
An executable framework for modeling and validating coopera-
tive capability requirements in emergency response system

CHAI Lei, WANG Zhixue, HE Ming*, HE Hongyue, and YU Minggang
Institute of Command Control Engineering, Army Engineering University of PLA, Nanjing 210007, China

Abstract: As the scale of current systems become larger and
larger and their complexity is increasing gradually, research on
executable models in the design phase becomes significantly
important as it is helpful to simulate the execution process and
capture defects of a system in advance. Meanwhile, the capabil-
ity of a system becomes so important that stakeholders tend to
emphasize their capability requirements when developing a sys-
tem. To deal with the lack of official specifications and the fun-
damental theory basis for capability requirement, we propose a
cooperative capability requirements (CCR) meta-model as a the-
ory basis for researchers to refer to in this research domain, in
which we provide detailed definition of the CCR concepts, asso-
ciations and rules. Moreover, we also propose an executable
framework, which may enable modelers to simulate the execu-
tion process of a system in advance and do well in filling the in-
consistency and semantic gaps between stakeholders’ require-
ments and their models. The primary working mechanism of the
framework is to transform the Alf activity meta-model into the
communicating sequential process (CSP) process meta-model
based on some mapping rules, after which the internal commu-
nication mechanism between process nodes is designed to
smooth the execution of behaviors in a CSP system. Moreover, a
validation method is utilized to check the correctness and con-
sistency of the models, and a self-fixing mechanism is used to
fix the errors and warnings captured during the validation pro-
cess automatically. Finally, a validation report is generated and
fed back to the modelers for system optimization.

Keywords: executable model, capability requirement, consist-
ency validation, Alf, epsilon.

DOI: 10.23919/JSEE.2021.000077

1. Introduction
With the explosive development of social diversification,
interactions and cooperation between different domains

tend to be more and more frequent, as a result, the scale
of a software system supporting these interactions and co-
operation become larger and larger and its complexity is
increasing gradually. When developing large scale com-
plex systems, especially for those applied into some vital
application domains, e.g., in emergency response system
(ERS), in military domain, whose reliability, efficiency
and security are main concerns and it is very difficult to
evaluate their capabilities and identify their bugs and de-
fects. For example, if an ERS is developed for carrying
out emergency rescue missions after earthquakes, only an
earthquake actually occurs can we evaluate the capability
of this ERS and capture its defects and errors, so it is un-
wise to capture some typical errors (such as inconsisten-
cies, unreachable processes and deadlocks) until the test-
ing phase and return the system back for redevelopment.
Consequently, an executable framework in the require-
ment analysis phase, which is helpful to simulate the exe-
cution process and capture the defects of a system in ad-
vance, is considered as a significantly important ap-
proach to evaluate the capability of the to-be system, for
it is beneficial for requirement analysts or modelers to fix
these defects reasonably and effectively in the require-
ment analysis phase or the modeling design phase so as to
ensure the to-be ERS is rational and scientific. Take the
2020 novel corona virus for example, which has affected
many countries and caused huge loss of life and property,
it is mainly because that many countries fail to evaluate
the capability of their bio-safety emergency response
plans ahead of time. If these countries has constructed ex-
ecutable models when making their bio-safety emer-
gency response plans, they would be able to simulate the
execution behaviors of their emergency response activi-
ties beforehand, then repair defects captured during the
simulation process and finally improve the capability of
their bio-safety emergency response. If they had done so,
maybe there would not be such a huge loss.

Nowadays, when developing systems, especially large
scale and complex systems, the capability of these to-be
systems has drawn increasingly more stakeholders’ atten-

Manuscript received September 01, 2020.
*Corresponding author.
This work was supported by the National Key R&D Program of

China (2018YFC0806900), the China Postdoctoral Science Foundation
Funded Project (2018M633757), the Primary Research & Development
Plan of Jiangsu Province (BE2016904; BE2017616; BE2018754;
BE2019762), and Jiangsu Province Postdoctoral Science Foundation
Funded Project (2019K185).

Journal of Systems Engineering and Electronics

Vol. 32, No. 4, August 2021, pp.889 – 906

tion, which will visually represent some vital features
(functions and performances) of the systems, and stake-
holders can evaluate the real value of the systems di-
rectly. Therefore, when developing a large and complex
system, stakeholders tend to emphasize their capability
requirements to modelers and developers of the to-be
system. However, the “Capability” concept firstly comes
from some military architecture frameworks, such as the
Department of Defense Architecture Framework (DoDAF
[1]) and the Ministry of Defense Architecture Frame-
work (MODAF), most of which consider that capability
is a significantly important element to represent the value
of a system. The term “Capability Requirement ” fre-
quently appears in various official documents and re-
search papers, during which there is no precise official
definition for it, our research group refers to it as the re-
quirements of functions and performances of a large and
complex system [2]. In addition, there are two principal
categories of capability: complex capability and simple
capability. According to the capability decomposition
characteristic [1], a complex capability usually can be de-
composed into other several simple capabilities, and we
use the term “atomic capability” to represent the smallest
capability unit so that it cannot be decomposed into other
capabilities again.

At present, as the frequency and the severity of the disa-
sters around the world increase, there is an urgent re-
quirement for more efficient emergency rescue ways to
respond to small or large scale emergent incidents. Such a
requirement gradually forms a trend that cohesive cooper-
ation among all performers is increasingly required in
ERS, especially in vital cases of crises and disasters. In
an ERS, only multiple performers cooperate with each
other smoothly and efficiently, can we give full play to
the maximum effectiveness of the cooperative capability
of ERS, which is beneficial to make up for the deficiency
of a single atomic capability and form capability support
as an organic whole in ERS. However, the evaluation of
the cooperative capability of a whole ERS is not a simple
superposition or integration of atomic capabilities, be-
cause there are complex relationships between atomic
capabilities existing in ERS, actually, it involves an or-
ganic composition of multi atomic capabilities under se-
veral composition rules [3].

Therefore, in order to evaluate the capability of an
ERS, the capability of cooperation or interaction between
multiple performers should be fully considered. Con-
sequently, stakeholders tend to be accustomed to empha-
size their cooperative capability requirements (CCR) to
modelers and developers when developing an ERS.
However, when studying the CCR, what elements (or
concepts) researchers should take into consideration?

How to define the associations between elements (or con-
cepts) and what does the meta-model of CCR look like?
There is no official specification for them. In this study,
we design a CCR meta-model in the emergency response
domain, in which the definitions of CCR concepts, some
essential elements of CCR meta-model and the associ-
ations between elements are included. Moreover, our re-
search group wishes that the CCR meta-model we pro-
pose could help to deal with the lack of official specifica-
tions about CCR at present and provide some references
for researchers in this domain.

As the issue of executable models has already drawn
much attention of researchers and much study also have
been done in this research domain [4−6], even though the
models modelers have designed can correctly represent
the requirements of stakeholders, the executable models
cannot be executed directly. Review paper [7] introduces
that there are two execution ways to make models execut-
able, interpretive execution and translational execution.
For interpretive execution, there should be some com-
pilers that can parse the models based on the modeling
language and execute the models directly, and during the
very execution process, there will not be such problems
as inconsistency and semantic gaps; while for translation-
al execution, modelers should translate the modeling lan-
guage into a specific high-level programming language
(such as Java and C++) and execute on its target plat-
form, during which process the problem of inconsistency
and semantic gaps will arise again. However, the current
situation for this execution issue is that few compilers are
equipped for most modeling languages to parse models
and execute them directly, and modelers usually tend to
adopt to translate the modeling language into a high-level
programming language to make their models executable.

