  the  models  to  satisfy  their  research  re-
quirements.

 
 

Fig. 8    Hierarchical structure of meta-models
 

 
 

Fig. 9    Meta-models applied in EMF model library
 

(ii) Transformation from Alf to CSP model
As activity and process meta-models are generated in-

to the EMF models library, according to our research pro-
gram, model transformation from activity meta-model in-
to process meta-model is carried out by using ETL. Before
the transformation task, a previous work should be com-
pleted, based on the mapping rules shown in Fig.  4,  that
is configuring the mapping rules (with the keyword “rule”)
and operations (with the keyword “operation”) in ETL.

In  order  to  make  our  explanation  clear  and  coherent,
readers need to be aware of the following issues:

i)  In  ETL,  Alf  elements  and CSP elements  can be ac-
cessed by the prefix “ACT” and “CSP”, respectively, fol-
lowed by the operator “!”.

ii) According to the mapping rules proposed in Fig. 4,
an activity meta-model is transformed into a process meta-
model, with an ActivityNode transformed into a process-
Node,  and  an  ActivityEdge  will  be  transformed  into  an
event in the CSP model.
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iii)  In  order  to  take  the  executions  such  as  sequential
execution,  parallel  execution,  conditional  execution  and
iterative execution into account, we consider them as a kind
of activity node, that is the executable node, which can be
inherited by a derived class and overriding the elements.

Since there are so many elements, rules and operations
we  propose,  considering  the  literal  space  limitation,  we
will  take  a  representative  element  transformation,  from

source element “Activity” into target element “process”,
for  example.  We  will  illustrate  the  detailed  transforma-
tion process with the assistant of Fig. 10, which displays
an ETL transform code description on the left and a visual
description  of  the  meta-model  transformation  mapping
relationships on the right. In Section 6, the internal com-
munication mechanism between process nodes is to be in-
troduced.

 
 

ETL rules for model transformation
 

Segment of activity and process meta-models  

 

 

 

ActivityNode

ActivityParameter

ActivityEdge

*

0···1 0···1

*

NodeName
NodeCategory

EdgeName
EdgeCategory

Activity

ActivityName
ActivityObject

Performance
Function

+incoming

+outgoing

+target

*

*

1

1

+node

+activity+activity

+edge

+source

ProcessNode

ProcessExpression

Event

*

0···1 0···1

*

NodeName
NodeCategory

EventName
EventCategory

Process

ProcessId

NextProcess

+incoming+source

+outgoing+target
*

*

1

1

+node

+process+process

+event

ProcessName

Fig. 10    Model transformation from activity to process with ETL rules
 

When  transforming  an  activity  element  into  a  process
element, as is introduced in the previous section, the two
elements  ProcessExpression  and  ProcessId  should  be
evaluated  before  since  we  can  uniquely  identify  a  pro-
cess  through  the  two  elements,  including  what  the  pro-

cess is and what it will behave in a system.
In  a  CSP  system  model,  there  may  be  many  process

nodes, every of which may execute many behaviors, that
is to say, one process node may execute many processes.
Before  generating  a  process  model  from an  activity  mo-
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del,  we should ensure that  a corresponding process node
has  already  existed  in  the  processNodes  list,  which  re-
presents a collection of process nodes in the CSP model.
If there truly is such a corresponding process node, a pro-
cess  model  may  be  generated  on  this  base;  however,  if
there  is  no  such  a  process  node,  a  new  process  node
should  be  created  first  and added into  the  process  nodes
list, after which a corresponding process model is able to
be generated continually. The “for” block shown in Fig. 10
is  used to  realize  the function of  navigating the process-
Nodes list and creating an activity node described above.
It  is possible that the function may also be used in other
transformation rules, consequently, we will encapsulate it
into  an  operation  for  consideration  of  code  optimization
in later stages.

To  evaluate  a  processId,  we  define  a  global  integer
variable n .  Every  time  a  process  model  is  transformed
from an  activity  model,  we  will  generate  a  processId  by
concatenating  the  corresponding  activity  name  and  the
value  of  the  variable n  with  a  string  “_proc_ ”  in  their
middle,  after  which  the  variable n  will  be  increased  by
one  automatically.  Consequently,  we  can  ensure  that
every process in a CSP system has a unique processId to
be identified.

A  processExpression  consists  of  three  parts:  a  current
process name, an event name and its next process name,
with  a  symbol  “→” used  for  concatenation  between the
event and the next process. Because in a CSP system, the
process is activated by triggering an event. To evaluate a
processExpression, a specific format of a processExpres-
sion should be defined first, we define it in the “Expres-
sion”  class,  which we have  declared  at  the  meta-models
generating  step. Fig.  11 shows  the  format  definition  ex-
tracted from the “Expression” class,  from which we can
see the format conforms to that shown in Fig. 4.
  