Generally speaking, after stakeholders propose their
cooperative capability requirements, modelers will ab-
stract the requirements and design models. Since stake-
holders’ requirements are usually textual descriptions ex-
pressed by human-readable nature languages, there will be
several semantic or inconsistency gaps between the mo-
deling language and the natural language [4]. During
various modeling languages in the modeling domain at
present, the unified modeling language (UML) [8], re-
leased by the Object Management Group (OMG), is con-
sidered as a popular and practical modeling standard in
actual industry modeling practice [9], and especially is
widely used to describe the architecture of some large and
complex systems in the specific domain [10]. In spite of
this, UML can only depict the most static properties and
fail to depict the dynamic behavior of the system, which
makes UML models unable to execute directly. To make
up for this deficiency of the UML, the OMG releases

890 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

fUML [11] and Alf [12] to provide precise definition of
behavior semantics for UML models, which enable UML
to depict dynamic behaviors of systems, therefore, applic-
ation models modeled with fUML or Alf are executable
theoretically. However, the behaviors semantics fUML
can provide is limited to a subset of UML (such as com-
posite structures, activities and classes), while Alf does
not need to conform to the scope limitations; moreover,
compared to the graphical notation features of fUML
modeling elements, the textual notation features of Alf
modeling elements enable Alf models more suitable to be
interpreted and executed on a target platform, which is
significantly helpful to eliminate (or alleviate) the se-
mantic and consistency gaps between models transforma-
tion to a large extent. In this paper, we choose Alf to
model the CCR of ERS, and translate Alf models into
communicating sequential processes (CSP) models to
make them executable.

The reasons we choose CSP as the target language are
that: firstly, CSP is good at describing the execution se-
quence and internal event triggering mechanism of a sys-
tem in detail, it can provide sufficiently powerful syntax
and semantics to simulate the execution processes of co-
operative activities in an ERS [13,14]. Secondly, as a rig-
orous mathematical method, CSP utilizes algebraic laws
for processes specification and formal logic reasoning to
analyze the behaviors of a system [15,16]. During the
models transformation from translating Alf into CSP,
based on CSP powerful algebra theoretical laws, we are
enabled to examine whether there are inconsistency and
semantic gaps between models transformation.

In this paper, we propose an executable framework for
modeling and validating CCR in ERS, in which a formal
description of CCR in ERS, model transformation for
simulating the execution process of cooperative activities
in ERS and models validation are included. The frame-
work is helpful to evaluate the cooperative capability of
an ERS in advance, since it is able to simulate the execu-
tion process of various cooperative activities (behaviors)
in ERS automatically at the requirement analysis phase.

In summary, the contributions of this study are
provided as follows:

(i) Propose a CCR meta-model in the emergency re-
sponse domain, in which we try our best to define CCR
concepts, internal associations between elements in the
model and meta-rules for constructing the cooperative
capability.

(ii) Propose an executable framework of CCR in ERS,
which is significantly helpful to simulate the execution
process of cooperative activities in ERS and ensure the
consistency between the executable models and the stake-
holders’ requirements.

(iii) Utilize the Alf language, for its extensive and
comprehensive executable semantics, as a semi-formal
modeling language to design CCR models in ERS.

(iv) Implement the detailed transformation of trans-
forming Alf models into CSP models by using the Epsi-
lon language as a middleware. As various cooperative be-
haviors (sequential, parallel, conditional and iterative)
exist in ERS at present, CSP does well in capturing these
behaviors for its high-level descriptions of synchroniza-
tions, communications, and interactions between process
nodes.

(v) Provide consistency validation between models and
stakeholders’ requirements in order to examine that if
these models satisfy their requirements and if some con-
straint rules (logical rules and business rules) are broken
during the modeling process. And finally generate a vali-
dation report, which records the errors and warnings cap-
tured during the validation process, and feed it back to
modelers for optimizing the executable framework.

The rest of this study is organized as follows: in Sec-
tion 2 we give a brief background introduction of the
tools we select to conduct our study; in Section 3 we in-
troduce the meta-model of CCR we design, which
provides detailed definition of CCR of meta-concepts,
meta-association and meta-rule involved; in Section 4 we
give an overview of the executable framework of CCR in
ERS, which will assist us to illustrate the working mech-
anism of the framework; in Section 5, we describe the
process of model transformation; in Section 6, we intro-
duce the communication mechanism between process
nodes briefly and finally, a case study is led to illustrate
the feasibility and effectiveness of the method in Section 7.

2. Related work
In this section, we introduce the tools (the modeling lan-
guage, the formal method and the integrated develop-
ment environment platform) we select to facilitate our
study, during which process we will illustrate what ad-
vantage the tools have compared to the current popular
tools in their application domain.

2.1 Alf

Although both fUML [11] and Alf are released by the
OMG to provide precise definition of behavior semantics
for UML models, each of which has their own features.
Compared to their advantages and disadvantages, our re-
search group considers that in this research paper Alf is
more suitable than fUML.

As a subset of UML, fUML is able to provide precise
definition of behavior semantics by adding some abstract
syntax elements (constraint structure, behaviors, activi-
ties and actions) to UML models. Consequently, these

CHAI Lei et al.: An executable framework for modeling and validating cooperative capability requirements in ... 891

features enable fUML to describe the dynamic behaviors
of a system, as a result, application models modeled with
fUML are executable theoretically, as long as there is a
complier which could parse fUML models directly,
which does not exist actually at present. Therefore,
modelers and researchers tend to translate the fUML
models to a format file expressed by a high-level pro-
gramming language so as to make the file run on a speci-
fic target platform (e.g., translate the fUML models to
Java code and make the models run on a Java virtual ma-
chine)[7]. Although the fUML models can be executed,
another problem may arise that there may be semantic
and inconsistency gaps between models transformation.

Similar to fUML, Alf [12] is released by the OMG to
provide precise execution semantics to UML models, but
fUML is limited to a subset of UML to provide execu-
tion semantics to composite structures, activities and
classes, while Alf is utilized primarily for providing exe-
cution semantics for UML models and does not need to
conform to the scope limitation. Alf is a textual surface
notation for UML model elements, which implements its
execution semantic by mapping Alf concrete syntax to
UML abstract syntax. Additionally, not only can Alf spe-
cify the execution behaviors, its extended notations also
can be used for representing structural modeling ele-
ments [7]. That is to say, modelers and researchers are
able to model a system and describe its behaviors en-
tirely using a unified modeling language Alf, which en-
ables Alf models to be easily interpreted and executed on
a target platform and is helpful to eliminate or alleviate
the semantic and consistency gaps between models trans-
formation to a large extent.

In this study, Alf is utilized to model the activities (be-
haviors) of an ERS, for the features of its textual notation
make Alf models more easily interpreted and executed on
a target platform than fUML.

2.2 CSP

For popular formal methods of architecture frameworks,
most researchers tend to adopt Petri net (PN), finite state
machine (FSM) and CSP [13].

Among these methods, an FSM model can describe the
state transitions and business logic of a system in detail,
but the scope it can describe is very limited and a key dis-
advantage is that there is a lack of descriptions for some
relevant dynamic semantics of activities and behaviors.
That is to say, FSM just can describe some static proper-
ties of a system, not including the dynamic behaviors of
the system.

Better than FSM, a PN model can capture and describe
the dynamic state of a system, but PN is only suitable for
modeling small and medium scale systems. When facing

large-scale complex systems, PN fails to control the large
number of emerging behaviors of its models in state
transition and event triggering, which may easily cause
the state spaces explosion problems in real application.

CSP [14], as a branch of process algebra, is different
from classic FSM and PN methods and it can describe
systems without considering the scale of systems. When
describing a system, the CSP models will generate
Markov transition processes whose unique equivalent
combination technology can effectively compress the size
of the first-order state space of the continuous time
Markov chain, whose technology can improve the state
space explosion problem to a large extent.

Moreover, as a rigorous mathematical method, CSP
utilizes algebraic rules for processes specification and
formal logic reasoning to analyze the behavior of a sys-
tem [15,16], which is helpful to examine whether incon-
sistency and semantic gaps arise between models trans-
formation. In addition, not only can CSP capture the dy-
namic state of a system, but also can describe concurrent
systems, which is utilized to reason about systems bio-
logy, communication protocols, and business logic [17].
Our research subject, the cooperative capability in ERS,
includes many concurrent behaviors (such as parallel exe-
cutions) because there are interactions between multiple
subsystems. Furthermore, CSP provide a family of some
relevant classic stochastic process algebras, such as timed
process and performance (TIPP) evaluation and perform-
ance evaluation process algebra (PEPA) [18], which have
perfect formal semantic definition languages for research-
ers to select to satisfy their research needs.

In this study, we aim at forming several CSP formal
executable models, based on its powerful algebra theoret-
ical laws [19], which are sufficiently enough to simulate
the execution process of an ERS. To obtain CSP execut-
able models, we will transform Alf models into corres-
ponding CSP models by using the model operation lan-
guage Epsilon.

2.3 Epsilon

Epsilon is a novel open source programming language
which is designed mainly for model management tasks
such as code generation, model-to-model transformation,
models validation, comparison, merging and refactoring
[20]. Epsilon provides a set of eclipse-based develop-
ment tools and an interpreter which can execute pro-
grams written in this language, as well as several ANT
workflows of different tasks (e.g., a validation followed
by a transformation after code generation).

Epsilon provides a family of languages to fulfill the
specific model management task as follows: epsilon ob-
ject language (EOL), epsilon transformation language

892 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

(ETL), epsilon validation language (EVL), epsilon gene-
ration language (EGL), epsilon comparison language
(ECL), epsilon model generation language (EMG), epsi-
lon merging language (EML), epsilon pattern language
(EPL) and epsilon wizard language (EWL). From the fea-
tures of these specific-task languages, we may draw a
conclusion that the significant distinguish between epsi-
lon and a high-level programming language is that the ep-
silon language manages and operates a model directly as
long as the model has already been registered into its
model library. Generally speaking, epsilon is a model-ori-
ented language; the features of epsilon may help to avoid
(at least alleviate) the semantic and inconsistency gaps
between models transformation and execute behaviors of
the model on the basis that the model has been correctly
designed. Now we introduce two specific-task epsilon
language briefly, ETL and EVL, which are relevant to our
study [21].

ETL is a hybrid, rule-based model-to-model transform-
ation language which provides all the standard features
and enhanced flexibility of a transformation language.
Consequently, it can transform an arbitrary number of in-
put models to an arbitrary number of output models, and
modify and update both source and target models once
the models are changed. In this study, we will adopt ETL
to transform Alf models into CSP models.

EVL is a validation language that supports generating
customizable validation report, which records error and
warning messages during model transformation, and
feeding the validation report back to modelers for system
optimization. Moreover, EVL provides a self-fixing mecha-
nism which modelers can make full use of to repair in-
consistencies and semantic gaps automatically. In this
study, EVL is utilized to validate the CSP models trans-
formed from Alf models and generate validation report,
as well as specify quick fixes for errors and warnings.

3. The CCR meta-model

3.1 Definition of CCR meta-model

Since the “Capability” concept roots from the Data Meta-
Model Group (DM2 Group) of DoDAF [1], according to
the previous results [2,3] of our research group, in the
specific emergency response domain, according to our re-
search need, we propose a CCR meta-model as a theore-
tical basis for cooperative capability modeling in this re-
search field, by extracting some related meta-concepts
and associations from the DM2 Group. Fig. 1 shows the
CCR meta-model we design, and we also construct the
internal relationships, as well as some basic constraint
rules of the cooperative capability, among meta-concepts
according to their attributes and properties.

: Inheritance; : Composition;

: Aggregation; : Association.

Activity PerformerPerform

Reflect
Part of

Change

Support
Capability Resource

System

PerformanceFunction

Complex

capability

Simple

capability

Cooperative

capability

CCR Require

Rule

Constraint

Desired

effect
Guide

Fig. 1 CCR meta-model in emergency response domain

Definition 1 The CCR meta-model is a formal frame-
work to detail the emergency response domain concepts
at an architectural level, which is composed of three
parts: meta-concept, meta-association and meta-rule.

Meta-concept is an extensible finite set of fundamen-
tal concepts which represent some essential elements re-
lated to CCR extracted from the DM2 Group, such as
activity, capability, resource, performer, and rule, and the
definitions of these meta-concepts conform to those in the
DM2 Group, readers can refer to [8] for detailed intro-
duction.

Meta-association is an extensible finite set of funda-
mental associations among all the meta-concepts. The
meta-associations of CCR meta-model can be summa-
rized as follows:

(i) CCR is a requirement description that requires se-
veral capabilities to composite a cooperative capability
under the constraints of several rules;

(ii) Capability has two principle categories: complex
capability and simple capability;

(iii) A complex capability is composited by several
simple capabilities (according to the capability decom-
position characteristic) under several composition rules,
and a complex capability can be utilized as a simple cap-
ability to composite other complex capabilities;

(iv) The cooperative capability is a kind of complex
capability, which should be composited by several simple
capabilities under several composition rules;

(v) The evaluation of a capability is reflected by the
execution effect of several activities;

(vi) Activity should be performed by performers;
(vii) Activity consumes and changes the status of some

resources;
(viii) Desired effect is part of the capability and guides

the activity;
(ix) Resource supports capability, and the function and

CHAI Lei et al.: An executable framework for modeling and validating cooperative capability requirements in ... 893

performance of resources will affect the evaluation of a
capability;

Meta-rule is an extensible finite set of fundamental
rules, including logic rules and business rules, which rep-
resents the constraints that need to be held by all con-
cepts and associations, and which provides a set of do-
main general rules for cooperative capability modeling in
the emergency response domain. The meta-rules of CCR
meta-model can be summarized as follows:

(i) The object CCR requires must be a capability, not a
resource, an activity or any other;

(ii) Every capability must be an execution result of one
or more activities;

(iii) Every activity must be performed by at least one
performer;

(iv) A performer can perform one or more activities;
(v) Every rule can constraint one or more capabilities.
Moreover, researchers and modelers are allowed to ex-

tend some essential associations and rules depending on
their study needs.

3.2 Application for modeling in emergency
response domain

Based on the formal definition of CCR meta-model, we
are able to model the cooperative capability in the emer-
gency response domain. We will illustrate the application
of the CCR meta-model in the modeling field through a
simple example of emergency rescue response for a ma-
rine accident [22]:

Basic scenario: suppose a marine accident occurs at
1 000 km from a coastal city, the rescue coordination cen-
ter (RCC) should detect the warning signal in 5 min, then
notify the coast guard force (CGF) to carry out the search
and rescue task and the medical assistance center (MAC)
to prepare to rescue the people in the accident.

During this emergency rescue response process, the
RCC, CGF and MAC should perform cooperatively, to
model the cooperative capability in this ERS, there may
be some basic ERS domain models of concepts, associ-
ations and rules, which are shown in Table 1.