Fig. 11    Format definition of process expression 

6. Internal communication mechanism
In  this  section,  we  intend  to  introduce  the  communica-
tion mechanism between process nodes in a CSP system.
The interactions  between process  nodes  are  usually  con-
ducted by sending and accepting signals or data with spe-
cific  formats  via  a  channel.  In  a  CSP  system,  sending  a
signal  or  data means triggering an event,  which may ac-
tivate  a  process  node to  execute  its  process,  whether  the
passing information is  a  signal  or  data  can  be  character-

ized by setting function setEventCategory(). As to how to
deal  with  the  mechanism  of  sending  and  accepting  in-
formation,  we  bring  in  the  design  of  the  structure  of  a
process  node  and the  ETL transformation  rules  of  trans-
forming a sending (or accepting) action in Alf into a send
(or  accept)  event  in  a  CSP system. Fig.  12 is  utilized  to
assist us in illustrating the communication mechanism in
a CSP system.
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Fig. 12    Structure of a process node
 

As  is  shown  in Fig.  12,  each  process  node  in  a  CSP
system consists of a decision part  and an executing part,
as  well  as  two  queues  which  are  implemented  by  using
the list collection in epsilon for handling information; one
list  is  connected  to  the  inPin  for  accepting  information
while the other list is connected to the outPin for sending
information  out.  The  decision  part  is  the  head  of  a  pro-
cess  node,  which will  be  in  charge  of  processing the  in-
formation to be sent out or examining whether accepting
information is required by itself, as well as controlling the
executing part to execute its behaviors process; while the
executing part is the hand of a process node, which is in
charge of maintaining several behaviors the process node
can execute and executing its behaviors process under the
decision part’s command. With regard to the information
dispatching mechanism of a queue, we will not take it in-
to  consideration  for  the  time being  and  assume that  it  is
configured  with  the  default  first-in  first-out  (FIFO)  dis-
patching mechanism, since the issue we do research on is
an  executable  method  for  models,  and  we  may  fix  this
problem in the system optimization stage later.

When  a  process  node  intends  to  send  information  out
to other process nodes such as passing data or asking for
cooperative behaviors, before it executes the “send the in-
formation out” behavior, the decision part of the process
node should deal with the information and encapsulate it
into  a  specific  format  which  meets  the  requirements  de-
pending on its application domain. Once the information
is  in  place,  the  decision  part  executes  the  “send  the  in-
formation  out ”  behavior  and  the  CSP  system  creates  an
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event to be triggured at the same time. Nevertheless,  the
information  is  not  sent  out  and  passed  along  a  channel
immediately  but  stored  in  the  sending  list,  as  in  a  large
scale  CSP  system  multiple  signals  or  data  may  be  sent
simultaneously.  Unless  a  channel  is  free  to  send  the  in-
formation, thereupon the event is triggered and it will in-
voke  the  method  “load  (Signal  signal) ”  to  execute  the
“send the information out” behavior. At the moment, the
information is  released from the list  and loaded onto the
event,  goes  out  from  the  outPin  of  the  sending  process
node  and  passes  along  the  channel  connecting  the  two
communication process nodes.

When  a  process  node  intends  to  accept  information,
initially the information is in place to arrive in the accept-
ing process node, the event will  invoke the method “un-
load (Signal signal)” and the information is released from
the event and passed in the inPin of the accepting process
node.  Nevertheless,  the  decision  part  of  the  accepting
node does not receive the information and read it immedi-
ately too but stores it in the accepting list, waiting for the
scheduling  of  the  dispatching  mechanism  of  the  queue
and the working mechanism of the decision part.

When the decision part intends to read the information
from the accepting list, firstly it will examine whether the
information  conforms  to  the  format  constraint  which  is
right  to  activate  the  process  node  to  execute  the  beha-
viors of its own, preventing that the information is sent to
a  wrong process  node.  If  the  information  format  is  right
and  able  to  activate  the  process  node,  the  decision  part
will accept the information and invoke corresponding be-
haviors to execute. After the execution has been done, the
decision part will create an event which records the status
of  its  execution  and  send  it  back  to  the  sending  process
node. If the information format is wrong or it is sent to a
wrong accepter for mistake, the decision part of the pro-
cess  node  will  discard  the  information  and  do  create  an
event  which  records  the  information  that  “the  informa-
tion is wrongly sent” and send it back to the sending pro-
cess node. 