Table 1 An application of CCR meta-model for modeling in ERS domain

Element Meta-model In ERS domain

Concept

CCR Emergency rescue capability in marine accident (ERCMA)

Capability
Search and rescue capability (SaRC)

Medical care capability (MCC)

Activity
Air-based rescue (ABR)

Water-based rescue (WBR)
Rescue victims in hospital (RVH)

Performer
CGF
RCC
MAC

Resource

Search and rescue cutter (SRC)
Search and rescue plane (SRP)

Medical apparatus and instruments (MAI)
Early-warning radar (EWR)

System
Communication tools (CT)

Emergency rescue platform (ERP)

DesiredEffect
Get to the marine accident site in 20 mins (GMAS2M)

EWR detects warning signals in 5 mins (DWS5M)

Association

Activity should be performed by performers
CGF performs WBR and ABR

MAC performs RVH

Activity consumes and changes the status of some resources WBR needs 20 SRCs and ABR needs 3 SRPs

Resource supports capability, and the function and performance of
resources will affect the evaluation of a capability

SRC supports SaRC, but not supports ABR
SRP supports ABR

Cooperative capability is a kind of complex capability and
should be composited by several simple capabilities

ERCMA needs SaRC and MCC to work cooperatively

Rule

The object CCR requires must be a capability,
not a resource, an activity or any other

ERCMA needs SaRC, not SRP

A performer can perform one or more activities
CFG can perform WBR by using SRC,

and also can perform ABR by using SRP

Every rule can constraint one or more capabilities
WBR and ABR should work simultaneously

RVH should work after WBR or ABR

894 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

4. Executable framework overview
In this study, we propose an executable framework that
transforms Alf models into CSP models, which is signifi-
cantly helpful for simulating the execution process of
ERS automatically and eliminating the semantic [23] and
inconsistency [24] gaps between models transformation.
The framework also generates a consistency validation
report which will capture the error and warning messages
about inconsistency and semantic gaps during the trans-
forming process. Please refer to Fig. 2 which is leve-
raged to illustrate the working process of overall execut-
able framework visually.

Stakeholders’

CCR in ERS

Alf

meta-model

CSP

meta-model

M
ap

p
in

g

ru
le

s

Validation

report

Modeler

EVL

ETL

CSP process

models

Fee
d b

ac
k to

Alf activity

models

Model transformation

Instances of

process model

Transform

to

Generate

Abstract Model

Validation rules

Fig. 2 Executable framework overview

Initially, modelers analyze the stakeholders’ CCRs in
the emergency response domain and then abstract them
into Alf activity models. To capture various kinds of beha-
viors in an ERS, the models are represented in the form
of the Alf activity model which is able to describe the act-
ive objects (ActivityNode) and behaviors (Action) during
its execution process. As we illustrate in the previous sec-
tion, the evaluation of the cooperative capability in an
ERS is reflected by the activities executed by performers
and embodied in the processes of the executing behavi-
ors, as a result, we may evaluate the cooperative capabi-
lity of an ERS by analyzing the execution effect of activi-
ties (or behaviors) of an ERS. Consequently, in Alf mo-
dels, we abstract a CCR in ERS into an “Activity” meta-
model, with the functionality and the performance re-
quirements into its “Action” and “ActivityParameterNode”
elements respectively. The “ActivityNode ” and “Activ-
ityEdge” are essential elements to completely describe an
execution of cooperative behaviors in an ERS, the
“ActivityNode” element contains all kinds of active ob-
jects in an ERS system, while the “ActivityEdge ” ele-

ment will provide control connection or data passing
between active objects.

We will get a corresponding textual Alf “Activity”
meta-model by mapping Alf concrete syntax with textual
Alf code to CCR meta-model in the form of UML ab-
stract syntax [12]. Models in the style of Alf textual code
is convenient to, as Alf language is designed by use of the
Java-like syntax, be interpreted and executed on a target
platform. Please note that Alf is a model aware action
language, not a programming language, since modeling
with a programming language will hide some significant
behavior semantics and result in inconsistency and se-
mantic gaps which are not conductive to satisfy stake-
holders’ requirements and simply maintain a system.

Secondly, we will transform the textual Alf activity
meta-model into a CSP process meta-model, by using
ETL [20], which are beneficial for reasoning business lo-
gic and consistency validation based on several mapping
rules designed depending on the features of Alf and CSP.
As modelers create instances of CSP process models to
simulate the execution process of an ERS, validation
rules are designed, by using EVL, to support consistency
validation between these instances and CSP meta-model
according to their research and analyzing needs. Then a
validation report will be generated to capture the error
and warning messages of inconsistency and semantic
gaps which arise during the validation process. In addi-
tion, EVL is utilized to provide a self-fixing mechanism
to fix the inconsistency and semantic gaps automatically.
And finally the validation report will be fed back to
modelers, which is significantly helpful to optimize and
maintain the executable framework for improvement.

5. Model transformarion of the framework
The primary functionality of model transformation of the
framework is to transform the Alf activity meta-model in-
to a corresponding CSP process meta-model, after which
rigorous algebra rules [19] are able to be utilized for
formal logical reasoning about and consistency valida-
tion between system models, we will accomplish these
tasks in three stages:

(i) Complete the transformation from Alf activity meta-
model into CSP process meta-model based on several
mapping rules using ETL;

(ii) Configure the internal communication mechanism
between CSP process nodes to smooth the working mecha-
nism of a CSP system;

(iii) Validate the CSP models resulted from step (i) us-
ing EVL and generate a validation report to be fed back
to the modeler for system optimization.

We will illustrate each of these stages in detail in the
following sections.

CHAI Lei et al.: An executable framework for modeling and validating cooperative capability requirements in ... 895

5.1 Mapping rules of model transformation

To accomplish the task, transforming the Alf activity
meta-model into the CSP process meta-model, mapping
rules should be declared first for us to comply with dur-
ing the transformation process.

Generally speaking, activities are classes and may also
have attributes and operations in UML [8]. However, in
Alf, the specification does not provide a textual notation
for features and specializations on activities. Con-
sequently, in our study, the “Activity” element in Alf is
used to represent a specific behavior in ERS, just a single
behavior, which is equivalent to the element “Action” in
UML models, and to be transformed into a process in the
CSP model. Just like an activity is accomplished through
executing several actions by active objects in UML mo-
dels, in the CSP model, several processes can be com-
bined into a single process to represent the whole beha-
vior of an ERS. For modeling active objects in real world,
which are described in UML as “ActivityNode”, we mo-
del them by using the “Active Class” element in Alf. When
come to the interactions between objects in an ERS, we
summarize them into two kinds of system behaviors
(sending signals and accepting signals), and any one of
specific behaviors in ERS can be characterized by defin-
ing the format of the signal and sending it out to a speci-
fic accepting object. For example, by defining the format
of the signal “submitRescueOrder” shown in Fig. 3, the
RCC is able to introduce the information about a marine
accident to the CGF and order the CGF to rescue the vic-
tims of the accident. Consequently, the coordinate activ-
ity is completed by sending the signal, which also re-
flects that the RCC possesses the coordinate capability.

Fig. 3 An example of the format of a signal

In Fig. 4, we exhibit the mapping rules from Alf meta-
model to CSP meta-model, in order to visualize the map-
ping relationships between the two different domains
models, we also list the corresponding UML models out.
From the mapping rules shown in the table, ANS and ANR

represent an instance of the active object who is in charge
of sending signals and accepting signals respectively
[16]. It is fundamental for an executable system that each

of the objects of a CSP system should be uniquely identi-
fied, otherwise, it will make analysts confused when they
are analyzing the system or a deadlock phenomenon will
arise during the system execution. The interactions
between objects will be carried out by sending and ac-
cepting signals, through defining the format of signals,
which will enable active objects to execute a specific do-
main behavior. We now illustrate the mapping rules con-
cretely as follows:

(i) Mapping an “activity” element to a process in the
CSP model

The “activity” element is a fundamental mechanism for
behavior modeling in Alf models [12]. Modelers usually
use the “activity” element to model a single behavior in
ERS. During the model transformation process, we trans-
form an “activity” in Alf into a process “Act” in CSP.
Both “activity” and “Act1” represent a single behavior in
their application domain, and can be merged or com-
bined into a composite activity model or a composite pro-
cess respectively to represent multiple behaviors of a
whole system.

(ii) Mapping an active class to a process node in the
CSP model

An active class is an instantiation of an activity object
in the UML model, it has its own attributes, operations as
well as nested classifiers [8], the most significant feature
of the active class in Alf is that only an active class has
receptions and, just because of this, we transform an act-
ive class into a process node which is able to satisfy the
requirement of sending and accepting signals in the CSP
model.

(iii) Mapping the interactions between activity nodes
“sending signals” and “receiving signals” to parameter-
ized events “send” and “receive” respectively in the CSP
model

Signals with a specific format, with arguments
matched with attributes in the parameter list, will be sent
and received between activity nodes. In a CSP system,
the sending (or accepting) process will trigger a send (or
accept) event, which will activate a process node to exe-
cute a process.

(iv) Transformation of the sequential execution in Alf
models

Generally speaking, in Alf syntax, behaviors included
in a block (such as a do block statement) are executed se-
quentially in order unless such a notation “@parallel” is
labeled ahead of the block, which is coincident with that
in CSP process models, for example, the format “P; Q ”
represents that process Q will continually to be executed
only after the process P is terminated successfully.

(v) Transformation of the parallel execution in Alf
models

896 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

UML model Alf element CSP representation

activity Act(param1,param2)

{

…

}

Act: ==

Let process body

within Act

active class ANS (ANR) {

…

}
ANS|ANR

ANS. send (signal, ANR)；

ANR. accept (signal)；

Act1:=send!ANS!ANR!signal

→···

Act2:=accept! ANR!signal →···

do{

act1();

act2();

} while (true)

Act1;Act2

do{

//@parallel

act1();

act2();

}while (true)

Act1ǁAct2

<<Action>>

param1, param2, ···

Act()

<<ActivityNode>>

ANS/ANR

c c<<ActivityNode>>

ANS

<<ActivityNode>>

ANR
Singnal

<<Action>><<Action>>

<<Action>><<Action>>

param

act2()

param

act1()

act2()act1()

param param

//@assured @determinate

if (condition==a){

act1();

}else if (condition ==b){

act2();

}else{……}

((a→Act1) Π (b→Act2))

∨

((a→Act1)∣(b→Act2))

for (condition== true){

 act1 ();

}

µX:{X in condition}·Act1

param

<<Action>>

act1()

param

<<Action>>

act2()Condition?

True

False

Condition?

param

<<Action>>

act1()

False

True

Fig. 4 Mapping rules from Alf to CSP model

In Alf syntax, a notation “@parallel ” is applied in a
block statement to represent that several behaviors in the
block are executed concurrently, usually on the basis that
activities in the block are data independent (e.g., Fig. 5 (a)),

if there is a data dependence (or more) between the beha-
viors, they will be executed sequentially (e.g., Fig. 5 (b)).
In the CSP model, the parallel execution in the Alf mo-
del is mapped to a symbol “ǁ” which is used to represent

CHAI Lei et al.: An executable framework for modeling and validating cooperative capability requirements in ... 897

two processes are executed in parallel, please note that
parallel processes are executed cooperatively on some
events, but their behaviors are not able to be merged or
combined to act as one process.

(a) Data independent (b) Data dependent

Fig. 5 Examples of parallel execution

(vi) Transformation of the conditional execution in Alf
models

An if statement or a switch statement (which is not
showed in Table 1) may be used to execute a set of con-
current behaviors based on the evaluation of the condi-
tions, a significant distinguish between the two kinds of
conditional execution is that the evaluation of the condi-
tional expression in the if statement only can be true or
false, while in the switch statement it can be other values
conforming to the type of the condition expression. If an
evaluation conforms to the conditional expression, an as-
sociate block will be executed, but if there are more than
one evaluation conforming to the conditional expression,
one of the associate blocks will be chosen non-determin-
istically to execute. Notations “@assured ” and “@de-
terminate” are used to indicate that there are at least one
or at most one evaluation conforming to the conditional
expression respectively. Moreover, both of the two nota-
tions can also be used simultaneously to represent that
there is exactly one evaluation conforming to the condi-
tional expression. Usually in the CSP model, under a con-
ditional execution context, the operate symbol “∣” is
used, corresponding to the situation “@assured @determ-
inate ” in the Alf model, to represent that the process
“Act1” will be executed if the event is “a”, otherwise the
“Act2” will be executed if the event is “b”. While corres-
ponding to the situation “@assured” in Alf, the operate
symbol “Π” is used to represent that one process will be
chosen to execute, but non-deterministically, from mul-
tiple associate processes whose evaluation conforms to
conditional expression.

(vii) Transformation of the iterative execution in Alf
models

In Alf syntax, a “for” statement or a “do…while” state-
ment (which is not showed in Fig. 4) can be used to rep-
resent iterative execution of behaviors. On each iteration,
the loop variable will continually increment or decre-
ment its value until it no longer satisfies the conditions to
go on executing. In the CSP model, we use such a format
as “μX: A•F(X) ” to represent that a process is iteratively
executed, and the A in this format is a collection of the

evaluation of loop variable X under the loop conditions.

5.2 Implementation of transformation

The family of epsilon languages and tools, during the
transformation process, is leveraged to accomplish the
task of model-to-model transformation and consistency
validation within the eclipse modeling framework (EMF)
[25]. We will accomplish the task in two steps and Fig. 6
will assist us to illustrate the steps [21]: firstly, since the
Alf activity meta-model and CSP process meta-model are
not existing in the meta-model library of EMF, we should
create the activity meta-model (in Alf) and the process
meta-mode (in CSP) in the beginning, and the EMF will
parse both meta-models into XMI format [26] in order
that both meta-models can be easily identified by arbi-
trary MDE framework for transformation because XMI is
a general purpose format in the software modeling do-
main. Secondly, on the basis of source/target meta-mo-
dels, transforming the activity meta-model into the pro-
cess meta-model with ETL is going to be carried out,
which should conform to the fundamental mapping rules
configured in Fig. 4.

Alf activity

meta-model

CSP

meta-model

M
ap

p
in

g
 r

u
le

s
Epsilon activity

meta-model

EMF nodel library

EMF

ETL

①

②

①

Epsilon process

meta-model

Fig. 6 Steps of model transformation

(i) Generating meta-models
To create Alf activity meta-model and CSP process

meta-model with EMF, we adopt the method that uses an-
notated Java interfaces with model properties, to be as
specific as possible, by placing the tag “@model” ahead
of some significant Java interfaces (and also an “@param”
tag ahead of some elements of the model, e.g., attributes
and operations), the EMF generator can identify the tag
automatically and generate corresponding models con-
forming to the interfaces. Consequently, we should code
Java interfaces with the “@model ” tag ahead of them
first, which can wholly represent the features of Alf activ-
ity meta-model and CSP process meta-model. Fig. 7 will
assist us to demonstrate the design process of both corres-
ponding interfaces of Alf activity meta-model and CSP
process meta-model.