7. A case study for consistency validation
In  this  section,  a  consistency  validation  between  emer-
gency response domain models and the CSP meta-model
is  illustrated,  which  will  examine  that  whether  a  contra-
diction  of  consistency  and  semantics  gaps  arises  during
the modeling process [27].  For example, whether the as-
sociations  between  emergency  response  process  in-
stances  and  a  CSP  process  meta-model  break  the  rule
constraints  (logical  constraints  and  business  constraints)
declared in the process meta-model. Firstly, we also take
the marine accident case for example to carry out the con-
sistency validation work, we configure the process meta-
model  [28]  with  several  essential  rules  constraints  [29],
and  modelers  are  also  able  to  configure  more  rule  con-

straints according to their research requirements:
(i) Every class of a process instance must have a class

name which starts with an upper case letter, and the fea-
tures  (name,  attribute,  parameter)  of  a  process  instance
must starts with a lower case letter;

(ii) The object CCR requires must be a capability, not a
resource, an activity or any other;

(iii)  Every process instance must  inherit  the “Process”
meta-model we create in the EMF model library;

(iv)  Every  process  must  be  executed  by  at  least  one
processNode;

(v)  The  standard  format  of  a  process  is  defined  as
“eventName: String → processName: String ”, in which
the “eventName” represents a name of an event while the
“processName” represents a name of a process. It means
that in a CSP system every process is executed by trigger-
ing  an  event  [10].  However,  a  process  defined  by  the
format  that  only  with  a  single  process  name,  like  “pro-
cessName : String”, which commonly appears in several
papers is not correct in fact.

We  configure  these  rules  above  with  EVL  code,  and
Fig. 13 shows several code segments of rules as there are
so  much  code  that  we  cannot  show  all  of  them  out  for
space  limitations,  which  will  examine  all  the  models  in
the ERS of the marine accident.
 

 

Fig. 13     Segments of rules for consistency validation
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Suppose that  a  modeler  is  asked to  model  the  ERS of
the  marine  accident,  and  he  constructs  the  models  as

Fig.  14 shows,  in  which  some  models  break  the  con-
straint rules.
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Fig. 14    A modeling example of the executable framework in emergency response domain
 

When an  error  message  or  a  warning  message  is  cap-
tured because of inconsistency during the validation pro-
cess [30], the EVL self-repairing mechanism is leveraged
to repair the identified inconsistency automatically by de-
fining a fixing functionality in a fix block, which can sig-

nificantly  improve  the  usability  of  the  code  and  con-
sequently  enhance  users’ productivity.  Fig.  15 shows  a
validation report  with  html  format,  which will  be  gener-
ated and fed back to modelers for system optimization.
 
 

 

Fig. 15    An example of consistency validation report
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8. Conclusions
In  this  study,  to  deal  with  the  lack  of  official  specifica-
tion and fundamental theory basis for CCR, we propose a
CCR meta-model as a theory basis for researchers to refer
to in this research domain, in which we provide detailed
definition  of  the  CCR  meta-concepts,  meta-associations
and meta-rules; and an executable framework, which may
enable  modelers  to  simulate  the  execution  process  of  a
system in advance and ensure the model verification and
consistency validation when they try their best to fill  the
inconsistency  and  semantic  gaps  between  stakeholders ’
requirements and executable models.

The  framework  bases  on  the  model  transformation
from  Alf  activity  models  into  CSP  process  models  with
ETL,  as  well  as  the  inter-object  communication  mecha-
nism  between  process  nodes.  Moreover,  the  framework
also  provides  consistency  validation  and  self-fixing
mechanism with EVL to make the created instances con-
form to the rule constraints of meta-models.

We have created meta-models of Alf activity and CSP
process and imported them into the EFM model library to
work as a plug-in in the case tool Eclipse. Then the map-
ping  rules  are  designed  by  using  ETL  to  facilitate  the
transformation  from  Alf  activity  meta-model  into  CSP
process  meta-model,  as  well  as  the  implementation  of
communication mechanism between process nodes.

Consistency  validation  is  significantly  important  in
capturing  the  errors  and  warnings  between  the  instances
and the meta-model under the rule constraints with EVL,
in this paper, we just take some essential rules for exam-
ple, researchers and modelers are able to design their own
rule constraints (logical constraints or business constraints)
according to their research requirements. A validation re-
port  will  be  generated  and  fed  back  to  the  modelers  for
reference  and the  EVL self-repairing mechanism will  be
leveraged  to  improve  the  usability  of  code  and  con-
sequently enhance modelers’ productivity.

Currently,  just  work  as  a  theoretical  basis,  the  CCR
meta-model and executable framework are used in emer-
gency  response  domain.  More  rules  and  associations
should be taken into consideration depending on the spe-
cificity of different area domains (such as the medical do-
main and the military domain) in our future work, which
is  significantly  helpful  for  us  to  enrich  our  CCR  meta-
model  and  the  executable  framework  optimization.  We
also will adapt the framework to include some safety and
security specifications checking too.
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