898 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

Meta-models Annotated Java interfaces

/** @model*/
public interface Activity extends EObject {

/** @model*/

String get Activity Name ();
/** @param*/

void setActivityName (String value);

/** @model*/

Signal getSignal ();
/** @param*/

void setSignal (Signal value);

/** @param*/
void setActivityNode (ActivityNode node);

/** @param*/
void setActivityEde (ActivityEdge edge);

/** @model containment="true"*/

EList<ActivityNode> getActivityNodes ();
/** @model containment="true" */

EList<Edge> getEdges ();
/** @model containment="true"*/

EList<Signal> getSignals();
} // Activity

/** @model*/
public interface Process extends EObject {

/** @model*/

String getProcessExpression ();
/** @param*/

void setProcessExpression (Expression value);

/** @model*/

String getProcessId ();
/** @param*/

void setProcessId (String value);

/** @model*/

ProcessOperation getProcessOperation ();
/** @param*/

void setProcessOperation (ProcessOperation

operation);
/** @model*/

Event getEvent();
/** @param*/

void setEvent (Event value);

/** @model*/

EList<ProcessNode> getProcessNodes();
/** @model*/

EList<Event> getEvents();

} // Process

Activity

Action

ActivityNode

ActivityParameter

ActivityEdge

Alf activity

meta-model

CSP process

meta-model

ParameterNode ProcessNode

Event Process

Process expressiom ProcessID

Fig. 7 Annotated Java interface of meta-models

An Alf activity meta-model should include an “Acti-
vityNode ” and an “ActivityEdge ” whose functions and
features have been already introduced in our previous
presentation. As a result, in the interface we design for
the Alf activity meta-model, some functions to get attri-
butes of the two elements (the “ActivityNode ” and the
“ActivityEdge”) should be declared, for example, setters
and getters operation. Moreover, interfaces of the two
elements, as well as some specific domain category
classes should also be created too. For the limitation of
literal space, we will not exhibit detailed information of
the interfaces and classes we design.

Similar to Alf activity meta-model, a CSP process meta-
model should include some information about “process-
Node ” and “Event ”, as well as a process expression,
which will make a process execute with a certain manner

under some specific conditions. In the context of a CSP
system, once an “Event” is triggered through sending (or
accepting) some signals or passing some data (or mes-
sages), the event will activate a “processNode ” to exe-
cute a behavior of a process. Consequently, we design
some annotated Java interfaces for “Process”, “Process-
Node” and “Event”, as well as some classes about the de-
tailed domain category. We also declared some process
operation functions to facilitate the execution and logical
reasoning of processes.

The whole hierarchical structures of activity and pro-
cess meta-models generated in the EMF model library are
shown in Fig. 8, in which the left part shows detailed in-
formation of the interfaces and classes we design for ge-
nerating activity and process meta-models, while the right
two parts show the hierarchical structures of the meta-

CHAI Lei et al.: An executable framework for modeling and validating cooperative capability requirements in ... 899

models generated by the EMF generator. To mention that
a file with the suffix “.genmodle” represents that it is a
model result generated by the EMF generator through
parsing the annotated Java interfaces and classes model-
ers have designed. Then we are enabled to run the meta-
models on the eclipse platform as an application, and

Fig. 9 shows that the meta-models we design have been
imported into the EMF models library and applied as
plugins of eclipse, modelers are facilitated to create in-
stances of the meta-models and override the attributes
and functions of the models to satisfy their research re-
quirements.

Fig. 8 Hierarchical structure of meta-models

Fig. 9 Meta-models applied in EMF model library

(ii) Transformation from Alf to CSP model
As activity and process meta-models are generated in-

to the EMF models library, according to our research pro-
gram, model transformation from activity meta-model in-
to process meta-model is carried out by using ETL. Before
the transformation task, a previous work should be com-
pleted, based on the mapping rules shown in Fig. 4, that
is configuring the mapping rules (with the keyword “rule”)
and operations (with the keyword “operation”) in ETL.

In order to make our explanation clear and coherent,
readers need to be aware of the following issues:

i) In ETL, Alf elements and CSP elements can be ac-
cessed by the prefix “ACT” and “CSP”, respectively, fol-
lowed by the operator “!”.

ii) According to the mapping rules proposed in Fig. 4,
an activity meta-model is transformed into a process meta-
model, with an ActivityNode transformed into a process-
Node, and an ActivityEdge will be transformed into an
event in the CSP model.

900 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

iii) In order to take the executions such as sequential
execution, parallel execution, conditional execution and
iterative execution into account, we consider them as a kind
of activity node, that is the executable node, which can be
inherited by a derived class and overriding the elements.

Since there are so many elements, rules and operations
we propose, considering the literal space limitation, we
will take a representative element transformation, from

source element “Activity” into target element “process”,
for example. We will illustrate the detailed transforma-
tion process with the assistant of Fig. 10, which displays
an ETL transform code description on the left and a visual
description of the meta-model transformation mapping
relationships on the right. In Section 6, the internal com-
munication mechanism between process nodes is to be in-
troduced.

ETL rules for model transformation

Segment of activity and process meta-models

ActivityNode

ActivityParameter

ActivityEdge

*

0···1 0···1

*

NodeName
NodeCategory

EdgeName
EdgeCategory

Activity

ActivityName
ActivityObject

Performance
Function

+incoming

+outgoing

+target

*

*

1

1

+node

+activity+activity

+edge

+source

ProcessNode

ProcessExpression

Event

*

0···1 0···1

*

NodeName
NodeCategory

EventName
EventCategory

Process

ProcessId

NextProcess

+incoming+source

+outgoing+target
*

*

1

1

+node

+process+process

+event

ProcessName

Fig. 10 Model transformation from activity to process with ETL rules

When transforming an activity element into a process
element, as is introduced in the previous section, the two
elements ProcessExpression and ProcessId should be
evaluated before since we can uniquely identify a pro-
cess through the two elements, including what the pro-

cess is and what it will behave in a system.
In a CSP system model, there may be many process

nodes, every of which may execute many behaviors, that
is to say, one process node may execute many processes.
Before generating a process model from an activity mo-

CHAI Lei et al.: An executable framework for modeling and validating cooperative capability requirements in ... 901

del, we should ensure that a corresponding process node
has already existed in the processNodes list, which re-
presents a collection of process nodes in the CSP model.
If there truly is such a corresponding process node, a pro-
cess model may be generated on this base; however, if
there is no such a process node, a new process node
should be created first and added into the process nodes
list, after which a corresponding process model is able to
be generated continually. The “for” block shown in Fig. 10
is used to realize the function of navigating the process-
Nodes list and creating an activity node described above.
It is possible that the function may also be used in other
transformation rules, consequently, we will encapsulate it
into an operation for consideration of code optimization
in later stages.

To evaluate a processId, we define a global integer
variable n . Every time a process model is transformed
from an activity model, we will generate a processId by
concatenating the corresponding activity name and the
value of the variable n with a string “_proc_ ” in their
middle, after which the variable n will be increased by
one automatically. Consequently, we can ensure that
every process in a CSP system has a unique processId to
be identified.

A processExpression consists of three parts: a current
process name, an event name and its next process name,
with a symbol “→” used for concatenation between the
event and the next process. Because in a CSP system, the
process is activated by triggering an event. To evaluate a
processExpression, a specific format of a processExpres-
sion should be defined first, we define it in the “Expres-
sion” class, which we have declared at the meta-models
generating step. Fig. 11 shows the format definition ex-
tracted from the “Expression” class, from which we can
see the format conforms to that shown in Fig. 4.

Fig. 11 Format definition of process expression

6. Internal communication mechanism
In this section, we intend to introduce the communica-
tion mechanism between process nodes in a CSP system.
The interactions between process nodes are usually con-
ducted by sending and accepting signals or data with spe-
cific formats via a channel. In a CSP system, sending a
signal or data means triggering an event, which may ac-
tivate a process node to execute its process, whether the
passing information is a signal or data can be character-

ized by setting function setEventCategory(). As to how to
deal with the mechanism of sending and accepting in-
formation, we bring in the design of the structure of a
process node and the ETL transformation rules of trans-
forming a sending (or accepting) action in Alf into a send
(or accept) event in a CSP system. Fig. 12 is utilized to
assist us in illustrating the communication mechanism in
a CSP system.

Process node

Executing part

B
eh

av
io

r
1

B
eh

av
io

r
2

...

B
eh

av
io

r
n

Decision

part

inPin outPin

Accepting

list

Sending

list

Fig. 12 Structure of a process node

As is shown in Fig. 12, each process node in a CSP
system consists of a decision part and an executing part,
as well as two queues which are implemented by using
the list collection in epsilon for handling information; one
list is connected to the inPin for accepting information
while the other list is connected to the outPin for sending
information out. The decision part is the head of a pro-
cess node, which will be in charge of processing the in-
formation to be sent out or examining whether accepting
information is required by itself, as well as controlling the
executing part to execute its behaviors process; while the
executing part is the hand of a process node, which is in
charge of maintaining several behaviors the process node
can execute and executing its behaviors process under the
decision part’s command. With regard to the information
dispatching mechanism of a queue, we will not take it in-
to consideration for the time being and assume that it is
configured with the default first-in first-out (FIFO) dis-
patching mechanism, since the issue we do research on is
an executable method for models, and we may fix this
problem in the system optimization stage later.

When a process node intends to send information out
to other process nodes such as passing data or asking for
cooperative behaviors, before it executes the “send the in-
formation out” behavior, the decision part of the process
node should deal with the information and encapsulate it
into a specific format which meets the requirements de-
pending on its application domain. Once the information
is in place, the decision part executes the “send the in-
formation out ” behavior and the CSP system creates an

902 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

event to be triggured at the same time. Nevertheless, the
information is not sent out and passed along a channel
immediately but stored in the sending list, as in a large
scale CSP system multiple signals or data may be sent
simultaneously. Unless a channel is free to send the in-
formation, thereupon the event is triggered and it will in-
voke the method “load (Signal signal) ” to execute the
“send the information out” behavior. At the moment, the
information is released from the list and loaded onto the
event, goes out from the outPin of the sending process
node and passes along the channel connecting the two
communication process nodes.

When a process node intends to accept information,
initially the information is in place to arrive in the accept-
ing process node, the event will invoke the method “un-
load (Signal signal)” and the information is released from
the event and passed in the inPin of the accepting process
node. Nevertheless, the decision part of the accepting
node does not receive the information and read it immedi-
ately too but stores it in the accepting list, waiting for the
scheduling of the dispatching mechanism of the queue
and the working mechanism of the decision part.

When the decision part intends to read the information
from the accepting list, firstly it will examine whether the
information conforms to the format constraint which is
right to activate the process node to execute the beha-
viors of its own, preventing that the information is sent to
a wrong process node. If the information format is right
and able to activate the process node, the decision part
will accept the information and invoke corresponding be-
haviors to execute. After the execution has been done, the
decision part will create an event which records the status
of its execution and send it back to the sending process
node. If the information format is wrong or it is sent to a
wrong accepter for mistake, the decision part of the pro-
cess node will discard the information and do create an
event which records the information that “the informa-
tion is wrongly sent” and send it back to the sending pro-
cess node.

7. A case study for consistency validation
In this section, a consistency validation between emer-
gency response domain models and the CSP meta-model
is illustrated, which will examine that whether a contra-
diction of consistency and semantics gaps arises during
the modeling process [27]. For example, whether the as-
sociations between emergency response process in-
stances and a CSP process meta-model break the rule
constraints (logical constraints and business constraints)
declared in the process meta-model. Firstly, we also take
the marine accident case for example to carry out the con-
sistency validation work, we configure the process meta-
model [28] with several essential rules constraints [29],
and modelers are also able to configure more rule con-

straints according to their research requirements:
(i) Every class of a process instance must have a class

name which starts with an upper case letter, and the fea-
tures (name, attribute, parameter) of a process instance
must starts with a lower case letter;

(ii) The object CCR requires must be a capability, not a
resource, an activity or any other;

(iii) Every process instance must inherit the “Process”
meta-model we create in the EMF model library;

(iv) Every process must be executed by at least one
processNode;

(v) The standard format of a process is defined as
“eventName: String → processName: String ”, in which
the “eventName” represents a name of an event while the
“processName” represents a name of a process. It means
that in a CSP system every process is executed by trigger-
ing an event [10]. However, a process defined by the
format that only with a single process name, like “pro-
cessName : String”, which commonly appears in several
papers is not correct in fact.

We configure these rules above with EVL code, and
Fig. 13 shows several code segments of rules as there are
so much code that we cannot show all of them out for
space limitations, which will examine all the models in
the ERS of the marine accident.

Fig. 13 Segments of rules for consistency validation

CHAI Lei et al.: An executable framework for modeling and validating cooperative capability requirements in ... 903

Suppose that a modeler is asked to model the ERS of
the marine accident, and he constructs the models as

Fig. 14 shows, in which some models break the con-
straint rules.

ActivityPerformer

Reflect

Surpport

Capability

ResourceCCR

Rule

ProcessprocessNode

Perform

Constraint

R
equire

Require

R
eq

ui
re

Event

Execute

Activate

RCC

CGF

MAC

Signal

CCR in

marine accident

WaterBased

rescue

AirBased

rescue

issueRescue

order

Capability

SaRC

MCC

SRC

Rule

Rescuevictims

Resource

SRC

SRP

EWR

MRP

Constraint

Num: Integer

Alf

meta-models

CSP

meta-models

Models in

emergency

response domain

Fig. 14 A modeling example of the executable framework in emergency response domain

When an error message or a warning message is cap-
tured because of inconsistency during the validation pro-
cess [30], the EVL self-repairing mechanism is leveraged
to repair the identified inconsistency automatically by de-
fining a fixing functionality in a fix block, which can sig-

nificantly improve the usability of the code and con-
sequently enhance users’ productivity. Fig. 15 shows a
validation report with html format, which will be gener-
ated and fed back to modelers for system optimization.

Fig. 15 An example of consistency validation report

904 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

8. Conclusions
In this study, to deal with the lack of official specifica-
tion and fundamental theory basis for CCR, we propose a
CCR meta-model as a theory basis for researchers to refer
to in this research domain, in which we provide detailed
definition of the CCR meta-concepts, meta-associations
and meta-rules; and an executable framework, which may
enable modelers to simulate the execution process of a
system in advance and ensure the model verification and
consistency validation when they try their best to fill the
inconsistency and semantic gaps between stakeholders ’
requirements and executable models.

The framework bases on the model transformation
from Alf activity models into CSP process models with
ETL, as well as the inter-object communication mecha-
nism between process nodes. Moreover, the framework
also provides consistency validation and self-fixing
mechanism with EVL to make the created instances con-
form to the rule constraints of meta-models.

We have created meta-models of Alf activity and CSP
process and imported them into the EFM model library to
work as a plug-in in the case tool Eclipse. Then the map-
ping rules are designed by using ETL to facilitate the
transformation from Alf activity meta-model into CSP
process meta-model, as well as the implementation of
communication mechanism between process nodes.

Consistency validation is significantly important in
capturing the errors and warnings between the instances
and the meta-model under the rule constraints with EVL,
in this paper, we just take some essential rules for exam-
ple, researchers and modelers are able to design their own
rule constraints (logical constraints or business constraints)
according to their research requirements. A validation re-
port will be generated and fed back to the modelers for
reference and the EVL self-repairing mechanism will be
leveraged to improve the usability of code and con-
sequently enhance modelers’ productivity.

Currently, just work as a theoretical basis, the CCR
meta-model and executable framework are used in emer-
gency response domain. More rules and associations
should be taken into consideration depending on the spe-
cificity of different area domains (such as the medical do-
main and the military domain) in our future work, which
is significantly helpful for us to enrich our CCR meta-
model and the executable framework optimization. We
also will adapt the framework to include some safety and
security specifications checking too.

References
 DoD Architechture Framework Working Group. DoD ar-
chitechture framework version V2.0. https://dodcio.defense.

[1]

gov/Library/DoD-Architecture-Framework/.
 DONG Q C, WANG Z X, CHEN G Y, et al. Domain-speci-
fic modeling and verification for C4ISR capability require-
ments. Journal of Central South University, 2012, 19(5):
1334–1340.

[2]

 ZHANG T T, LIU X M, WANG Z X, et al. Capability-ori-
ented architectural analysis method based on fuzzy descrip-
tion logic. Computer Science and Information Systems, 2015,
13(1): 287–308.

[3]

 CICCOZZI F, MALAVOLTA I, SELIC B. Execution of
UML models: a systematic review of research and practice.
Software and Systems Modeling, 2019, 18(3): 2313–2360.

[4]

 ABDOLI S, SAMI K. A modelling framework to design exe-
cutable logical architecture of engineering systems. Modern
Applied Science, 2017, 11(9): 75–91.

[5]

 BERGMAYR A, BRUNELIERE H, CABOT J. fREX:
fUML-based reverse engineering of executable behavior for
software dynamic analysis. Proc. of the 8th Workshop on
Modelling in Software Engineering—Co-located with ICSE
2016, 2016: 20–26.

[6]

 CICCOZZI F. On the automated translational execution of
the action language for foundational UML. Software and
Systems Modeling, 2018, 17(4): 1311–1337.

[7]

 Object Management Group. Unified modeling language
(UML) V2.5. 1. https://www.omg.org/spec/UML/.

[8]

 SOLTANA G, SANNIER N, SABETZADEH M, et al. Mo-
del-based simulation of legal policies: framework, tool sup-
port, and validation. Software and Systems Modeling, 2018,
17(3): 851–883.

[9]

 DRAGOMIR I, OBER I, PERCEBOIS C. Contract-based
modeling and verification of timed safety requirements
within SysML. Software and Systems Modeling, 2017, 16(2):
587–624.

[10]

 Object Management Group. Semantics of a foundational sub-
set for executable UML models. https://www.omg.org/spec/
FUML.

[11]

 Object Management Group. Action language for foundation-
al UML (Alf) V1.1. https://www.omg.org/spec/ALF/.

[12]

 BAI Y, ZHANG Y X, ZHOU Y Z. Process algebra-based
formal service description method. Journal of Tsinghua Uni-
versity, 2012, 52(12): 1769–1775. (in Chinese)

[13]

 VANGLABBEEK R J. Communicating sequential processes.
http://theory.stanford.edu/people/rvg/abstracts.html#1.

[14]

 LIN K P, CHAO W S. The structure-behavior coalescence
approach for systems modeling. IEEE Access, 2019, 7(1):
8609–8620.

[15]

 ABDELHALIM I, SCHNEIDER S, TREHARNE H. An in-
tegrated framework for checking the behaviour of fUML
models using CSP. International Journal on Software Tools
for Technology Transfer, 2013, 15(4): 375–396.

[16]

 MICHAEL H. Essential business process modeling. Se-
bastopol, California: O’Reilly Media, 2009.

[17]

 CIOCCHETTA F, HILLSTON J. Bio-PEPA: an extension of
the process algebra PEPA for biochemical networks. Elec-
tronic Notes in Theoretical Computer Science, 2008, 194(3):
103–117.

[18]

 HOARE T, STADEN S V. The laws of programming unify
process calculi. Science of Computer Programming, 2014,
85(Part B): 102–114.

[19]

 DIMITRIS K, LOUIS R, ANTONIO G D, et al. The Epsilon
book, 2018. https://www.eclipse.org/epsilon.

[20]

CHAI Lei et al.: An executable framework for modeling and validating cooperative capability requirements in ... 905

 LIU C, TANG T. Epsilon-based model transformation and
verification of train control system specification. Proc. of the
30th Chinese Control Conference, 2011: 5562–5567.

[21]

 ZHANG Z H, ZHANG X L, XU Z J, et al. Emergency coun-
termeasures against marine disasters in Qingdao City on the
basis of scenario analysis. Natural Hazards, 2015, 75(2):
233–255.

[22]

 LIMA L, MIYAZWA A, CAVALCANTI A, et al. An integ-
rated semantics for reasoning about SysML design models
using refinement. Software and Systems Modeling, 2015,
16(3): 875–902.

[23]

 LUO R B, GAO S S, LI H L, et al. Modeling and verifica-
tion of reconfigurable printing system based on process al-
gebra. Mathematical Problems in Engineering, 2018, 2018:
9189836.

[24]

 DAVE S, FRANK B, MARCELO P, et al. EMF: eclipse
modeling framework. 2nd ed. New Jersey: Addison-Wesley
Professional, 2008.

[25]

 Object Management Group. XML metadata interchange
(XMI). https://www.omg.org/spec/XMI/2.5.1/PDF.

[26]

 BRUNNER J, LAMMICH P. Formal verification of an exe-
cutable LTL model checker with partial order reduction.
Journal of Automated Reasoning, 2018, 60(1): 3–21.

[27]

 GLABBEEK R V, HOFNER P H, MARKL M. A process al-
gebra for link layer protocols. Programming Languages and
Systems, 2019, 11423: 668–693.

[28]

 BALABAN M, MARA E A. Removing redundant multipli-
city constraints in UML class models. Software and Systems
Modeling, 2019, 18(4): 2717–2751.

[29]

 XIANG S Q, WU X, ZHU H B, et al. Modeling and verify-
ing basic modules of floodlight. Mobile Networks and Ap-
plications, 2019, 24(1): 100–114.

[30]

 Biographies
CHAI Lei was born in 1986. He received his
M.S. degree from the Institute of Software Engi-
neering, the University of Science and Techno-
logy of China. He is a Ph.D. student of the Insti-
tute of Command and Control Engineering, the
Army Engineering University of PLA. His re-
search interests are requirements engineering,
software engineering, focusing on specification

and formal verification.
E-mail: heyuekunhong@126.com

WANG Zhixue was born in 1961. He received
his B.S. degree from Hefei Polytechnic Uni-
versity, M.S. degree from the National University
of Defense and Technology, and used to be a vis-
iting researcher in the Faculty of Information
Technology, University of Brighton, England. He
is a professor of the Institute of Command and
Control Engineering, Army Engineering Uni-

versity of PLA. His research interests are software engineering, require-
ments engineering, and theory and technology of command automation,
currently focusing on domain-specific modeling and formal verification.
E-mail: wzx_cx@163.com

HE Ming was born in 1978. He received his B.S.,
M.S. and Ph.D. degrees from the Army Engineer-
ing University of PLA, Nanjing, in 2000, 2003
and 2007, respectively. He is a professor in the
Army Engineering University of PLA. His main
research interests focus on emergency command,
big data analytics, Internet of Things and public
safety.

E-mail: 1456167138@qq.com

HE Hongyue was born in 1986. He is a lecturer
of the Institute of Command and Control Engi-
neering, Army Engineering University of PLA.
His research interests are system of systems (SoS)
engineering and the theory of command and con-
trol, specification and formal verification.
E-mail: hehy2008@sina.com

YU Minggang was born in 1986. He is a lecturer
of the Institute of Command and Control Engi-
neering, Army Engineering University of PLA.
His research interests are system of systems (SoS)
engineering and the theory of command and con-
trol, focusing on evolutionary game.
E-mail: yuminggang8989@163.com

906 Journal of Systems Engineering and Electronics Vol. 32, No. 4, August 2021

